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This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1 + 1)-
dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in
(Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error esti-
mate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method,
which is a new algorithm to transport multiscale meshes along a smooth flow, in a way that can be said optimal in the sense
that it satisfies both accuracy and complexity estimates which are likely to lead to optimal convergence rates for the whole
numerical scheme. From the regularity analysis of the numerical solution and how it gets transported by the numerical flow,
it is shown that the accuracy of our scheme is monitored by a prescribed tolerance parameter ε which represents the local
interpolation error at each time step. As a consequence, the numerical solutions are proved to converge in L∞ towards the
exact ones as ε and Δt tend to zero, and in addition to the numerical tests presented in (Campos Pinto and Mehrenberger,
2007), some complexity bounds are established which are likely to prove the optimality of the meshes.
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1. Introduction

In one space dimension, the Vlasov equation

∂tf(t, x, v) + v ∂xf(t, x, v) + E(t, x) ∂vf(t, x, v) = 0,

f(0, ·, ·) = f0 ∈ C0
c (R2), t ≥ 0, x, v ∈ R

(1)
coupled with the Poisson equation

∂xE(t, x) =
∫
R

f(t, x, v) dv (2)

describes the evolution of a collisionless electron gas es-
sentially subject to its own electric field, and can be seen
as a reduced model for the three-dimensional Vlasov-
Maxell system that describes the dynamic behavior of hot
plasmas and particle beams. Here a background ion dis-
tribution is assumed to be uniform and constant, and the
magnetic effects are neglected in the Lorentz forces. The
variables x and v stand for the space position and the ve-
locity, while f(t, ·, ·) and E(t, ·) denote the electron phase
space density and the electric field at time t, respectively.

In order to save computational resources while ap-
proximating the complex and thin structures that may ap-
pear in the solutions of the Vlasov equation, several adap-
tive schemes have been proposed in the past few years, see
in particular (Besse et al., 2001; Gutnic et al., 2004; Son-
nendrücker et al., 2004), where the authors use moving
phase-space grids or interpolatory wavelets. Originated in
the semi-Lagrangian method of (Cheng and Knorr, 1976),
later revisited by Sonnendrücker et al. (1999), these
schemes gave encouraging results in practice, but none
was proven to be more efficient than the uniform ones.

Our main objective was therefore to derive from
these adaptive strategies a new error estimate that would
prove their superiority over any uniform method. By in-
troducing a new adaptive scheme based on multiscale (hi-
erarchical) finite element bases, this objective has been
achieved, and we have proven a rigorous error estimate,
together with a partial complexity bound, for the adaptive
approximation of the problem (1)–(2).

The outline is as follows: in Section 2, the use of
adaptive strategies for approximating solutions of nonuni-
form smoothness—already described by many authors in
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the context of conservation laws, see, e.g., (Cohen et
al., 2003; Roussel et al., 2003)—is first justified with basic
arguments, and a practical algorithm for designing adap-
tive P1 finite element approximations is given. In Sec-
tion 3, the principle of the semi-Lagrangian method for
solving the Vlasov-Poisson equation is recalled, as well
as the error analysis given in (Besse, 2004) in the uniform
setting. Section 4 is then devoted to our adaptive scheme.
We first address one of the major issues in designing adap-
tive methods for evolution problems, namely, their ability
to predict meshes fine enough to achieve a given accu-
racy without being much more refined than necessary. We
then describe the key feature of our numerical scheme,
that is, a new algorithm that transports multiscale meshes
along smooth flows in a way that be can be said optimal in
the sense of Remark 5. A global error estimate is eventu-
ally stated, together with a partial result on the cardinality
of the adaptive meshes. For numerical results confirm-
ing these theoretical results and exhibiting optimal adap-
tive meshes obtained in practice, the reader is referred to
(Campos Pinto and Mehrenberger, 2007).

2. Adaptive Finite Elements

In this section, we recall how adaptive strategies can be
proven to be more efficient than uniform ones in terms
of convergence rates, and we propose a simple algo-
rithmic setting to perform P1 adaptive approximations
(for a comprehensive introduction to adaptive approxima-
tion, we refer the reader to the excellent review article
(DeVore, 1998) see also (Yserentant, 1992) for a detailed
presentation of hierarchical finite elements).

2.1. Uniform vs. Adaptive Meshes. We consider here
the problem of interpolating some continuous function g
known on the unit square Ω = [0, 1]2. Since we are to
use P1 finite elements, i.e., piecewise affine interpolations
on conforming triangulations of Ω, we shall think of two
different approaches.

The first one consists in using a uniform mesh Kh

made of regular shape triangles of diameter O(h), i.e., tri-
angles K that contain and that are contained in balls of
diameters dK and d′K , respectively, with

Ch ≤ dK ≤ d′K ≤ C′h.

and absolute constants C and C′. If g belongs to the space
W 2,∞(Ω), i.e., if it is bounded on Ω and if its second-
order derivatives are also bounded on Ω, the classical es-
timate

‖(I − PK)g‖L∞(K) ≤ Ch2|g|W 2,∞(K), (3)

(where |g|W 2,∞(K) := max{‖Dαg‖L∞(K) : |α| = 2}
denotes the usual Sobolev seminorm), valid on any shape

regular triangle K of diameter O(h), allows us to bound
the global interpolation error on Kh by

‖(I − Ph)g‖L∞(Ω) ≤ Ch2|g|W 2,∞(Ω). (4)

Since the cardinality #(Kh) of this triangulation is of the
order of h−2, the above estimate yields

‖(I − Ph)g‖L∞(Ω) ≤ C#(Kh)−1|g|W 2,∞(Ω). (5)

In the perspective of estimating the (a priori) efficiency of
a given approximation method, the above inequality, of-
ten referred to as a convergence rate, is a key information
which somehow expresses the trade-off between the ac-
curacy of numerical approximations and their complexity,
closely related to their computational cost. In particular,
the relation (5) makes it possible

• to impose a maximal cardinality on the meshes,
while guaranteeing the accuracy of the interpolations
or,

• to prescribe a given accuracy on the interpolations,
while giving a complexity bound for the associated
meshes.

To improve the above trade-off between accuracy and
complexity, a different approach consists in designing a
mesh which is locally adapted to the function g. A way of
doing this could be, according to (3), to use bigger trian-
gles (hence larger values of h) where g has a small W 2,∞

seminorm, and smaller ones elsewhere. Intuitively, this
should reduce the cardinality of the triangulation, while
not increasing much the global interpolation error. A more
convenient setting, however, is given by the following lo-
cal estimate, which is substantially stronger than (3):

‖(I − PK)g‖L∞(K) ≤ C|g|W 2,1(K), (6)

also valid on any shape regular triangle K , and where
the scale invariance (i.e., the fact that C does not de-
pend on the diameter h of K) corresponds to the fact
that the Sobolev embedding of W 2,1(K) into L∞(K) is
critical (since we have 1/∞ = 1/1 − 2/d in dimension
d = 2). According to this estimate, a natural desire is
to find a triangulation Kε that equilibrates the local semi-
norms |g|W 2,1(K), in the sense that it satisfies

Cε ≤ |g|W 2,1(K) ≤ C′ε (7)

for any K ∈ Kε. Clearly, the associated interpolation Pε

would satisfy

‖(I − Pε)g‖L∞(Ω) ≤ Cε,

and because summing the left inequalities in (7) yields

#(Kε) ≤ Cε−1|g|W 2,1(Ω),
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the resulting adaptive approximation (Kε, Pεg) would sat-
isfy

‖(I − Pε)g‖L∞(Ω) ≤ C#(Kε)−1|g|W 2,1(Ω). (8)

Note that this rate is not identical to (5), since it is
achieved for functions which are only in W 2,1(Ω). In
the case where g is in W 2,∞ but has highly nonuniform
smoothness, the adaptive approach is also justified by
the fact that the quantity |g|W 2,1(Ω) is likely to be much
smaller than |g|W 2,∞(Ω).

2.2. Multiscale Algorithms. From the above argu-
ments, it now appears that an adaptive strategy is likely
to yield better results when interpolating some function of
nonuniform smoothness. What we did not mention is an
algorithm to design a triangulation Kε that fulfills the re-
lations (7), and this might in practice be quite a difficult
task. For simplicity, we shall therefore restrict ourselves
to a particular class of triangulations that are obtained by
recursive splittings of dyadic square cells. The resulting
multiscale finite elements should then be seen as a com-
promise between the uniform and the pure adaptive trian-
gulations described above. As it is usual in compromises,
we will have to choose between the two inequalities in (7),
and because what we are first interested in is the accuracy
of the approximations, we will choose the upper one. Nev-
ertheless, we shall see later on that making such a choice
still allows us to write down some complexity estimates.

We then begin by introducing multiscale quad
meshes, from which we shall later on derive conforming
triangulations. To this end, at any level � ∈ N consider the
sets

Q� :=
{
α�,i,k ⊂ Ω : 0 ≤ i, k ≤ 2� − 1

}
made of the dyadic square cells α�,i,k := (i2−�, (i +
1)2−�) × (k2−�, (k + 1)2−�) included in Ω, and denote
by �(α) the level of a given cell α. Since the partitions
Q� are nested, we may equip them with a natural quadtree
structure by defining the children of a given cell α as

C(α) :=
{
β ∈ Q�(α)+1 : β ⊂ α

}
and its parent as

P(α) :=
{
β ∈ Q�(α)−1 : β ⊃ α

}
.

A set Λ ⊂ ∪�≥0Q� will then be called a tree if it satisfies

Q0 = {Ω} ⊂ Λ and α ∈ Λ =⇒ P(α) ∈ Λ,

and if it also satisfies

α ∈ Λ =⇒ C(α) ⊂ Λ or C(α) ∩ Λ = ∅ (9)

it will be said consistent with respect to a partitioning
principle. In fact, the tree structure should only be seen

as a convenient setting for performing algorithmic refine-
ments: just as refining a cell in a mesh consists in replac-
ing it by its children, refining it in a tree Λ consists in
adding its children to Λ. The corresponding mesh is then
expressed as the leaves of Λ, i.e., the set

M(Λ) :=
{
α ∈ Λ : C(α) ∩ Λ = ∅

}
, (10)

which, according to (9), is a partition of Ω.
Since we are interested in P1 interpolations, a natural

criterion of refinement is, considering (6), that the local
W 2,1 seminorm of the function g be greater than some
prescribed tolerance ε.

Definition 1. (ε-adapted meshes) A quad mesh M will
be said to be ε-adapted to a function g (with respect to the
W 2,1 seminorm) if it satisfies

sup
α∈M

|g|W 2,1(α) ≤ ε.

This definition can be extended to triangulations.

Algorithm 1. (quad mesh ε-adapted to g)

• Starting from the root cell Λ0 := Q0 = {Ω},

• build for � ≥ 0
Λ�+1 := Λ� ∪

{
β ∈ C(α) :

α ∈ M(Λ�), |g|W 2,1(α) > ε
}

until ΛL+1 = ΛL,

• and set M̃ε(g) := M(ΛL).

Now in order to establish some stability properties
for the transport scheme, we will need the quad meshes
to be graded, in the sense that any couple (α, β) of their
cells satisfies

α ∩ β = ∅ =⇒ |�(α) − �(β)| ≤ 1. (11)

The smallest graded mesh adapted to g can be seen as the
smallest graded refinement of M̃ε(g), which is expressed
by the following algorithm:

Algorithm 2. (graded mesh ε-adapted to g)

• Starting from ΛG
0 = ΛL, given by Algorithm 1,

• build for � = 0, . . . , L − 2

ΛG
�+1 := ΛG

� ∪
{
C(α) : α ∈ ΛG

� , �(α) = � and

∃β ∈ ΛG
� , s.t. �(β) = �(α) + 2 and α ∩ β = ∅

}
,

• and set Mε(g) := M(ΛG
L−1).
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Note that we would have ΛG
L = ΛG

L−1 if the former
was to be computed. Because Mε(g) is a refinement of
M̃ε(g), it is obviously ε-adapted to g. But we also have

#
(
Mε(g)

)
≤ C#

(
M̃ε(g)

)
with an absolute constant, see, for instance, Lemma 2.4
in (Dahmen, 1982). As regards the first algorithm, it is
easily seen that it converges (i.e., that the level L is fi-
nite) as soon as g is in W 2,1(Ω). However, due to the tree
structure, it is not possible to write an upper bound for L
(hence for #(M̃ε(g))) from the only W 2,1 seminorm of g.
This can be seen by thinking of an arbitrary φ in W 2,1(Ω)
and considering the functions φj(x, v) := φ(2jx, 2jv)
which somehow concentrate the W 2,1 seminorm of φ in
the small domains (0, 2−j)2: as long as |φ|W 2,1(Ω) > ε, j

levels of refinements are needed in M̃ε(φj), while all the
seminorms |φj |W 2,1(Ω), j ≥ 0, are equal to |φ|W 2,1(Ω).

Writing down an estimate for the complexity of the
ε-adapted meshes is therefore only possible if this hard
kind of concentration is prevented. One way of doing so
is to demand a bit more smoothness for g: if, e.g., g is
in W 2,p(Ω) with p > 1 (but arbitrarily close to 1), then
#(M̃ε(g)) is bounded by |g|W 2,p ε−1, up to some multi-
plicative constant. For a proof, and for another way to pre-
vent this concentration phenomenon, see Chapters 2 and 3
in (Campos Pinto, 2005).

2.3. Hierarchical P1 Finite Elements Based on
Dyadic Meshes. To perform P1 interpolation, we shall
now associate to any graded quad mesh M a conforming
triangulationK(M) that is equivalent to M , in a sense that
will be soon made precise. First, a nonconforming trian-
gulation K̃(M) is obtained by simply splitting each cell
α in M in two triangles, with the following rule: if α is
an upper left or a lower right child (of its parent cell), it
is splitted into its lower left and upper right halves, and
the splitting is symmetric in the other two cases. We can
observe in Fig. 1 that unless M is uniform, the resulting
triangulation K̃(M) is nonconforming. Indeed, when a
quad cell α shares an edge with two finer cells β and λ,
this gives rise to a big triangle (say α−) that shares an edge
with two smaller triangles (say β− and λ+). Now, because
M is graded, it can be seen that this is the only possible
configuration where the triangles are nonconforming, and
that a conforming triangulation K(M) can be obtained by
simply merging any such pair (β−, λ+) of small triangles.

Because every cell in M (resp. every triangle in
K(M)) intersects at most two triangles in K(M) (resp.
two cells in M ), we simultaneously have

#
(
K(M)

)
∼ #(M)

(A ∼ B meaning that CA ≤ B ≤ C′A holds with ab-
solute constants) and

sup
K∈K(M)

|g|W 2,1(K) ∼ sup
α∈M

|g|W 2,1(α)

λ+

β−

α−

K̃(M)

λ

β
α

M K(M)

Fig. 1. Constructing a conforming triangulation
from a graded quad mesh.

for any g in W 2,1, and this is why we say that M and
K(M) are equivalent. In particular, the piecewise affine
interpolation operator PM associated to M via the con-
forming triangulation K(M) satisfies

‖(I − PM )g‖L∞ � sup
α∈M

|g|W 2,1(α)

so that we have

‖(I − PM )g‖L∞ � ε,

as long as M is a graded quad mesh ε-adapted to g, which
is the case, e.g., for Mε(g).

3. Semi-Lagrangian Scheme for the Vlasov
Equation

The principle of the semi-Lagrangian method is to com-
bine Lagrangian transport and interpolation on a given
mesh.

3.1. Nonlinear Transport along the Characteristic
Curves. Regarding the Vlasov equation (1), the prop-
erty on which the method is based is the fact that the ex-
act solution f is constant on some particular trajectories,
referred to as the characteristic curves of the system. De-
noted by (X, V )(t) = (X, V )(t; s, x, v), these are defined
as the unique solution of

(X, V )(s) = (x, v) and

⎧⎨
⎩

X ′(t) = V (t),

V ′(t) = E
(
t, X(t)

)
,

so that (X, V )(t; s, x, v) should be seen as the position at
time t of some phase space “particle” that was residing in
position (x, v) at time s, and whose speed is given by the
nonlinear, time depending field (V, E(t, X)).

Of course, in order to define these trajectories, we
need to know that the solution f does exist and that the
electric field E has some smoothness. For what regards
the existence of solutions in our case of interest, that is,
when the initial data f0 are continuous and compactly
supported, we refer to a theorem of (Cooper and Klimas,
1980) (based on a previous result of (Iordanskii, 1964)),
according to which there exists a continuous solution f
that is also compactly supported.



A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov-Poisson equation 355

Remark 1. In order for the solution to remain sup-
ported in Ω during the time interval [0, T = NΔt ], we
can assume in the sequel that f0 is supported in a small
ball centered in Ω, whose radius depends only on T (see
Lemma 2.3 in (Campos Pinto and Mehrenberger, 2007)
for details).

Regarding the smoothness of the solutions, estimates
for large (but finite) times are also well known, see, e.g.,
(Glassey, 1996; Raviart, 1985). Basically, what we need
to know is that the Sobolev spaces Wm,p are preserved
by the equation, but precise smoothness estimates are
stated and established in (Campos Pinto and Mehren-
berger, 2007). Now, from the smoothing effect of the Pois-
son coupling, as long as the initial condition f0 is contin-
uous, the electric field E is a Lipschitz function in space
and the characteristic curves are well defined. The Vlasov
equation can therefore be written in a Lagrangian form:

d
dt

f
(
t, X(t; 0, x, v), V (t; 0, x, v)

)
= 0, ∀ (x, v) ∈ Ω.

In particular, a natural way of looking at the solution
f in the time interval [nΔt , (n+1)Δt ] is to introduce the
backward flow

B(n) : (x, v) → (X, V )(nΔt ; (n + 1)Δt , x, v), (12)

so that

f
(
(n + 1)Δt , ·, ·

)
= f(nΔt , ·, ·) ◦ B(n).

In fact, from the Cauchy-Lipschitz theorem it follows that
the flow B(n) is a C1-diffeomorphism from R2 to itself,
which will be a key ingredient of our adaptive scheme, as
it is in the smoothness analysis of the solutions.

3.2. Principle of the Semi-Lagrangian Scheme.
Based on this pointwise transport property, the semi-
Lagrangian scheme computes the numerical solution fn+1

from fn in three steps (see Fig. 2 below for an illustration
with underlying graded quad meshes):

1. approach the exact backward flow B(n) (12) by some
computable C1-diffeomorphism B[fn],

2. define an intermediate solution by transporting fn

along this flow:

T fn := fn ◦ B[fn], (13)

3. and construct fn+1 by interpolating (by piecewise
affine elements) this transported solution on some tri-
angulation K.

