Struktura obiektu
Autor:

Jankowski, Norbert

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł:

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD

Tytuł publikacji grupowej:

AMCS, volume 28 (2018)

Temat i słowa kluczowe:

radial basis function network ; extreme learning machines ; kernel methods ; prototype ; prototype selection ; machine learning ; k nearest neighbours

Abstract:

Radial basis function networks (RBFNs) or extreme learning machines (ELMs) can be seen as linear combinations of kernel functions (hidden neurons). Kernels can be constructed in random processes like in ELMs, or the positions of kernels can be initialized by a random subset of training vectors, or kernels can be constructed in a (sub-)learning process (sometimes by k-means, for example). We found that kernels constructed using prototype selection algorithms provide very accurate and stable solutions. ; What is more, prototype selection algorithms automatically choose not only the placement of prototypes, but also their number. Thanks to this advantage, it is no longer necessary to estimate the number of kernels with time-consuming multiple train-test procedures. The best results of learning can be obtained by pseudo-inverse learning with a singular value decomposition (SVD) algorithm. ; The article presents a comparison of several prototype selection algorithms co-working with singular value decomposition-based learning. The presented comparison clearly shows that the combination of prototype selection and SVD learning of a neural network is significantly better than a random selection of kernels for the RBFN or the ELM, the support vector machine or the kNN. Moreover, the presented learning scheme requires no parameters except for the width of the Gaussian kernel.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2018

Typ zasobu:

artykuł

DOI:

10.2478/amcs-2018-0055

Strony:

719-733

Źródło:

AMCS, volume 28, number 4 (2018) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: