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We consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyper-
bolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their
extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which
prove that the 2D multilayer Saint-Venant system is a relevant alternative to 3D hydrostatic Navier-Stokes equations.
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1. Introduction

In this article we are interested in the numerical study
of shallow water flows. We mainly consider two Saint-
Venant type systems: the classical Saint-Venant system
introduced in (de Saint-Venant, 1971) and the multilayer
Saint-Venant system introduced in (Audusse, 2005). Both
systems are hyperbolic systems of first order conservation
laws with source terms

∂tU + ∇ ·F(U) = S(x,U). (1)

The classical Saint-Venant system is commonly used
for numerical simulation of various geophysical shallow-
water flows, such as rivers, lakes or coastal areas, or
even oceans, atmosphere or avalanches when completed
with appropriate terms. Topographic, friction, viscous
or Coriolis source terms may be included in the model
depending on applications. The classical Saint-Venant
system can be introduced using physical arguments (de
Saint-Venant, 1971), but it can also be derived as a for-
mal first-order approximation of the three-dimensional
free surface incompressible Navier-Stokes equations us-
ing the so-called shallow water assumption (Ferrari and
Saleri, 2004; Gerbeau and Perthame, 2001).

The multilayer Saint-Venant system, which was in-
troduced through such an asymptotic analysis of the
Navier-Stokes equations (Audusse, 2005), is a set of cou-
pled modified Saint-Venant systems. It allows us to

consider nonconstant velocities along the vertical direc-
tion (that is the main restriction of the classical Saint-
Venant system) while keeping the computational advan-
tages of the classical Saint-Venant system (robustness,
efficiency, etc.). It was proved to be a relevant alter-
native to the use of hydrostatic Navier-Stokes equations
(Audusse et al., 2006a; Audusse et al., 2007). Some new
source terms appear in the multilayer Saint-Venant sys-
tem. In particular, it includes a nonconservative pres-
sure source term that involves some numerical difficul-
ties (Audusse, 2005; Audusse et al., 2006a; Audusse et
al., 2007).

In this article we focus on the numerical treatment of
the hyperbolic part of both classical and multilayer Saint-
Venant systems. This means that we are mainly concerned
with the left-hand side of the system (1). We choose
to work in a finite volume framework (Bouchut, 2002;
Godlewski and Raviart, 1996; LeVeque, 1992). This
method is very well-adapted to the numerical discretiza-
tion of such conservation laws. It ensures some discrete
conservative properties and it allows us to deal with dis-
continuous solutions that may appear in the continuous
problem.

Many finite volume solvers have been developed in
the last decades for the classical Saint-Venant system.
Here we consider three of them, namely, the Roe, HLLE
and kinetic solvers. The Roe solver (Roe, 1981; Bermudez
and Vazquez, 1994) is probably most commonly used.
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The HLLE (Einfeldt et al., 1991; George, 2004) and
kinetic (Audusse and Bristeau, 2005; Perthame, 2002;
Perthame and Simeoni, 2001) solvers are interesting be-
cause they ensure important discrete stability properties.
Our main objective in this work is to study their exten-
sion to the multilayer Saint-Venant system. The analogy
between both Saint-Venant type systems makes this ques-
tion quite natural. Nevertheless, some minor differences
in the hyperbolic part make the answer not that clear. In
the following, we show that the kinetic solver has a very
natural multilayer extension while this question is quite
challenging for the Roe and HLLE solvers.

Let us specify that the presence of the source term
S(x,U) on the right-hand side of the system (1) may also
lead to numerical difficulties. These questions are not
adressed here. A long list of publications is devoted to
the treatment of the topographic source term. We refer to
(Audusse and Bristeau, 2005) and references therein for
more details. More recently some attention has also been
paid to the treatment of the Coriolis source term (Audusse
et al., 2006b; Bouchut et al., 2004). We also mention
that the pressure source term of the multilayer Saint-
Venant system has to be discretized carefully (Audusse et
al., 2006a; Audusse et al., 2007).