Remark 2. (computational cost) Like the numerical flow,
the intermediate solution T fn is computable everywhere,
but only computed on the nodes of K. The cost of one

fn+1fn

B[fn](x, v) (x, v)

Fig. 2. In the semi-Lagrangian method, the numerical density is
transported by (i) following approximated characteristic
curves and (ii) interpolating on a given mesh.

iteration is then of the order of CB#(K), where CB is the
cost of computing one position B[fn](x, v).

Remark 3. (high-order interpolations) Because first-
order interpolations are known to be very diffusive, one
may wish to perform higher-order interpolations, which is
straightforward as soon as we have a conforming triangu-
lation at hand. Nevertheless, due to the fact that they do
not diminish the L∞ norm (as the piecewise affine inter-
polation does), they lead to a more difficult analysis.

In our particular case, we should mention that the ex-
act flow is approached by a splitting scheme introduced
in (Cheng and Knorr, 1976). Let us describe it for com-
pleteness: denoting by E[g] the electric field associated to
some arbitrary phase space distribution g, i.e., satisfying

∂xE[g](x) =
∫

g(x, v) dv, (14)

the splitting consists in defining the one-directional flows

B1/2
x (x, v) = (x − vΔt /2, v) (15a)

and

Bv[g](x, v) = (x, v − E[g]Δt ). (15b)

The corresponding (partial) transport operators are then

T 1/2
x : g → g ◦ B1/2

x and Tv : g → g ◦ Bv[g],

and the full transport operator is T = T 1/2
x TvT 1/2

x . Fol-
lowing this principle, we obtain a computable approxi-
mation (13), where the backward flow B[fn] : (x, v) →
(x̃, ṽ) is given by{

x̃ = x − vΔt + (Δt 2/2)E[T 1/2
x fn](x − vΔt /2),

ṽ = v − Δt E[T 1/2
x fn](x − vΔt /2).

In (Campos Pinto and Mehrenberger, 2007), it is
proved that this splitting scheme is (locally) third-order
accurate in time, as the error resulting from the approxi-
mation of the exact characteristics—if ever performed—
would be bounded by∥∥B(n)(x, v) − B

[
f(nΔt )

]
(x, v)

∥∥
�2(R2)

≤ CΔt 3 (16)

uniformly in (x, y), as long as the initial density f0 (and
thus f(nΔt )) is in W 1,∞(R2).
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Remark 4. In practice, the numerical electric field is
thus given by the one-dimensional integration (14) of a
numerical approximation to T 1/2

x fn (see also Remark 6).

3.3. Error Analysis in the Uniform Setting. In
(Besse, 2004), an a-priori error estimate was given for the
semi-Lagrangian method in the case where K is a fixed
conforming, shape regular triangulation Kh, and where
the initial data f0 are in W 2,∞. The numerical scheme
is then

Sh,Δt : fn → fn+1 := PhT fn, n = 0, . . . , N − 1,

where h denotes the maximal diameter of the elements
in Kh and Ph is the associated P1 interpolation. Besse’s
analysis consists in decomposing the error

en+1 := ‖f
(
(n + 1)Δt

)
− fn+1‖L∞

into three parts, namely, en+1,1, en+1,2 and en+1,3, as fol-
lows:

The first part is

en+1,1 := ‖f
(
(n + 1)Δt ) − T f(nΔt

)
‖L∞ ,

and is only due to the approximation of the characteristics
by the numerical transport operator T . According to the
definition of the approximated (13) and exact (12) back-
ward flows, this first error term is bounded by

|f(nΔt )|W 1,∞
∥∥B(n) − B

[
f(nΔt )

]∥∥
L∞ ≤ CΔt 3

as long as the initial data f0 are in W 1,∞(R2), according
to Section 3.1 and the accuracy (16) of the numerical flow.
Note that the constant C now depends on the initial data,
and on the maximal time T = NΔt .

The second part is

en+1,2 := ‖(I − Ph)T f(nΔt )‖L∞ ,

and corresponds to the interpolation error on Kh. Us-
ing (4), it is estimated by

en+1,2 ≤ Ch2|T f(nΔt )|W 2,∞ .

Since f0 is assumed to be in W 2,∞, so is f(nΔt ) accord-
ing to Section 3.1. Now the question is to know whether
the transport operator is stable in this seminorm, which is
shown in (Besse, 2004). We therefore have

en+1,2 ≤ Ch2|f(nΔt )|W 2,∞ ≤ Ch2.

