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Computers are becoming sufficiently powerful to permit to numerically solve problems such as the wave equation with
high-order methods. In this article we will consider Lagrange finite elements of order k and show how it is possible to
automatically generate the mass and stiffness matrices of any order with the help of symbolic computation software. We
compare two high-order time discretizations: an explicit one using a Taylor expansion in time (a Cauchy-Kowalewski
procedure) and an implicit Runge-Kutta scheme. We also construct in a systematic way a high-order quadrature which
is optimal in terms of the number of points, which enables the use of mass lumping, up to P5 elements. We compare
computational time and effort for several codes which are of high order in time and space and study their respective
properties.
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1. Introduction

The second-order wave equation is a fundamental equa-
tion modeling several phenomena such as acoustic, elas-
tic, or electromagnetic waves. In the DFG-CNRS project
Noise generation in turbulent flows we need to solve
aeroacoustic problems where sources of the wave equa-
tion come from fluid dynamics. We then need to couple a
code solving fluid dynamics (HYDSOL (Dumbser, 2005))
with a code solving the propagation of the acoustic waves.
As the acoustic waves propagate very far and as we work
on realistic though complex geometries, we want a very
precise solver on unstructured meshes, i.e., high-order
schemes in both time and space.

To develop high-order schemes in space, we had to
choose between different methods. First, the finite dif-
ference method, which is a popular numerical technique
because of its relative simplicity of implementation, is ob-
viously less adapted to complex geometries than those for
aeroacoustic problems. Accordingly, we chose to develop
high-order finite element schemes. Finite element meth-
ods are well adapted for unstructured meshes but have the
main drawback that the mass matrix, which is full, has to
be inverted at each time step. This problem can be cir-
cumvented by the use of lumped finite elements, which
allows us to approximate the mass matrix by a diagonal
one using a quadrature formula rather than exact integra-

tion (Ciarlet, 1978). The development of high-order mass
lumping in 1D was discussed in (Cohen et al., 1994), the
case of tensor product elements such Qk in 2D in (Cohen
et al., 1993), and all of the results for mass-lumping are
summarized in the book (Cohen, 2002).

For obtaining high-order time schemes, we shall
study two types of discretization: explicit and implicit.
An explicit time scheme is based on a Taylor expansion of
the unknown and its time derivatives and can be seen as a
Cauchy-Kovalewski procedure (Titarev and Toro, 2002).
Notice that, in this explicit case, the mass-lumping is nec-
essary as the mass matrix has to be inverted at each time
step. So we will compare the results and the efficiency
of the schemes with a diagonally implicit Runge-Kutta
method (Butcher, 2003), which does not need the inver-
sion of the full mass matrix at each time step.

A comparison between high-order finite elements
and finite differences was already realized (Mulder, 1996).
In this paper we will consider Lagrange triangular finite
elements Pk (and their lumped versions up to P5) in order
to compare high and low-order methods. The question we
want to answer is as follows: Does the superior accuracy
of high-order finite element methods permit a sufficient
reduction in the number of degrees of freedom to balance
its higher cost, especially if this cost can be limited by the
use of high-order mass-lumping?
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In the first part of this paper, we show how it is pos-
sible to automatically generate the mass and stiffness ma-
trices at any order using symbolic calculation software in
order to implement high-order schemes with less effort.
In Section 2, we expose a method which generalizes the
works (Cohen et al., 2001) and (Tordjman, 1995), for de-
termining high-order symmetric positive definite quadra-
ture formulas. Our approach to this construction is slightly
different from those of (Chin-Joe-Kong et al., 1999) as
it allows for a systematic minimization of the number of
quadrature points. Since a high-order discretization in
space has to be coupled with a high-order discretization in
time in order not to lose its accuracy and convergence rate,
in the third part we discuss two high-order discretizations
in time: one explicit and the diagonally implicit Runge-
Kutta method (DIRK). The final sections are dedicated to
numerical results and to conclusions to our study.

2. Arbitrary High-Order Lagrange Finite
Elements

2.1. Finite Element Method and its Implementation.
To illustrate our aims, we first consider the homogeneous
wave equation with a vanishing Dirichlet boundary and
initial conditions. Let Ω ∈ R2 be an open bounded and
polygonal domain with boundary Γ = ∂Ω. The goal is
the following: Find u: Ω × R+ → R such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
t u−�u = f, (x, t) ∈ Ω × R+,

u(x, 0) = u0(x), x ∈ Ω,
∂tu(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ Γ × R+.

Let Th be a mesh (triangulation) of Ω. We denote
by H1(Ω) the first-order Sobolev space of square inte-
grable functions whose first derivatives (in the distribu-
tion sense) are also square integrable and by H1

0 (Ω) the
first-order Sobolev space with vanishing boundary con-
ditions. We denote by {K} the set of triangles and by
Vh = {ψ ∈ C0(Ω) | ∀i, ψ|Ki

∈ Pk} ∩ H1
0 (Ω) the k-

th order Lagrange finite element approximation subspace
of continuous functions associated with Th. We recall
that Pk is a 1

2 (k + 1)(k + 2) dimensional space which
consists of polynomials of degrees less than or equal to
k for which it is possible to form a basis {ψi} such that
ψi(aj) = δij , where {ai} are the degrees of freedom on
a triangle. The problem can be rewritten in a variational
form (where we have neglected the initial condition): Find
uh(t) : R+ → Vh such that

d2

dt2

∫
Ω

uh(x, t)vh(x) dx +
∫

Ω

∇uh(x, t) · ∇vh(x) dx

=
∫

Ω

f(x, t)vh(x) dx, ∀vh ∈ Vh.

Let {ai} be the set of points on which we define
the Lagrange degrees of freedom (i.e., over the whole
triangulation) and {ψi} the set of the associated basis
functions. If U denotes the vector containing the coor-
dinates of uh in the basis {ψi}, and (F (t))i = f(ai, t),
the projection on the finite element space of the external
force, then the problem is equivalent to the system of
ordinary differential equations:

M
d2

dt2
U(t) +KU(t) = MF (t),

where the mass and stiffness matrices, respectively de-
noted by M and K , are defined by⎧⎪⎨

⎪⎩
Mij =

∫
Ω

ψi(x)ψj(x) dx,

Kij =
∫

Ω

∇ψi(x).∇ψj(x) dx.

In order to implement the method, we rewrite these matri-
ces in the form

Mij =
∑
K

∫
K

ψi(x, y)ψj(x, y) dxdy,

Kij =
∑
K

∫
K

∇ψi(x, y).∇ψj(x, y) dxdy.

It is now possible to compute the integrals on each
triangle using the integrals on a reference triangle and an
affine mapping which transforms one into the other. More
precisely, consider a triangle whose vertices S(i), i =
1, . . . , 3, have coordinates (xi, yi) and the reference ele-
ment K̂ whose vertices have coordinates (0, 0), (1, 0) and
(0, 1). The affine mapping

F (x̂, ŷ) = A

(
x̂

ŷ

)
+ b

with

A =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
, b =

(
x1

y1

)

transforms K̂ into K . Thus, by the change of variables
(x, y) = F (x̂, ŷ), we get

Mij =
∫

K

ψi(x, y)ψj(x, y) dx dy

=
∫

K̂

ψi(F (x̂, ŷ))ψj(F (x̂, ŷ))(detA) dx̂ dŷ

= (detA)
∫

K̂

ψ̂i(x̂, ŷ)ψ̂j(x̂, ŷ) dx̂ dŷ

and

Kij =
∫

K

∇ψi(x, y).∇ψj(x, y) dxdy

= (detA)
∫

K̂

(tA)−1∇ψ̂i(x̂, ŷ)

·(tA)−1∇ψ̂j(x̂, ŷ) dx̂ dŷ. (1)
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As

(tA)−1 =
1

detA

(
y3 − y1 y1 − y2

x1 − x3 x2 − x1

)
,

from (1) we obtain

Kij =
∫

K

∇ψi(x, y) · ∇ψj(x, y) dxdy

=
1

detA

{
((y3 − y1)2 + (x1 − x3)2)∫

K̂

∂x̂ψ̂i∂x̂ψ̂j dx̂dŷ

+((y1−y2)2+(x2−x1)2)
∫

K̂

∂ŷψ̂i∂ŷψ̂j dx̂ dŷ

+((y3−y1)(y1−y2)+(x1−x3)(x2−x1))∫
K̂

(∂x̂ψ̂i∂ŷψ̂j + ∂ŷψ̂i∂x̂ψ̂j) dx̂dŷ
}
.

It becomes now clear that it is possible to calculate the
global mass and stiffness matrices from the local mass and
stiffness matrices calculated on a reference triangle, i.e.,
from the matrices∫

K̂

ψ̂i(x̂, ŷ)ψ̂j(x̂, ŷ) dx̂ dŷ,

∫
K̂

∂x̂ψ̂i∂x̂ψ̂j dx̂ dŷ,∫
K̂

∂ŷψ̂i∂ŷψ̂j dx̂dŷ,∫
K̂

(∂x̂ψ̂i∂ŷψ̂j + ∂ŷψ̂i∂x̂ψ̂j) dx̂dŷ.

2.2. Automatic Generation of the Basis Functions.
Let us consider the polynomial function space Pk. We
now want to automatically generate the matrices which
are necessary to assemble the global matrices. It is then
enough to notice that to compute these matrices, we only
need to know the basis functions on the reference element.
Once these functions are known, the matrices we need
can be computed using any symbolic computation soft-
ware (e.g., Maple c©). First we have to choose a relative
classification of 1

2 (k + 1)(k + 2) degrees of freedom per
triangle.

We know that the degrees of freedom are located
on a regular lattice of the triangle (see Fig. 2). As we
only know the vertex coordinates, we shall express the
degrees of freedom in terms of barycentric coordinates,
and choose a classification as symmetric as possible
(symmetric in the triangle). The choice we made is
exposed in Fig. 1. This choice makes the enumeration
of the degrees of freedom by three indices possible: one
for the sub-triangle (m), one for the edge (i) of the m-th
sub-triangle and one (j) for the j-th degree of freedom

located on the i-th edge of them-th sub-triangle. It is now
possible to locate the degrees of freedom by iterating.
We first define k̃ as the integer part of k/3. Then the
algorithm is as follows:

for m from 0 to k̃,
for j from 0 to k − (3m+ 1),

for i from 1 to 3,
the ξ-th degree of freedom aξ is located by

aξ =
mS(i−1)+(k−2m−j)S(i)+(j+m)S(i+1)

k
,

where {S(i), i = 1, 2, 3} are the three vertices to which
we add S(0) = S(3) and S(4) = S(1), and where the
number ξ of the degree of freedom, which, of course, de-
pends on k, m, j and i, is given by

ξ(k,m, j, i) =
(

3k − 9(m− 1)
2

)
m+ 3j + i.

Remark 1. If k ≡ 0[3], then we cannot do exactly the
same because the last sub-triangle is in fact a single degree
of freedom, the center of gravity (which corresponds to
the last degree of freedom in our classification), so that
we only need to use m from 0 to k̃− 1 and define by hand

a (k+1)(k+2)
3

=
S(1) + S(2) + S(3)

3
.

In the same manner we define the associated ba-
sis functions. By {λi, i = 1, 2, 3} we denote the three
barycentric functions associated with the three vertices.
The basis functions are given by

Ψξ(λ1, λ2, λ3) =
ψξ(λ1, λ2, λ3)

ψξ(λ1(aξ), λ2(aξ), λ3(aξ))
,

where

ψξ(λ1, λ2, λ3) =
m−1∏
l=0

3∏
n=1

(
λn − l

k

)
,

k−2m−(j+1)∏
l=m

(
λi − l

k

) j+m−1∏
l=m

(
λi+1 − l

k

)
,

and, of course, if k ≡ 0[3], we define the last basis func-
tion by

Ψ (k+1)(k+2)
2

(λ1, λ2, λ3) =

k̃−1∏
l=0

3∏
n=1

(
λn − l

k

)
(

k̃∏
l=1

(
l
k

))3 .

We thus have explicited the 1
2 (k + 1)(k + 2) basis func-

tions of the polynomial space Pk and it is now possible
to generate automatically the four matrices we previously
introduced by using any symbolic calculation software.
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Fig. 1. Classification of degrees of freedom for Pk.
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Fig. 2. Lattice of degrees of freedom for P1 to P4.
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3. High-Order Mass-Lumping

This section recalls some important facts from the arti-
cle (Cohen et al., 2001). The problem when we try to
use high-order methods is the increase in the computa-
tion time, especially for time-dependent problems like the
wave equation. Indeed, the use of finite element methods
reveals a mass matrix which has to be inverted at each time
step. The idea of mass-lumping, introduced by Cohen and
Joly to circumvent this problem, is to approximate this
matrix by a diagonal one using a well-chosen quadrature
formula. More precisely, if one can determine a quadra-
ture formula accurate enough so as not to decrease the or-
der of the method, then all we need to do is to put the
Lagrange degrees of freedom at the quadrature points to
diagonalize the mass matrix. The point is then to deter-
mine quadrature formulas in the triangle with several con-
straints.

3.1. Preliminary Remarks on Symmetric Quadra-
ture Formulas in the Triangle. In this section we dis-
cuss the practical construction of quadrature formulas in
the triangle. More particularly, we show how to signifi-
cantly reduce the system whose unknowns determine the
quadrature formula. For chosing a quadrature formula,
we must choose the order of polynomials it must integrate
exactly. But, generally, it is better to ask for more than
this precision. For example, in one space dimension on
the segment [−1, 1], knowing that any odd function has
an integral equal to zero, one should require the numeri-
cal approximation of the integral of such functions to be
zero. This is done very easily by using symmetric quadra-
ture formulas. This means that the quadrature points are
symmetrically located in the interval [−1, 1] and that the
weights of two symmetric points are the same. Another
remarquable property of symmetric quadrature formulas
is that the numerical approximations of the integrals of
symmetric functions (i.e., functions f and g such that
g(x) = f(−x), ∀x ∈ [−1, 1]) are equal. It is exactly
this idea of symmetry we will generalize on the triangle.

