Kowal, Marek - red. ; Korbicz, Józef - red.
This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). ; The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg?Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.
Zielona Góra: Uniwersytet Zielonogórski
AMCS, volume 24, number 1 (2014) ; click here to follow the link
Biblioteka Uniwersytetu Zielonogórskiego
Apr 24, 2024
Apr 24, 2024
23
https://www.zbc.uz.zgora.pl/publication/88736
Edition name | Date |
---|---|
Approximation of phenol concentration using novel hybrid computational intelligence methods | Apr 24, 2024 |
Takagi, Hideyuki Rutkowska, Danuta - ed. Zadeh, Lotfi A. - ed.
Duch, Włodzislaw Adamczak, Rafał Diercksen, Geerd H.F. Rutkowska, Danuta - ed. Zadeh, Lotfi A. - ed.
Pujol, Francisco A. Mora, Higinio Girona-Selva, José A. Korbicz, Józef - red. Uciński, Dariusz - red.
Łęski, Jacek M. Henzel, Norbert Rutkowska, Danuta - ed. Zadeh, Lotfi A. - ed.
Śmietański, Jacek Tadeusiewicz, Ryszard Łuczyńska, Elżbieta Korbicz, Józef - red. Uciński, Dariusz - red.
Łęski, Jacek M. Rutkowska, Danuta - ed. Kacprzyk, Janusz - ed. Zadeh, Lotfi A. - ed.
Tadeusiewicz, Ryszard Ogiela, Marek R. Korbicz, Józef - red. Uciński, Dariusz - red.
Czabański, Robert Beliczyński, Bartłomiej - red.