@misc{Praczyk_Tomasz_Evolving, author={Praczyk, Tomasz}, howpublished={online}, publisher={Zielona Góra: Uniwersytet Zielonogórski}, language={eng}, abstract={The paper presents a new Artificial Neural Network (ANN) encoding method called Assembler Encoding (AE). It assumes that the ANN is encoded in the form of a program (Assembler Encoding Program, AEP) of a linear organization and of a structure similar to the structure of a simple assembler program. The task of the AEP is to create a Connectivity Matrix (CM) which can be transformed into the ANN of any architecture.}, abstract={To create AEPs, and in consequence ANNs, genetic algorithms (GAs) are used. In addition to the outline of AE, the paper also presents a new AEP encoding method, i.e., the method used to represent the AEP in the form of a chromosome or a set of chromosomes. The proposed method assumes the evolution of individual components of AEPs, i.e., operations and data, in separate populations.}, abstract={To test the method, experiments in two areas were carried out, i.e., in optimization and in a predator-prey problem. In the first case, the task of AE was to create matrices which constituted a solution to the optimization problem. In the second case, AE was responsible for constructing neural controllers used to control artificial predators whose task was to capture a fast-moving prey.}, type={artykuł}, title={Evolving co-adapted subcomponents in assembler encoding}, keywords={neural networks, evolution, neuroevolution}, }