We now want to construct a quadrature formula
which integrates exactly all polynomials in Pk. By now,
x = (x1, x2) denotes a variable of R2 and K a triangle
whose vertices are S1, S2 and S3. Let Λ1(x), Λ2(x) and
Λ3(x) be three polynomials in P1 such that Λi(Sj) = δij .
The main result is that the set B(Pk) defined by

B(Pk) = {Λl
1(x)Λ

m
2 (x)Λn

3 (x) | 0 ≤ l,m, n ≤ k,

l +m+ n = k}

is a basis of Pk (it is quite easy to prove that the family
forming B(Pk) is free and of cardinality equal to the di-
mension of Pk). This implies that a given function f ∈ Pk

can be expressed by a unique linear combination of func-
tions in B(Pk), i.e., that there exists a unique function f̂

such that

f(x) = f̂(Λ1(x),Λ2(x),Λ3(x)), ∀x ∈ R
2.

Let S3 be the permutation group on {1, 2, 3}. Since∫
K

Λi(x) dx =
∫

K

Λσ(i)(x) dx,

∀i = 1, 2, 3 and ∀σ ∈ S3,

one can see that for every σ ∈ S3 and for every
(l,m, n) ∈ N3∫

K

Λl
1(x)Λ

m
2 (x)Λn

3 (x) dx

=
∫

K

Λl
σ(1)(x)Λ

m
σ(2)(x)Λ

n
σ(3)(x) dx,

and thus for any σ ∈ S3∫
K

f(x) dx =
∫

K

f̂(Λ1(x),Λ2(x),Λ3(x)) dx

=
∫

K

f̂(Λσ(1)(x),Λσ(2)(x),Λσ(3)(x)) dx.

We shall require the quadrature formula to verify this sym-
metry property (2).

It is well known that any point (x1, x2) ∈ K can be
defined by its three barycentric coordinates (λ1, λ2, λ3) ∈
R3

+ relative to the three vertices S1, S2 and S3, and that
this localisation is unique since λ1+λ2+λ3 = 1. By now
two points (x1, x2) ∈ K and (x̂1, x̂2) ∈ K , located res-
pectively by the barycentric coordinates (λ1, λ2, λ3) and
(λ̂1, λ̂2, λ̂3), will be said symmetric if there exists σ ∈ S3

such that

(λ1, λ2, λ3) = (λ̂σ(1), λ̂σ(2), λ̂σ(3)).

Now it becomes clear that any quadrature formula IK de-
fined by a symmetric set of quadrature points Q, i.e., a set
such that

(λ1, λ2, λ3) ∈ Q⇒ (λσ(1), λσ(2), λσ(3)) ∈ Q, ∀σ ∈ S
3,

and weights satisfying

w(λ1, λ2, λ3) = w(λσ(1), λσ(2), λσ(3)), ∀σ ∈ S
3,

where w(λ1, λ2, λ3) corresponds to the weight associated
to the point (λ1, λ2, λ3), satisfies the symmetry condition
(2), i.e.,

IK(f̂(Λ1(x),Λ2(x),Λ3(x)))

= IK(f̂(Λσ(1)(x),Λσ(2)(x),Λσ(3)(x))), ∀σ ∈ S3.

So, the only property we have to verify is

IK(Λi(x)) = IK(Λσ(i)(x)), ∀σ ∈ S3, i = 1, 2, 3,
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which is trivial, and which implies that

IK(Λl
1(x)Λ

m
2 (x)Λn

3 (x))

= IK(Λl
σ(1)(x)Λ

m
σ(2)(x)Λ

n
σ(3)(x)),

∀σ ∈ S3, ∀(l,m, n) ∈ N
3.

Such quadrature formulas will be said symmetric. If
now we want to ensure that a symmetric quadrature for-
mula is exact for all polynomials in Pk, all we have to do
is to ensure that any basis function Λl

1(x)Λ
m
2 (x)Λn

3 (x) ∈
B(Pk) is exactly integrated. But since

IK(Λl
1(x)Λ

m
2 (x)Λn

3 (x))

= IK(Λl
σ(1)(x)Λ

m
σ(2)(x)Λ

n
σ(3)(x)),

∀σ ∈ S3,Λl
1(x)Λ

m
2 (x)Λn

3 (x) ∈ B(Pk),

it is trivial that we do not need to verify the exact inte-
gration for all 1

2 (k + 1)(k + 2) polynomials in B(Pk)
but only for one representant of each equivalence class in
B(Pk)/ ∼, where, of course, the equivalence relation ∼
is defined by

Λl
1(x)Λ

m
2 (x)Λn

3 (x) ∼ Λl̂
1(x)Λ

m̂
2 (x)Λn̂

3 (x)
⇐⇒ ∃σ ∈ S3,Λl

1(x)Λ
m
2 (x)Λn

3 (x)

= Λl̂
σ(1)(x)Λ

m̂
σ(2)(x)Λ

n̂
σ(3)(x).

3.2. Mass-Lumping Implementation. We will now
discuss how the use of quadrature formulas will help us to
diagonalize the mass matrix and what other restrictions
they must satisfy in order not to decrease the order of
the method. We have already seen that the finite element
method reveals a mass matrix defined by

Mij =
∫

Ω

ψi(x)ψj(x) dx.

If now, rather than exactly calculate the integrals, we eval-
uate them by using quadrature formulas:

(u, v)h ≡
∑

l

wlu(al)v(al),

where {al} denotes the set of quadrature points over the
whole domain and {wl} is the set of the associated quadra-
ture weights, one can see that the new mass matrix will be
diagonal as soon as the degrees of freedom are set as the
quadrature points. Indeed, each basis function ψi (asso-
ciated with the new degrees of freedom) will be nonzero
only on one degree of freedom, so that we will have

M̃ij := (ψi, ψj)h =
∑

l wl,hψi(al)ψj(al) = 0, ∀i �= j.

This means that all of the terms not located on the diagonal
of the matrix will be zero.

Accordingly, the crux of mass-lumping is in the de-
termination of quadrature formulas. By modifyingPk (the

space of standard Lagrange polynomials of order k) in P̃k

in the following way:

Pk ⊆ P̃k ⊂ Pk′ , k ≤ k′,

we get the same accuracy with P̃k as with standard Pk

elements if the quadrature formula is exact in Pk+k′−2

(Fix, 1972). Thus we shall construct spaces P̃k and the
associated integration formulas using the following guide-
lines:

• the space P̃k should be as small as possible with
Pk ⊆ P̃k ⊂ Pk′ ,

• the set of quadrature points should be P̃k-unisolvent,

• the number of degrees of freedom on the edges
should be sufficient to ensure the H1-conformity,

• the quadrature weights should be strictly positive.

The first condition is for efficiency and aims at mini-
mizing the total number of degrees of freedom. The next
two conditions are purely mathematical and related to the
fact that the degrees of freedom will be set as the quadra-
ture points, and the last consideration is related to stabil-
ity (Tordjman, 1995). We will now explain how we use
all these considerations to construct new finite element
spaces and quadrature formulas, which allows for mass-
lumping up to 5-th order schemes.

3.3. Practical Construction of Lumped Finite Ele-
ments. The first things we have to discuss in this section
are the different equivalence classes the symmetric condi-
tion allows us to consider and the number of parameters
their use implies. The equivalence classes of points lo-
cated on the edges are only of three types:

• The first type is, of course, the class made by the
three vertices Si. This class can be uniquely defined
by a single parameter ws which corresponds to the
weight associated with the three points.

• The second type is the class made by the three mid-
points of the edges Mi, to which we associate a
weight parameter wm.

• The last type is made by a set of six points Mij lo-
cated by a parameter α. More precisely, Mij(α) is
the barycenter of the two vertices Si and Sj re-
spectively weighted by α and 1 − α, where α ∈
]0, 1/2[. This equivalence class is uniquely defined
by two parameters, the weight wα associated with
the six points and the localization parameter α (see
Fig. 3);

The three equivalence classes of points located in the
interior of the triangle are:

• The class made by the single barycenter, weighted
by a parameter wg .
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Fig. 3. Six-point equivalence class on the edge.

• The class made by three points Gi located at the
medians by a parameter β. Then, Gi(β) is the
barycenter of one of the vertex Si weighted by β
and the other two Sj (j �= i) weighted by 1−β

2 ,
where β ∈]0, 1[ and β �= 1

3 , in order not to degener-
ate into the barycenter. Such an equivalence class is
thus defined by a weight parameterwβ and the local-
ization parameter β (see Fig. 4).

G

G

G

3

21 (β)

(β)

(β)

Fig. 4. Three-point equivalence class in the interior.

• The last class made by six interior points Gij lo-
cated this time by two parameters ω1 and ω2 in
]0, 1[ where ω1 �= ω2 (in order not to degenerate
into one of the two classes already mentioned). The
Gij(ω1, ω2) are the barycenters of the three ver-
tices Si, Sj and Sk respectively weighted by ω1,

ω2 and 1 − ω1 − ω2. Thus this equivalence class is
defined by three parameters, a weight wω , and two
localization parameters ω1 and ω2 (see Fig. 5).

GG

G

GG

G

(ω1,ω2)(ω1,ω2)

(ω1,ω2)

(ω1,ω2)

(ω1,ω2)

(ω1,ω2)
12 21

13

31

23

32

Fig. 5. Six-point equivalence class in the interior.

In order to lump Pk finite elements, we choose to
consider a polynomial space P̃k such thatPk ⊆ P̃k ⊂ Pk′ .
Once P̃k is fixed, the number of quadrature points to use
for the associated quadrature formula is determined, as
it corresponds to the dimension of the polynomial space.
Thus we can divide the quadrature points into a certain
number of equivalence classes and exhibit the associated
formal quadrature formula as well as its number of pa-
rameters. Up to now, we still do not know suitable P̃k.
Actually, we have to verify the conforming condition. It
leads us to consider a set of symmetric points with exactly
as many points on the edges as standard Pk has (i.e., 3k),
in order to maintain the Pk continuity. This leads us to a
more precise polynomial space determination: if we want
to ensure the uniqueness, we have to enrich Pk by polyno-
mials of orders greater than k which are identically zero
on the edges. This can be written by

P̃k = Pk + bPk′ ,

where b is the so-called bubble function λ1λ2λ3 which
vanishes on the edges of the triangle. We underline that
this last expression is well defined for k ≥ 1 and k′ ≥
k − 2, and that

Pk ⊂ P̃k ⊂ Pk′+3.

Another way to enrich the polynomial space is, e.g., to
consider

P̃k = Pk + b2Pk′ ,

which is well defined for k ≥ 4 and k′ ≥ k − 5, and such
that

Pk ⊂ P̃k ⊂ Pk′+6.
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It is quite easy to generalize this construction when
k is large enough. We can also combine these two con-
structions by paying attention to the fact that the spaces
are well defined. For example,

P̃k = Pk + b(Pk′ + bPk′′ ),

or
P̃k = Pk + b(Pk′ + b2Pk′′ ),

or
P̃k = Pk + b2(Pk′ + bPk′′).

Now we can give our practical approach to lump the
Pk elements, which is the following:

• we first choose a polynomial space P̃k between Pk

and Pk′ ,

• we determine the number of parameters for the
quadrature formula (weights and localization para-
meters) in order to be accurate enough,

• we formally try to construct a symmetric quadrature
formula using a symmetric set of quadrature points
which involves this number of parameters,

• we determine the parameters of the quadrature for-
mula by solving a polynomial system.

The problems that can appear are only of two types:

• the polynomial space we consider does not permit
us to get enough parameters for the construction of
the quadrature formula, i.e., the set of equivalence
classes Q made by the points associated with the
polynomial space does not permit us to get enough
weights and localization parameters,

• the polynomial system does not have any suitable so-
lution.

If we encounter one of these problems, we must consider a
larger polynomial space and go over the whole procedure.

The initial choice of the polynomial space is, of
course, P̃k = Pk, and for this choice we have to deter-
mine a quadrature formula exact for polynomials up to
the order 2k − 2. If this is not possible, we have to enrich
P̃k. To do this, we exhibit all of the spaces P̃k previously
described such that

Pk ⊂ P̃k ⊂ Pk+1,

and try for each one to determine a quadrature for-
mula which is exact for polynomials up to order
k + (k + 1) − 2. If this is not possible, we continue this
procedure by considering greater k′ and all of the spaces
P̃k such that

Pk ⊂ P̃k ⊂ Pk′ .

We point out that the number of quadrature points we have
to use corresponds to the dimension of the space consid-
ered.

The number of degrees of freedom which must ap-
pear in the quadrature formula is determined by calculat-
ing the number M̃ of equivalence classes in B(P ), where
P denotes the symmetric polynomials of order k + k′ − 2.

Once we know the number of parameters we need,
we can see if it is possible to construct a quadrature for-
mula which makes this number of parameters appear, with
the given number of quadrature points. If it is, the formal
shape of the quadrature formula is known, and all we have
to do is determine the parameters by solving the polyno-
mial system composed by the equalities between the eval-
uation of the formal quadrature formula and the exact in-
tegration of one representant of each equivalence class C̃β

of the polynomials the quadrature formula has to integrate
exactly.