The outline of the paper is as follows: In Section 2
we introduce both classical and multilayer Saint-Venant
systems. In Section 3 we recall the kinetic interpreta-
tion of the classical Saint-Venant system, and we briefly
present the Roe, HLLE and kinetic solvers. In Section 4
we proceed with the multilayer Saint-Venant system, and
we discuss extensions of Roe, HLLE and kinetic solvers.
In Section 5 we finally present some numerical results that
highlight the capabilities of the Saint-Venant multilayer
system when an efficient finite volume solver is consid-
ered.

2. Saint-Venant Type Systems

2.1. Equations. We first introduce the classical 2D
single-layer Saint-Venant system, written here in its phys-
ical conservative form

∂h

∂t
+ ∇ · (hu) = 0, (2)

∂hu
∂t

+ ∇ · (hu ⊗ u) + ∇
(

1
2
gh2

)
+ gh∇Z = 0, (3)

where h(t, x, y) ≥ 0 is the water height, u(t, x, y) =
(u, v)T means the flow velocity, g stands for the accel-
eration due to the gravity intensity and Z(x, y) signifies
the bottom depth, and therefore h+Z is the water surface
level (see Fig. 1). We also write q(t, x, y) = (qx, qy)T =
h(t, x, y)u(t, x, y) for the flux of water.

We also consider the 2D multilayer Saint-Venant sys-
tem which is written as a set of modified single-layer
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Fig. 1. Saint-Venant approach to a 1D shallow water flow.
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Fig. 2. Multilayer Saint-Venant approach
to a 1D shallow water flow.

Saint-Venant systems. The number M of modified single-
layer Saint-Venant systems is equal to the number of the
layers that we consider in the fluid (see Fig. 2). For each
α = 1, . . . , M we have

∂hα

∂t
+ ∇ · (hαUα) = 0, (4)

∂hαUα

∂t
+ ∇ · (hαUα ⊗ Uα) +

g

2
∇(hαh)

=
g

2
h2∇

(hα

h

)
− ghα∇Z − καUα

+2μα
Uα+1 − Uα

hα+1 + hα
− 2μα−1

Uα − Uα−1

hα + hα−1
, (5)

with

κα =

{
κ if α = 1,

0 if α �= 1,
μα =

⎧⎪⎨
⎪⎩

0 if α = 0,

μ if α = 1, . . . , M − 1,

0 if α = M,

where hα(t, x, y) ≥ 0 is the water height of the layer α
uα(t, x, y) = (uα, vα)T is the velocity of the layer α, and
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κ and μ denote the bottom friction and viscosity coeffi-
cients, respectively. Thus

h(t, x, y) =
M∑

α=1

hα(t, x, y)

denotes the total water height of the flow. Note that when
α = 1, the multilayer system reduces to the classical
Saint-Venant system.

Both systems can be derived from free surface in-
compressible Navier-Stokes equations under the classical
shallow water assumption when a first-order approxima-
tion is considered and a (layer by layer for the multilayer
system) vertical integration is applied. The shallow water
assumption means here that the ratio of the characteris-
tic height of the flow by a characteristic wave length is a
small parameter ε. The viscosity μ, the friction coefficient
κ and the derivative of the bottom topography Z(x) are of
the order of ε. We refer to (Ferrari and Saleri, 2004; Ger-
beau and Perthame, 2001) for the derivation of the classi-
cal Saint-Venant system and to (Audusse, 2005; Audusse
et al., 2006a; Audusse et al., 2007) for the derivation of
the multilayer Saint-Venant system. In the next subsec-
tion we shall recall important properties of both systems
and explain the choice of the particular form of the multi-
layer Saint-Venant system that we consider.

2.2. Properties of Saint-Venant Type Systems. The
systems (2), (3) and (4), (5) can be written in the general
form

∂U
∂t

+ ∇ ·F(U) = S(x,U), (6)

where U is the vector of conservative variables, F(U)
constitutes the conservative flux term and S(x,U) the
nonconservative source term.

Both systems (2), (3) and (4), (5) admit an invariant
region h(t, x) ≥ 0. The preservation of this property at
the discrete level is fundamental and is not achieved with
all finite volume solvers.

Both systems (2), (3) and (4), (5) are hyperbolic for
h > 0. This means that the flux Jacobian is diagonaliz-
able with real eigenvalues. They are strictly hyperbolic
when single- or two-layer Saint-Venant systems are con-
sidered (see (Audusse, 2005) for more details). The par-
ticular choice of the multilayer system (4), (5) is partially
related to this property. In (Castro et al., 2001), a slightly
different two-fluid system is considered that turns to be
nonhyperbolic in its two-layer form (i.e., when fluids with
the same densities are considered). The water height h
can vanish (flooding zones, dry regions, tidal flats) and
the systems lose hyperbolicity at h = 0, which implies
theoretical and numerical difficulties. Finally, both sys-
tems are also concerned with a fundamental entropy in-
equality for the physical energy (Audusse, 2005; Audusse
and Bristeau, 2005; George, 2004; Perthame and Sime-
oni, 2001).

3. Finite-Volume Solvers for the Classical
Saint-Venant System

Here we are interested in the numerical discretization of
the hyperbolic part of the system (6). A possible numer-
ical treatment of the source term S(x,U) is briefly de-
scribed in Section 5. The difficulty in defining accurate
numerical schemes for the systems (2), (3) or (4), (5) is
related to the deep mathematical structure of such hyper-
bolic systems. For the classical Saint-Venant system (2),
(3), the first existence proof of weak solutions after shocks
in the large is due to (Lions et al., 1996). It is based on
the kinetic interpretation of the system, which is also a
method to derive numerical schemes with good properties.

It is important to get schemes that satisfy very nat-
ural properties such as the conservation and nonnegativ-
ity of the water height, the ability to compute dry areas,
and eventually satisfy a discrete entropy inequality. In the
last decade many works have been devoted to this ques-
tion and a large choice of schemes is now available for
the system (2), (3). Few of them satisfy all of the re-
quired stability properties. This is the case for the HLLE
scheme (Einfeldt et al., 1991; George, 2004) or for ki-
netic schemes (Audusse and Bristeau, 2005; Perthame and
Simeoni, 2001). The Roe scheme (Roe, 1981; Bermudez
and Vazquez, 1994) is one of the most commonly used
schemes but does not ensure the positivity of the discrete
water height, cf. (Benkhaldoun et al., 1999) for more de-
tails on this question. Let us now give a brief overview of
the Roe, HLLE and kinetic schemes applied the classical
Saint-Venant system before we consider their extension to
the multilayer system (4), (5) in the next subsection.

3.1. Approximate Riemann Solvers. The first attempt
to propose a finite-volume solver for hyperbolic systems
of type (6) is due to Godunov (1959). Starting from a
piecewise constant solution, he proposed to solve the ex-
act Riemann problem at each interface and then to con-
sider the mean value of the solution at the end of the
time step in order to construct a piecewise initial solution
for the next time step. This scheme is precise but com-
putationally expensive. Some authors introduced what
is called the approximate Riemann solver. It consists in
computing a solution to an approximate Riemann prob-
lem instead of the exact one. Both Roe and HLLE solvers
are approximate Riemann solvers.

Note that a classical way to treat 2D problems in
a finite-volume framework is to successively consider a
planar 1D problem in the normal direction to each cell
interface. Considering a cell Ci we make a loop on the
cell interfaces Γij , where j denotes the neighbouring cells
Cj . Considering the interface Γij we switch from the
reference frame (ex, ey) to the local frame that is de-
fined by (enij , eτij ), where the subscripts nij and tij de-
note the normal and tangential directions to Γij , respec-
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tively. We solve a 1D problem in this local frame and
we come back to the reference frame (ex, ey) in order
to add the contributions of all cell interfaces Γij . For
more details about this computational method, we refer
the reader to (Audusse and Bristeau, 2005; Bristeau and
Coussin, 2001). In the following, we describe the 1D ap-
proximate Riemann solver that is used at each cell inter-
face. All quantities are thus constant in the τ -direction.
We denote by u the normal velocity and by v the tangen-
tial velocity.

