Korbicz, Józef - red. ; Uciński, Dariusz - red.
This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorith ; Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
Zielona Góra: Uniwersytet Zielonogórski
AMCS, Volume 22, Number 3 (2012) ; click here to follow the link
Biblioteka Uniwersytetu Zielonogórskiego
Sep 8, 2021
Sep 10, 2018
167
https://www.zbc.uz.zgora.pl/publication/55125
Edition name | Date |
---|---|
A novel Fuzzy C-Regression Model algorithm using a new error measure and particle swarm optimization | Sep 8, 2021 |
Nelles, Oliver Fink, Alexander Babuška, Robert Setnes, Magne Rutkowska, Danuta - ed. Zadeh, Lotfi A. - ed.
Domański, Paweł Brdyś, Mieczysław A. Tatjewski, Piotr Korbicz, Józef - red. Uciński, Dariusz - red.
Xu, Dezhi Jiang, Bin Shi, Peng Korbicz, Józef - red. Uciński, Dariusz - red.
Li, Chunshien Chiang, Tai-Wei Cordón, Oskar - ed. Kazienko, Przemysław - ed.
Ben Brahim, Ali Dhahri, Slim Ben Hmida, Fayçal Sellami, Anis Byrski, Aleksander - ed. Kisiel-Dorohinicki, Marek - ed. Dobrowolski, Grzegorz - ed.
Khémiri, Karim Ben Hmida, Fayçal Ragot, José Gossa, Moncef Korbicz, Józef - red. Uciński, Dariusz - red.