3.4. Examples. The use of our approach to construct
lumped spaces has given the same results for the lumped
P1 to lumped P4 as the spaces already known (see (Cohen
et al., 2001; Chin-Joe-Kong et al., 1999) for details of
these spaces). We give directly the lumped P5 construc-
tion and our progression towards the lumped P6 space.

3.4.1. Lumped P5 Calculation. We first try, a priori,
k′ = 5 and thus P5 itself:

P̃5 = P5.

We need to construct a twenty-one-point quadrature for-
mula ( 6×7

2 ), exact up to order eight (2× 5− 2), for which
we have ten parameters (corresponding to the ten equiva-
lence classes):

order = 8,

C1 = {λ8
1, λ

8
2, λ

8
3},

C2 = {λ7
1λ2, λ

7
1λ3, λ

7
2λ1, λ

7
2λ3, λ

7
3λ1, λ

7
3λ2},

C3 = {λ6
1λ

2
2, λ

6
1λ

2
3, λ

6
2λ

2
1, λ

6
2λ

2
3, λ

6
3λ

2
1, λ

6
3λ

2
2},

C4 = {λ6
1λ2λ3, λ

6
2λ1λ3, λ

6
3λ1λ2},

C5 = {λ5
1λ

3
2, λ

5
1λ

3
3, λ

5
2λ

3
1, λ

5
2λ

3
3, λ

5
3λ

3
1, λ

5
3λ

3
2},

C6 = {λ5
1λ

2
2λ3, λ

5
1λ

2
3λ2, λ

5
2λ

2
1λ3,

λ5
2λ

2
3λ1, λ

5
3λ

2
1λ2, λ

5
3λ

2
2λ1},

C7 = {λ4
1λ

4
2, λ

4
1λ

4
3, λ

4
2λ

4
3},

C8 = {λ4
1λ

3
2λ3, λ

4
1λ

3
3λ2, λ

4
2λ

3
1λ3, λ

4
2λ

3
3λ1,

λ4
3λ

3
1λ2, λ

4
3λ

3
2λ1},

C9 = {λ4
1λ

2
2λ

2
3, λ

4
2λ

2
1λ

2
3, λ

4
3λ

2
1λ

2
2},

C10 = {λ3
1λ

3
2λ

2
3, λ

3
1λ

3
3λ

2
2, λ

3
2λ

3
3λ

2
1}.

We notice that we cannot construct a ten-degrees-of-
freedom quadrature formula: we will, at best, only have
nine parameters:
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• five weights ws, wα1 , wα2 , wβ1 , wβ2 associated re-
spectively with the three vertices, six points on the
edges (twice) and three interior points (twice),

• four localization parameters α1, α2, β1 and β2 asso-
ciated with the six points on the edges (twice) and the
three interior points (twice).

Then, we consider k′ = 6, and all of the spaces P̃5 such
that

P5 ⊂ P̃5 ⊂ P6.

The only solutions are

P̃5 = P5 + bP3 and P̃5 = P5 + b2P0.

We now have to determine a ninth-order quadrature
formula (5 + 6 − 2) with twelve degrees of freedom (cor-
responding to twelve equivalence classes):

order = 9,

C1 = {λ9
1, λ

9
2, λ

9
3},

C2 = {λ8
1λ2, λ

8
1λ3, λ

8
2λ1, λ

8
2λ3, λ

8
3λ1, λ

8
3λ2},

C3 = {λ7
1λ

2
2, λ

7
1λ

2
3, λ

7
2λ

2
1, λ

7
2λ

2
3, λ

7
3λ

2
1, λ

7
3λ

2
2, },

C4 = {λ7
1λ2λ3, λ

7
2λ1λ3, λ

7
3λ1λ2},

C5 = {λ6
1λ

3
2, λ

6
1λ

3
3, λ

6
2λ

3
1, λ

6
2λ

3
3, λ

6
3λ

3
1, λ

6
3λ

3
2},

C6 = {λ6
1λ

2
2λ3, λ

6
1λ

2
3λ2, λ

6
2λ

2
1λ3, λ

6
2λ

2
3λ1,

λ6
3λ

2
1λ2, λ

6
3λ

2
2λ1},

C7 = {λ5
1λ

4
2, λ

5
1λ

4
3, λ

5
2λ

4
1, λ

5
2λ

4
3, λ

5
3λ

4
1, λ

5
3λ

4
2},

C8 = {λ5
1λ

3
2λ3, λ

5
1λ

3
3λ2, λ

5
2λ

3
1λ3, λ

5
2λ

3
3λ1,

λ5
3λ

3
1λ2, λ

5
3λ

3
2λ1},

C9 = {λ5
1λ

2
2λ

2
3, λ

5
2λ

2
1λ

2
3, λ

5
3λ

2
1λ

2
2},

C10 = {λ4
1λ

4
2λ3, λ

4
1λ

4
3λ2, λ

4
2λ

4
3λ1},

C11 = {λ4
1λ

3
2λ

2
3, λ

4
1λ

3
3λ

2
2, λ

4
2λ

3
1λ

2
3, λ

4
2λ

3
3λ

2
1,

λ4
3λ

3
1λ

2
2, λ

4
3λ

3
2λ

2
1},

C12 = {λ3
1λ

3
2λ

3
3}.

The dimension of the space P̃5 = P5 + bP3 is twenty
five. Thus we have to construct a quadrature formula using
twenty five points knowing that fifteen of them are on the
edges. According to our approach, the most natural way
to consider the set of points is the following and it only
gives us eleven degrees of freedom:

• six weights ws, wα1 , wα2 , wβ1 , wω and wg respec-
tively associated with the three vertices, six points on
the edges (twice), three interior points on the medi-
ans, six other interior points, and the barycenter,

• five localization parametersα1, α2, β1, ω1 and ω2 re-
spectively associated with the six points on the edges
(twice), three interior points on the medians and six
other interior points.

Once again we do not have enough parameters to
construct the requested ninth-order quadrature formula.

The dimension of the space P̃5 = P5+b2P0 is twenty two.
One can see that the twenty two resulting points will give
us only ten parameters for the quadrature points, which is
less than the twelve needed (six weights and four locali-
sation parameters).

We then consider k′ = 7 and the following space be-
tween P5 and P7:

P̃5 = P5 + b2P1,

P̃5 = P5 + b(P3 + bP1),
P̃5 = P5 + bP4.

