This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This is particularly important in the case of noise and underparameterisation. Structured models have much better long-range prediction accuracy than the corresponding classical Nonlinear Auto Regressive with eXternal input (NARX) models. ; The described suboptimal MPC algorithm needs solving on-line only a quadratic programming problem. Nevertheless, it gives closed-loop control performance similar to that obtained in fully-fledged nonlinear MPC, which hinges on online nonconvex optimisation. In order to demonstrate the advantages of structured models as well as the accuracy of the suboptimal MPC algorithm, a polymerisation reactor is studied.
Zielona Góra: Uniwersytet Zielonogórski
AMCS, volume 19, number 2 (2009) ; click here to follow the link
Biblioteka Uniwersytetu Zielonogórskiego
Apr 9, 2024
Apr 9, 2024
19
https://www.zbc.uz.zgora.pl/publication/88539
Edition name | Date |
---|---|
Efficient nonlinear predictive control based on structured neural models | Apr 9, 2024 |
Ławryńczuk, Maciej Tatjewski, Piotr Korbicz, Józef - red. Uciński, Dariusz - red.
Ławryńczuk, Maciej Korbicz, Józef - red.
Tatjewski, Piotr Ławryńczuk, Maciej Korbicz, Józef - red.
Ławryńczuk, Maciej Iacono, Mauro - ed. Kołodziej, Joanna - ed.
Korbicz, Józef Patan, Krzysztof Korbicz, Józef - red. Uciński, Dariusz - red.
Yang, Xiaoke Maciejowski, Jan M. Simani, Silvio - ed. Castaldi, Paolo - ed.
Oliveira, Gustavo H.C. Amaral, Wagner C. Favier, Gerard Kowalczuk, Zdzisław - red.
Grosso, Juan M. Ocampo-Martinez, Carlos Puig, Vicenç Korbicz, Józef - red. Uciński, Dariusz - red.