Object structure

Creator:

Sravanthi, C.S. ; Gorla, Rama Subba Reddy

Contributor:

Jurczak, Paweł - red.

Title:

Effects of heat source/sink and chemical reaction on MHD maxwell nanofluid flow over a convectively heated exponentially stretching sheet using homotopy analysis method

Group publication title:

IJAME, volume 23 (2018)

Subject and Keywords:

HAM ; chemical reaction ; heat source/sink ; Maxwell nanofluid ; porous exponentially stretching sheet ; convective boundary conditions

Abstract:

The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD (magnetohydrodynamic) two-dimensional mixed convective boundary layer flow of a Maxwell nanofluid over a porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used to convert the governing partial differential equations into non-linear ordinary differential equations. ; The resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are developed in series form. Convergence of the constructed solution is verified. A comparison is made with the available results in the literature and our results are in very good agreement with the known results. ; The obtained results are presented through graphs for several sets of values of the parameters and salient features of the solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood number are computed and analyzed.

Publisher:

Zielona Góra: Uniwersytet Zielonogórski

Date:

2018

Resource Type:

artykuł

Format:

application/pdf

DOI:

10.1515/ijame-2018-0009

Pages:

137-159

Source:

IJAME, volume 23, number 1 (2018)

Language:

eng

License:

CC 4.0

License CC BY-NC-ND 4.0:

click here to follow the link

Rights:

Biblioteka Uniwersytetu Zielonogórskiego