We must now construct a quadrature formula with four-
teen degrees of freedom: we have to integrate exactly all
symmetric polynomials up to the tenth degree (5+7-2):

order = 10,

C1 = {λ10
1 , λ

10
2 , λ

10
3 },

C2 = {λ9
1λ2, λ

9
1λ3, λ

9
2λ1, λ

9
2λ3, λ

9
3λ1, λ

9
3λ2},

C3 = {λ8
1λ

2
2, λ

8
1λ

2
3, λ

8
2λ

2
1, λ

8
2λ

2
3, λ

8
3λ

2
1, λ

8
3λ

2
2, },

C4 = {λ8
1λ2λ3, λ

8
2λ1λ3, λ

8
3λ1λ2},

C5 = {λ7
1λ

3
2, λ

7
1λ

3
3, λ

7
2λ

3
1, λ

7
2λ

3
3, λ

7
3λ

3
1, λ

7
3λ

3
2},

C6 = {λ7
1λ

2
2λ3, λ

7
1λ

2
3λ2, λ

7
2λ

2
1λ3, λ

7
2λ

2
3λ1,

λ7
3λ

2
1λ2, λ

7
3λ

2
2λ1},

C7 = {λ6
1λ

4
2, λ

6
1λ

4
3, λ

6
2λ

4
1, λ

6
2λ

4
3, λ

6
3λ

4
1, λ

6
3λ

4
2},

C8 = {λ6
1λ

3
2λ3, λ

6
1λ

3
3λ2, λ

6
2λ

3
1λ3, λ

6
2λ

3
3λ1,

λ6
3λ

3
1λ2, λ

6
3λ

3
2λ1},

C9 = {λ6
1λ

2
2λ

2
3, λ

6
2λ

2
1λ

2
3, λ

6
3λ

2
1λ

2
2},

C10 = {λ5
1λ

5
2, λ

5
1λ

5
3, λ

5
2λ

5
3},

C11 = {λ5
1λ

4
2λ3, λ

5
1λ

4
3λ2, λ

5
2λ

4
1λ3, λ

5
2λ

4
3λ1,

λ5
3λ

4
1λ2, λ

5
3λ

4
2λ1},

C12 = {λ5
1λ

3
2λ

2
3, λ

5
1λ

3
3λ

2
2, λ

5
2λ

3
1λ

2
3, λ

5
2λ

3
3λ

2
1,

λ5
3λ

3
1λ

2
2, λ

5
3λ

3
2λ

2
1},

C13 = {λ4
1λ

4
2λ

2
3, λ

4
1λ

4
3λ

2
2, λ

4
2λ

4
3λ

2
1},

C14 = {λ4
1λ

3
2λ

3
3, λ

4
2λ

3
3λ

3
1, λ

4
3λ

3
1λ

3
2}.

By considering P̃5 = P5 + b2P1 we can only have
eleven parameters (six weights and five localization para-
meters), and with P̃5 = P5 + b(P3 + bP1) we have 12 of
them (six weights and six localisation parameters).

We then consider the last manner to remain between
P5 and P7:

P̃5 = P5 + bP4.

Now, we have to use thirty points for the quadrature for-
mula. The most natural way to consider the set of points
associated with the polynomial space is the following and
it gives us the required fourteen degrees of freedom (see
Fig. 6):

• seven weights ws, wα1 , wα2 , wβ1 , wβ2 , wβ3 and wω

respectively associated with the three vertices, six
points on the edges (twice), three interior points on
the medians (thrice) and six other interior points,
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• seven localization parameters α1, α2, β1, β2, β3, ω1

and ω2 respectively associated with the six points on
the edges (twice), three interior points on the medi-
ans (thrice) and six other interior points.

Fig. 6. From P5 to lumped P5 elements.

The associated quadrature formula can be given by

Iapp
K (f) = mes(K)

{
ws

3∑
j=1

f(Sj)

+wα1

3∑
i, j = 1
i �= j

f(Mij(α1))

+wα2

3∑
i, j = 1
i �= j

f(Mij(α2))

+wβ1

3∑
j=1

f(Gj(β1)) + wβ2

3∑
j=1

f(Gj(β2))

+wβ3

3∑
j=1

f(Gj(β3))

+wω

6∑
j=1

f(Gj(ω1, ω2))
}
.

We solve numerically the corresponding system us-
ing Maple c©, which returns an acceptable solution:

α1 � 0.1322645816327139853538882200436473,
α2 � 0.3632980741536860457055063361841810,
β1 � 0.88494463117717978867836496446913619,
β2 � 0.08432632384167779612299356515186339,
β3 � 0.48628178547608184787221833703559663,
ω1 � 0.2210012187598900079781282014648419,
ω2 � .07819258362551702199888597846982582,

and strictly positive weights:

ws � 0.00141884794135849195859201314216756,
wα1 � 0.00696115728097842131688535505330660,
wα2 � 0.01238113000735325822823625385145974,
wβ1 � 0.02325227091923514227899684743112030,
wβ2 � 0.06906086075456558705677702806082523,
wβ3 � 0.09180247526152571475403829582713371,
wω � 0.05455715193999251909734296553127691.

We found out that this space and quadrature formula are
the same as those proposed independently by in (Chin-
Joe-Kong et al., 1999).

3.4.2. Lumped P6 Calculation. Up to now, our at-
tempts to obtain a lumped P6 space and the adequate
quadrature formula have been unfruitful. It seems that,
following our procedure, the first polynomial space which
gives exactly the number of parameters needed is between
P6 and P11:

P̃6 = P6 + b(P6 + b(P4 + bP2).

This gives us 27 parameters needed to integrate all sym-
metric polynomials up to the fifteenth order. The problem
is that Maple c© does not seem to be powerful enough to
solve the resulting polynomial system. We also attempted
unsuccessfully to solve this system by using numerical
methods like conjugated gradients (we are aware, how-
ever, that such methods are very sensitive to the initializa-
tion).

4. High-Order Discretization in Time

Once we have an arbitrary high-order discretization in
space, we need a suitable discretization in time in or-
der not to decrease the overall order of the scheme. For



Arbitrary high-order finite element schemes and high-order mass lumping 385

this purpose, we propose two solutions: one based on
a Taylor expansion in time of the unknown, which can
be seen as a Lax-Wendroff procedure, also known as
the Cauchy-Kowalewski one (Lax and Wendroff, 1960));
and the Diagonally Implicit Runge-Kutta (DIRK) method
(Butcher, 2003).

4.1. Explicit High-Order Discretization in Time.
The idea of our arbitrary high discretization in time is
based on a Taylor expansion in time. First, we rewrite
the semi-discrete scheme in time as{

MV̇ +KU = MF,

U̇ − V = 0,

where U and V denote respectively the vectors of com-
ponents ui and vi, and U̇ and V̇ the corresponding time
derivatives. Writing Un = U(nΔt) and V n = V (nΔt),
we apply a Taylor expansion in time on U and V :

Un+1 = Un + ΔtU̇n +
Δt2

2!
Ün + . . .,

V n+1 = V n + ΔtV̇ n +
Δt2

2!
V̈ n + . . .,

and finally replace the time derivatives of U by the time
derivatives of V using the first equation of the system,
themselves evaluated using the second equation of the sys-
tem:

Un+1 = Un + ΔtV n +
Δt2

2!
V̇ n + . . .,

V n+1 = V n + Δt V̇ n︸︷︷︸
F−M−1KUn

+
Δt2

2!
V̈ n︸︷︷︸

Ḟ−M−1KV n

+ . . .

