Creator:
Contributor:
Korbicz, Józef - red. ; Patton, Ronald J. - red.
Title:
CMAC and its extensions for efficient system modelling
Subtitle:
Group publication title:
Subject and Keywords:
CMAC ; neural networks ; B-splines ; hardware implementation
Abstract:
This paper deals with the family of CMAC neural networks. The most important properties of this family are the extremely fast learning capability and a special architecture that makes effective digital hardware implementation possible. The paper gives an overview of the classical binary CMAC, shows the limitations of its modelling capability, gives a critical survey of its different extensions and suggests two further modifications. ; The aim of these modifications is to improve the modelling capability while maintaining the possibility of an effective realization. The basic element of the first suggested hardware structure is a new matrix-vector multiplier which is based on a canonical signed digit (CSD) number representation and a distributed arithmetic. ; In the other version, a hierarchical network structure and a special sequential training method are proposed which can constitute a trade-off between the approximation error and generalization. The proposed versions (among them a dynamic extension of the originally static CMAC) are suitable for embedded applications where the low cost and relatively high speed operation are the most important requirements.
Publisher:
Zielona Góra: Uniwersytet Zielonogórski
Date:
Resource Type:
Pages:
Source:
AMCS, volume 9, number 3 (1999) ; click here to follow the link