Finally, the remainder part is

en+1,3 := ‖Ph

(
T f(nΔt ) − T fn

)
‖L∞ ,

and is easily bounded by ‖T f(nΔt ) − T fn‖L∞ , which
can be seen as the propagation of the numerical error at

the previous time step. Note that if the operator T was
linear, T f(nΔt )−T fn would simply read T (f(nΔt )−
fn) and, because a pointwise transport operator can only
diminish the amplitude of a function, we would clearly
have ‖T f(nΔt ) − T fn‖L∞ ≤ en. In fact, we know
that the operator T is nonlinear, but it is stable enough to
satisfy

‖T f(nΔt ) − T fn‖L∞ ≤ (1 + CΔt )en.

Gathering the above estimates, Besse obtains

en+1 ≤ (1 + CΔt )en + C(Δt 3 + h2),

which yields, according to the Gronwall lemma,

en ≤ C(Δt 2 + h2/Δt ),

where C only depends on the initial data f0 and on the
final time T . Balancing Δt 3 ∼ h2 in this estimate, we
eventually find the following convergence rate:

‖f(nΔt ) − fn‖L∞ ≤ Ch4/3 ≤ C#(Kh)−2/3. (17)

4. Adaptive Semi-Lagrangian Scheme

Following the three steps described in Section 3.2, the
principle of the adaptive semi-Lagrangian (AdSL) scheme
simply consists in interpolating the transported T fn on a
mesh which is adapted to it rather than fixed.

4.1. Predicting Adaptive Meshes. In order to simplify
the “mesh design” as much as possible, we now restrict
ourselves to triangulations that can be derived from quad
meshes as described in Section 2.3. We shall then asso-
ciate to any numerical solution fn a quad mesh Mn. Given
the couple (Mn, fn), our problem now consists in build-
ing, at each time step n, a new mesh Mn+1 that is well
adapted to T fn. In the light of Section 2, one may want to
use the ε-adapted mesh Mε(T fn) given by Algorithms 1
and 2. Unfortunately, and as Remark 2 stressed out, T fn

is not to be computed everywhere, so that Algorithm 1
cannot be applied on it. One then has to find another way
to guess what the adaptive Mn+1 should be.

As a starter, here is the prediction strategy that
was proposed to us by Eric Sonnendrücker during the
CEMRACS 2003 summer school, and implemented in the
YODA code described in (Campos Pinto and Mehren-
berger, 2005). For an accurate prediction strategy in
the context of scalar conservation laws and finite volume
schemes, see also (Cohen et al., 2003). Remember that we
have at hand a graded quad mesh Mn and assume that we
know how to compute from the numerical solution fn not
only a backward flow (x, v) → B[fn](x, v), but also the
forward one F [fn] := B[fn]−1. For each cell α in Mn,
we then advect its center c(α) along F [fn], and denote by
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F[fn](α) the cell of level �(α) that contains F [fn](c(α))
(up to choosing a cell if this point falls on an edge). A
reasonable mesh for interpolating T fn is given by the
smallest one containing the set {F[fn](α) : α ∈ Mn}.
Clearly, its building cost is about CF#(Mn) (where CF is
an upper bound to the computational cost of one position
F [fn](x, v), see Remark 2), which is of the same order as
the computational cost of a numerical solution, provided
that CF and CB are of the same order. The major draw-
back is that there is no guarantee that the corresponding
interpolation will achieve a given accuracy.

4.2. Optimal Transport of Multiscale Meshes.
Based on both the desire of constructing ε-adapted meshes
and the will to remain within a building cost on the or-
der of CB#(Mn), the algorithm we now describe, and
which was first introduced in (Campos Pinto and Mehren-
berger, 2007), maps the couple (Mn, fn) to a new graded
mesh, denoted by T[fn](Mn), which has the following
properties:

• its building cost is of the order of CB#(Mn), where
CB is an upper bound to the computational cost of
one position B[fn](x, v) ∈ Ω;

• its cardinality is of the same order as Mn, i.e.,
#(T[fn](Mn)) ≤ C#(Mn), and its maximal level
is no greater than the one of Mn;

• provided that Mn is ε-adapted to fn, T[fn](M) is
Cε-adapted to T fn := fn ◦ B[fn] with an absolute
constant C.

Remark 5. (optimality of T[fn]) The operator T[fn] is
said to be optimal because it satisfies

‖(I−PT[fn](Mn))T fn‖L∞ ≤ Cε ≤ C′#
(
T[fn](Mn)

)−1

provided that Mn is ε-adapted to fn and that it satisfies
ε ≤ C#(Mn)−1.