One can remark that this discretization in time allows
us to solve more general problems than the one considered
until now, like problems with absorbing boundary condi-
tions:

∂tu(x, t) + ∂−→n u(x, t) = 0, (x, t) ∈ Γ = ∂Ω × R+ ,

for which we will have to solve

Un+1 = Un + ΔtV n +
Δt2

2!
V̇ n + . . .

V n+1 = V n + Δt(F −M−1(MΓV
n +KUn))

+
Δt2

2!
(Ḟ −M−1(MΓ(F −M−1(MΓV

n

+KUn)) +KV n)) + . . . ,

where

(MΓ)ij =
∫

Γ

ψi(x, y)ψj(x, y) dxdy.

At each time step, V n+1 and its time derivatives are
determined using Un and V n, and are substituted in the
expression for Un+1. One can see that this method, which
is quite easy to generalize to higher orders, has two main
drawbacks. First, it is an explicit method, which implies
a CFL number (the ratio between time and space steps)
restriction, and second, it involves the time derivatives of
the external force, which is, in general, not known ana-
lytically. For the CFL number restriction, one can ask if
the use of higher-order methods balances the lower CFL
number their use implies. We refer to Section 5 to see
how faster high-order schemes reach a given error, even
with a stronger CFL number restriction. For the external
force, we computed test cases for which we know analyti-
cally the external force and its times derivatives, and com-
pared the results when we used high-order finite differ-
ences to approximate the derivatives of the external force
(high enough so as not to decrease the global order of the
scheme). It seemed that the error between the two solu-
tions was much lower than the errors between these two
solutions and the exact solution.

4.2. Implicit Runge-Kutta Method. In the light of
the two drawbacks of the explicit time discretization, we
choose to implement another method, the so-called DIRK
method (Diagonally-Implicit Runge-Kutta method). It
is a particular case of the implicit Runge-Kutta method
for which the coefficient matrix A has a lower triangular
structure. The advantage of this method is that the inter-
mediate stages can be evaluated sequentially rather than as
one large implicit system solution. We apply this method
to the ordinary differential system we have already writ-
ten: {

MV̇ +KU = MF,

U̇ − V = 0.

This means that, givenB = (b1, . . . , bs), T = (t1, . . . , ts)
and the square matrix A = (aij)1≤i,j≤s (which is trian-
gular), we define

(
V n+1

Un+1

)
=

(
V n

Un

)
+ Δt

s∑
i=1

bi

(
Vi

Ui

)
,

where Ui and Vi are the solutions to the following prob-
lem: ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(
V1

U1

)
...(
Vs

Us

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N

(
V n

Un

)
...

N

(
V n

Un

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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+ Δt

⎛
⎜⎜⎝

a11N
...

. . .

as1N · · · assN

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
V1

U1

)
...(
Vs

Us

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
F (t1)

0

)
...(

F (ts)
0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

and where

N =

(
0 −M−1K

Id 0

)
.

This problem can be settled in s steps by solving at
each step the generic problem of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M + (aiiΔt)2K)Ui = M(V n + Δt
i−1∑
j=1

aijVj)

+aiiΔt(MF (ti)

−KUn − Δt
i−1∑
j=1

aijUj)),

Vi =
1
aii

Δt(Ui − (V n +
i−1∑
j=1

aijΔtVj)).

Since this time the discretization is implicit, there
will not be any CFL number restriction and one can see
that it does not involve any time derivatives of the exter-
nal force. The main drawbacks of this method are, first,
that it is not the mass matrix which has to be inverted, but
a linear combination of the mass and stiffness matrices,
which implies that there is no interest any more in the use
of mass-lumping, and second, that the external force has
to be known at the intermediate time steps ti, which could
imply the use of interpolation. We refer the reader to the
next section to see that, if there is theoretically no CFL
restriction, using larger CFL numbers makes the schemes
very dissipative and how much this dissipation costs for
long-lasting computations.

5. Numerical Results

Before we test the efficiency of the schemes, we deter-
mine, for the explicit time discretization schemes, the nu-
merical CFL condition which ensures the convergence.
For this we simply consider the following test case:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
t u−�u = 0, (x, y, t) ∈ Ω × R+,

u(x, y, 0) = sin(πx) sin(πy), (x, y) ∈ Ω,
∂tu(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × R+,

where Ω = [0, 1]2. In Fig. 7 we give two examples of
the meshes we used. Note that all of the test cases, which
are computed on structured meshes, were also computed
on unstructured meshes and produced virtually the same
results, provided that the unstructured meshes are regular
enough.
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Fig. 7. Coarsest and finest meshes.

Since we know the exact solution which is given by

u(x, y, t) = sin(πx) sin(πy) cos(
√

2πt),

we calculate the error between the numerical and exact
solutions after ten periods, i.e., at t = 10

√
2, and deter-

mine the optimal CFL number (the ratio between Δt and
Δx) by increasing it until we lose convergence. These
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CFL numbers are given in Table 1. Notice that increas-
ing the space discretization order implies decreasing the
CFL number (from 0.51 for P1 elements to 0.094 for P5

elements) and that the use of mass-lumping allows for the
use of a slightly larger CFL number except for lumped P5,
which asks for much more degrees of freedom as the stan-
dard P 5 and though it yields the CFL decrease. In Figs. 8
and 9 we give the regression curves. Using these plots,
we can then determine the convergence orders for the op-
timal CFL numbers, which are given in Table 2 and are as
expected: k + 1 for polynomials of degree k.

Since the implicit time discretization is known not to
demand CFL restriction, in Fig. 10 we give plots of the
regression curves (computed in the same conditions) for
half, one and twice the optimal CFL numbers associated
with the explicit time discretization. We calculate the con-
vergence orders for the same CFL number as for the ex-
plicit time discretizations, and give them in Table 3. Here
again, orders are k + 1 for polynomials of degree k.

Table 1. Optimal CFL number for the explicit time dis-
cretization schemes.

Space discretization type P1 P2 P3 P4 P5

CFL number 0.51 0.24 0.18 0.12 0.094

Space discretization type P̃1 P̃2 P̃3 P̃4 P̃5

CFL number 1.00 0.33 0.23 0.14 0.056

Table 2. Convergence order for the explicit time discretization
schemes.

Space discretization type P1 P2 P3 P4 P5

Order 1.96 2.99 3.97 4.95 6.03

Space discretization type P̃1 P̃2 P̃3 P̃4 P̃5

Order 2.10 3.02 4.09 4.94 5.95

Table 3. Convergence order for the implicit time discretization
schemes.

Space discretization type P1 P2 P3 P4 P5

Order 1.98 3.00 3.98 4.94 5.98

Taking too large a CFL number makes the explicit
time discretization schemes unstable. This can be veri-
fied by propagating a plane wave over Ω using periodic
boundary conditions. In Fig. 11 we give an example of
what happens when we take even slightly larger CFL than
the optimal CFL we determined, and this for any order
scheme using the explicit time discretization.

