A1 - Figwer, Jarosław
A2 - Korbicz, Józef - red.
A2 - Uciński, Dariusz - red.
PB - Zielona Góra: Uniwersytet Zielonogórski
N2 - An approach to the synthesis and simulation of wide-sense stationary multivariate orthogonal random processes defined by their power spectral density matrices is presented. The approach is based on approximating the non-parametric power spectral density representation by the periodogram matrix of a multivariate orthogonal multisine random time-series.
N2 - This periodogram matrix is used to construct the corresponding spectrum of the multivariate orthogonal multisine random time-series (synthesis). Application of the inverse finite discrete Fourier transform to this spectrum results in a multivariate orthogonal multisine random time-series with the predefined periodogram matrix (simulation). The properties of multivariate orthogonal multisine random process approximations obtained in this way are discussed. Attention is paid to asymptotic gaussianess.
KW - simulation random processes
KW - multivariate orthogonal random processes
KW - simulated identification
KW - multisine random time-series
KW - fast Fourier transform
T1 - Multisine approximation of multivariate orthogonal random processes