Cordón, Oskar - ed. ; Kazienko, Przemysław - ed.
Hybrid and Ensemble Methods in Machine Learning
Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). ; This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system?s framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and efficient.
Zielona Góra: Uniwersytet Zielonogórski
AMCS, Volume 22, Number 4 (2012) ; click here to follow the link
Biblioteka Uniwersytetu Zielonogórskiego
Jul 14, 2025
Sep 15, 2021
301
https://www.zbc.uz.zgora.pl/publication/65820
| Edition name | Date |
|---|---|
| Data-driven models for fault detection using kernel PCA: A water distribution system case study | Jul 14, 2025 |
Jankowski, Norbert Linowiecki, Rafał Kulczycki, Piotr - ed. Kacprzyk, Janusz - ed. Kóczy, László T. - ed. Mesiar, Radko - ed.
Rienmüller, Theresa Hofbaur, Michael Travé-Massuy?s, Louise Bayoudh, Mehdi Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.
Tenne, Yoel Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.
Koziarski, Michał Woźniak, Michał Stefanowski, Jerzy - ed. Krawiec, Krzysztof - ed. Wrembel, Robert - ed.
Blachnik, Marcin Gamper, Johann - ed. Wrembel, Robert - ed.
Żelasko, Dariusz Pławiak, Paweł Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.
Zhou, Meng Rodrigues, Mickael Shen, Yi Theilliol, Didier Aitouche, Abdel - ed.
Maksimov, Vyacheslav I. Pandolfi, Luciano Triggiani, Roberto- ed. Maksimov, Vyacheslav I. - ed.