We then investigate the effects of increasing the CFL
number on the implicit time discretization schemes. For
a given mesh and a given scheme, we plot several pick-
points of the numerical solution of the plane wave test
case over two hundred periods for several CFL numbers
(half, one and twice the corresponding optimal CFL cal-
culated for the explicit time discretization). In Table 4 we
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Fig. 11. Evolution of an optimal and an excessive CFL number.

give the details of the meshes we used for each space dis-
cretization and the plots are displayed in Fig. 12. There
is not much influence of the CFL number on the conver-
gence orders but the levels of errors are quite different. It
seems that using an implicit scheme for getting rid of the
CFL restriction is not that interesting.

We can now compare the computational effort for
reaching a given error. We consider a sinusoidal signal (in
fact, the fourth power of a sinusoide) propagated through
periodic boundary conditions. We use regression curves to
fix the logarithm of the error we want to reach and we de-
termine the refinement of the mesh, the number of degrees
of freedom and the computational time for several final
times (half, two and ten periods) as well as several space
and time discretizations (standard and lumped finite ele-
ments, explicit and implicit time discretizations) and CFL
numbers. The results are given in Tables 5 and 6. One can
see that, although the use of mass-lumping increases the
number of degrees of freedom and the use of high-order
methods decreases the CFL number, there is a substantial
reduction in the computational time when we use high-
order schemes compared with lower order schemes and
when we use lumped elements compared with the stan-
dard ones.
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Fig. 8. Convergence rate for the explicit time discretization (standard Pk elements).
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Fig. 9. Convergence rate for the explicit time discretization (lumped Pk elements).
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Fig. 10. Convergence rate for the implicit time discretization.
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Table 5. Efficiency of the schemes.

for an error of 2. × 10−9 in L2 norm after 2 periods

space disc. time disc. CFL no. elem. no. DOF error CPU time

P4 explicit 0.12 1444 11705 2.14 × 10−9 148.s

P̃4 explicit 0.14 1444 16037 1.90 × 10−9 21.s

P5 explicit 0.094 324 4141 1.87 × 10−9 24.s

P̃5 explicit 0.056 196 4285 2.39 × 10−9 6.s

P4 implicit 0.12 1600 12961 2.27 × 10−9 155.s

P4 implicit 0.06 1444 11705 2.21 × 10−9 258.s

P5 implicit 0.047 324 4141 2.19 × 10−9 46.s

P5 implicit 0.094 900 11401 2.23 × 10−9 148.s

Table 6. Efficiency of the schemes.

for an error of 4. × 10−5 in L2 norm after 10 periods

space disc. time disc. CFL no. elem. no. DOF error CPU time

P2 explicit 0.24 1444 2965 3.86 × 10−5 30.s

P̃2 explicit 0.33 2116 6441 4.45 × 10−5 9.s

P3 explicit 0.18 100 481 4.36 × 10−5 <1.s

P̃3 explicit 0.23 100 681 2.67 × 10−5 <1.s

P2 implicit 0.24 1024 2113 4.15 × 10−5 19.s

P2 implicit 0.48 1024 2113 4.82 × 10−5 9.s

P3 implicit 0.18 100 481 5.77 × 10−5 1.s

P3 implicit 0.36 484 2245 5.02 × 10−5 11.s

for an error of 3. × 10−7 in L2 norm after 10 periods

space disc. time disc. CFL no. elem. no. DOF error CPU time

P3 implicit 0.18 1156 5305 2.77 × 10−7 117.s

P3 implicit 0.36 3844 17485 2.38 × 10−7 521.s

P4 implicit 0.06 196 1625 2.77 × 10−7 29.s

P4 implicit 0.12 400 3281 3.77 × 10−7 61.s

P5 implicit 0.047 64 841 4.17 × 10−7 11.s

P5 implicit 0.094 256 3281 3.22 × 10−7 72.s

P3 explicit 0.18 1156 5305 3.35 × 10−7 129.s

P̃3 explicit 0.23 900 5941 3.18 × 10−7 14.s

P4 explicit 0.12 196 1625 2.82 × 10−7 3.s

P̃4 explicit 0.14 196 2213 2.82 × 10−7 2.s

P5 explicit 0.094 64 841 2.53 × 10−7 3.s

P̃5 explicit 0.056 36 805 3.77 × 10−7 1.s

for an error of 1.5 × 10−8 in L2 norm after 10 periods

space disc. time disc. CFL no. elem. no. DOF error CPU time

P̃3 explicit 0.23 4096 26817 1.52 × 10−8 135.s

P4 explicit 0.12 676 5513 1.55 × 10−8 172.s

P̃4 explicit 0.14 676 7541 1.28 × 10−8 31.s

P5 explicit 0.094 196 2521 1.00 × 10−8 44.s

P̃5 explicit 0.056 100 2201 1.55 × 10−8 12.s

P4 implicit 0.06 676 5513 1.46 × 10−8 320.s

P5 implicit 0.047 324 4141 0.63 × 10−8 222.s
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Fig. 12. CFL growing effects on the implicit time discretization.
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Table 4. Details of the meshes.

space
discretization no. of triangles no. of degrees

of freedom

P1 1444 761

P2 324 685

P3 144 685

P4 100 841

P5 64 841

6. Conclusion

In this paper we have presented a numerical scheme of a
high order in space and time to solve the two-dimensional
wave equation. We proposed an algorithm to lump any La-
grange finite element of order k and determined lumped
Pk finite elements up to k = 5. As was seen for the
lumped P6 calculation, the point is that we are unable,
in general, to determine if the polynomial system, which
gives the parameters of the quadrature formula, has an
acceptable solution. In Section 5, we highlighted first
the increasing CFL number restriction for increasing or-
der explicit time discretization schemes (from 0.51 for P1

space discretization, to 0.056 for P̃5 space discretization),
and then the fact that, even with a lower CFL number,
high-order schemes are more efficient in terms of compu-
tational time and storage. One can see the gain in time
by using lumped finite elements even if their use implies
an increasing number of degrees of freedom by element.
This drawback is balanced by the fact that we can use
coarser meshes and that even if the order of the schemes
is the same, i.e., the coefficients of the regression curves
are the same, the constant defining this curve is lower for
the lumped finite elements (due to a better repartition of
the degrees of freedom).

One can ask if this result remains true by the use of
mass-lumping in the three-dimensional space: to lump the
second-order tetrahedral element, in (Cohen, 2002) the
use of 23 degrees of freedom was proposed instead of
10 degrees of freedom for the standard second-order el-
ement, which means an over-cost for all matrix products
that could balance the under-cost of the inversion of the
mass matrix. For the implicit time discretization, the fact
that theoretically there are fewer CFL restrictions is bal-
anced by the fact that there is no more interest in the use
of lumped finite elements in space, and that the schemes
become very dissipative by increasing the CFL number,
which is a real drawback for long-time computation.
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