Before writing down the algorithm, let us describe
it in a few words. Basically, the main idea is to perform
recursive splitting like in Algorithm 1, but with a differ-
ent refinement criterion. As has been mentioned above,
the cells that we wish to subdivide are those on which the
W 2,1 seminorm of T fn is larger than ε, but we do not
have this function at hand. Nevertheless, since T fn reads
fn ◦ B[fn], we may ask whether

|T fn|W 2,1(α) ≤ C|fn|
W 2,1

(
B[fn](α)

), (18)

or, in other words, if the numerical transport operator T
is stable with respect to the W 2,1 seminorm. For the mo-
ment, let us assume that the answer to that question is yes
(and, as we shall see in Section 4.5, the actual answer is:
strictly speaking, no, but essentially, yes). If (18) holds,

we can decompose the right-hand side over the cells of
Mn that intersect B[fn](α), i.e.,

|T fn|W 2,1(α) ≤ C
∑

β∈I(Mn,fn,α)

|fn|W 2,1(β),

where the set I(Mn, fn, α) is precisely defined as

I(Mn, fn, α) := {β ∈ Mn, β ∩ B[fn](α) = ∅}.

Now, if Mn is ε-adapted to fn, as it ought to be,
every quantity |fn|W 2,1(β) appearing in the above sum
is precisely bounded by ε. One question then remains,
namely: Is it possible to bound the cardinality of the set
I(Mn, fn, α) by a constant? The good news is that this
is possible. More precisely, if the center of α is backward
advected into a cell of Mn whose level is no greater than
that of α, that is to say, if B[fn](c(α)) belongs to some
β ∈ Mn such that �(β) ≤ �(α), then we have

I(Mn, fn, α) ≤ C (19)

with an absolute constant, provided that Δt is no greater
than a constant that depends on f0 and T . This inequal-
ity is deeply connected to the graded property (11) of the
mesh Mn, and to the fact that the numerical flow B[fn] is
a C1-diffeomorphism. Here again, we refer to (Campos
Pinto and Mehrenberger, 2007) or, for French readers, to
Chapters 5 and 6 in (Campos Pinto, 2005) for a detailed
proof. Denoting by

�∗(Mn, fn, α) := max{�(β) : β ∈ Mn,B[fn](cα) ∈ β}

the level of this cell β (or the maximal level over such cells
in the case where B[fn](cα) lies on a edge), what we are
able to show is essentially that

|T fn|W 2,1(α) ≤ Cε as long as �∗(Mn, fn, α) ≤ �(α),

up to a few modifications mentioned in Section 4.5 below.
In other words, we have just found a computable refine-
ment criterion for designing a mesh that is well adapted to
T fn. Our algorithm is then as follows:

Algorithm 3. (optimal mesh transport)

• Starting from Λ0 = Q0 = {Ω},

• build for � ≥ 0

Λ�+1 := Λ� ∪
{
β ∈ C(α) :

α ∈ M(Λ�), �∗(Mn, fn, α) > �(α)
}

until ΛL+1 = ΛL,

• and let T[fn]Mn be the smallest graded refinement of
ΛL (see Algorithm 2).
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4.3. Essential Form of the AdSL Scheme. We now
have at hand a practical algorithm to build at a reasonable
cost a graded mesh T[fn]Mn that is Cε-adapted to T fn as
long as Mn is ε-adapted to fn, so that the interpolation er-
ror ‖(I−PT[fn]Mn

)T fn‖L∞ is of the order of ε. Note that
having a multiplicative constant in front of ε is not a ma-
jor problem for a few iterations, but that using only Algo-
rithm 3 in the scheme would construct meshes T[fn]Mn

that are only Cnε-adapted to the transported T fn, which
is very poor as Δt goes to zero. To prevent this accu-
mulation, we need to apply Algorithm 2 as a correction
step to guarantee that Mn is not only Cε, but it is actually
ε-adapted to fn.

Essentially, the AdSL scheme is then as follows:

Sε,Δt : fn → fn+1 := PMn+1PM̃n+1
T fn (20)

for n = 0, . . . , N − 1. Here M̃n+1 and Mn+1 are respec-
tively given by Algorithms 3 and 2 (up to the modifica-
tions described in Section 4.5 below), following

M̃n+1 := T[fn]Mn, (21a)

Mn+1 := Mε

(
PM̃n+1

T fn

)
. (21b)

Remark 6. In (Campos Pinto and Mehrenberger, 2007),
the form of the scheme is a bit more complicated, which
is mainly due to the splitting technique (15) used to ap-
proach the characteristic curves. Another complication
comes from the use of a truncation operator to guarantee
that the numerical solutions—like the exact ones—remain
compactly supported in spite of the diffusion induced by
the interpolations.

4.4. Error and Complexity Estimates. Here is our
main result: up to the modifications mentioned in Re-
mark 6 and in Section 4.5, the adaptive solutions fn com-
puted by the AdSL scheme (20)–(21) satisfy

‖f(nΔt ) − fn‖L∞ ≤ C(Δt 2 + ε/Δt ), (22)

where the constant C depends only on the initial solution
f0 and on the final time T = NΔt of the simulation,
provided that

– the initial solution is in W 1,∞(Ω)∩W 2,1(Ω) and has
a compact support (see Remark 1);

– the parameter Δt is no larger than a constant which
only depends on the L∞ norm of f0 and on the final
time T (this requirement is essential for establishing
the bound (19));

– the parameter ε is no larger than Δt 2 (which might
only be a technical requirement, but not very restric-
tive, since balancing the terms in the above estimate
leads to choosing ε ∼ Δt 3 as both parameters tend
to 0).

We refer the reader to (Campos Pinto and Mehrenberger,
2007) or to Chapter 6 in (Campos Pinto, 2005) for a com-
plete proof of this result.

In addition to this error estimate, we know that the
cardinality of the predicted meshes is of the same order as
that of the corrected ones, i.e.,

#(M̃n+1) ≤ C#(Mn).

Now, according to Section 2.2, we know that up to pre-
venting the concentration-of-curvature phenomenon, the
complexity of these corrected meshes Mn should be mon-
itored by ε and by the W 2,1 seminorm (or, better, by the
total curvature introduced in Section 4.5 below) of the nu-
merical solutions, but at the present stage we do not know
how to rigorously estimate the growth of this quantity as
time evolves. Our conjecture is that the cardinality of the
corrected meshes Mn is bounded by Cε−1. Balancing
ε ∼ Δt 3 in the estimate (22) would then yield

‖f(nΔt ) − fn‖L∞ ≤ Cε2/3

≤ C
[
max

(
#(Mn), #(M̃n)

)]−2/3
,

provided that the initial data are in W 1,∞ ∩ W 2,1. Note
that our “adaptive” estimates require less regularity than
the “uniform” one (17) (that only holds provided f0 is in
W 2,∞), which is a classical way to express the superiority
of the adaptive methods over the uniform ones.

4.5. A Few Precisions. Now let us mention why the
stability (18) does not exactly hold in this way. The first
reason is that since fn is piecewise affine, its second deriv-
atives are Dirac measures supported on the edges of a
given triangulation, and the W 2,1 seminorm of fn (as well
as that of T fn) is not even defined. In a way, this difficulty
comes from the fact that, unlike Besse, we do not consider
the “dynamic interpolation error” (I − P )T on the exact
f(nΔt ) but on the numerical fn as it actually happens in
the scheme. In other words, instead of bounding the error
en+1 = ‖f((n + 1)Δt ) − fn+1‖L∞ by en+1,1 + A with

A = ‖(I−P )T f(nΔt )‖L∞+‖P (T f(nΔt )−T fn)‖L∞

as in Section 3.3, we bound it using

A = ‖(I − P )T fn‖L∞ + ‖T f(nΔt ) − T fn‖L∞ .

Had we chosen the first approach, there would be no prob-
lem about the smoothness of T f(nΔt ), but, on the other
hand, because Algorithm 1 cannot be applied on the un-
known PM̃n+1

T f(nΔt ), we would not have been able to
perform the correction step (21b) and guarantee that the
adaptive mesh Mn is always ε-adapted to the solution.

Now this difficulty can be overcome by introducing
the total curvature of a function, defined as the total mass
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of its second derivatives seen as Radon measures. By anal-
ogy with BV (Ω), we denote by BC(Ω) the space consist-
ing of the functions g in L1(Ω) whose second derivatives
are Radon measures of finite total mass, and write

|g|BC(Ω) := |∂2
xxg|(Ω) + |∂2

xvg|(Ω) + |∂2
vvg|(Ω)

for the corresponding seminorm. It is then possible to
show that the functions in BC(Ω) are continuous, and that
the interpolation error estimate (6) still holds when using
the BC seminorm instead of the W 2,1 one, see Chapter 3
in (Campos Pinto, 2005) or (Campos Pinto, 2007).

The second reason is that when analyzing the semi-
norm |T fn|BC(α), we find out that a second quantity
comes into play, namely, the W 1,∞ seminorm of fn. Now,
up to introducing the functional

ν(fn, α) := |fn|BC(α) + Δt vol(α)|fn|W 1,∞(α)

and establishing W 2,∞ estimates on the electric field in-
volved in the numerical flow B[fn], it is possible to prove
the following stability result (again, see (Campos Pinto
and Mehrenberger, 2007) or (Campos Pinto, 2005) for the
proofs):

ν(T fn, α) ≤ C
∑

β∈I(Mn,fn,α)

ν(fn, β),

so that all estimates stated in the previous sections actually
hold, at least when the error indicator ν(·, α) is used in
place of the seminorm | · |W 2,1(α).
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