The Roe solver aims at solving the following lin-
earized Riemann problem:

∂tU + A(Û) ∂nU = 0,

{
U(0, x < 0) = Ul,

U(0, x ≥ 0) = Ur .
(7)

This Riemann problem involves the so-called Roe matrix
A(Û) (Roe, 1981). In the case of the classical Saint-
Venant system, it is nothing but the flux Jacobian DF (U)
computed at some particular Roe average states Û which
satisfy some consistency relations, cf. (14) and (15) be-
low. The Roe average states for the classical Saint-Venant
system are well known (Bristeau and Coussin, 2001):

ĥ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√

hr

,

v̂ =
√

hlvl +
√

hrvr√
hl +

√
hr

.

(8)

To apply the Roe solver is now nothing but to compute the
solution of the linearized Riemann problem (7), (8). This
requires the computation of the eigenvalues and eigenvec-
tors of the Roe matrix. Here they are the eigenvalues
and eigenvectors of the flux Jacobian. These eigenval-
ues are well known for the classical Saint-Venant system
(Bristeau and Coussin, 2001):

λ1 = u −
√

gh, λ2 = u +
√

gh, λ0 = u. (9)

The HLL type solvers (Harten et al., 1983) are an-
other kind of approximate Riemann solvers. They assume
a simpler wave structure than the exact Riemann solution.
For application to the classical Saint-Venant system, the
key point is to estimate the speed of the acoustic wave.
The choice

Sl = min(λ1(Ul), λ1

(
Û)

)
,

Sr = max(λ2(Ur), λ2

(
Û)

) (10)

leads to the HLLE solver (Einfeldt et al., 1991; George,
2004). It possesses interesting stability properties such
as the positivity of the water height and a discrete in-cell
entropy inequality. As can be seen in (10), it needs the
computation of the eigenvalues (9) of the flux Jacobian
and of the Roe average states (8).

3.2. Kinetic Schemes. Kinetic schemes are based on
the kinetic interpretation of shallow water models. The
kinetic interpretation was first introduced for Euler equa-
tions (Khobalatte, 1993; Perthame, 2002). It consists in
introducing a new variable ξ that represents the velocity
of the particles and a new function M that denotes the
density of particles in the phase space. Let us first detail
its form when the 2D classical Saint-Venant system (2),
(3) is considered:

M(t, x, y, ξ) = M(h, ξ − u)

=
h(t, x, y)

c̃2
χ

(
ξ − u(t, x, y)

c̃

)
, (11)

where χ is an even compactly supported probability func-
tion with appropriate properties (Audusse and Bristeau,
2005), and

c̃ =

√
1
2
gh.

The 2D macroscopic Saint-Venant system can be ob-
tained after the integration of a Boltzmann type equation
for the density function M :

∂M

∂t
+ ξ · ∇xM = Q(t, x, y, ξ), (12)

where Q(t, x, y, ξ) is a collision term for which the first
two moments are equal to zero. It can be proved (Audusse
and Bristeau, 2005) that (h, hu) is a solution of the clas-
sical Saint-Venant system (2), (3) if and only if M is a
solution of the kinetic equation (12).

This property produces a very useful numerical con-
sequence: the nonlinear system (2), (3) can be viewed as
a linear transport equation on a nonlinear quantity M , for
which it is easy to find a simple numerical scheme with
good theoretical properties. In particular, it is easy to
ensure the positivity of the discrete density function M .
Then a simple integration of this microscopic scheme al-
lows us to derive a macroscopic scheme for the classical
Saint-Venant system (2), (3). The positivity of the discrete
water height is thus obviously preserved since the water
height is the integral of the density function M .

The χ function (11) that is introduced in the kinetic
interpretation is not unique. Different choices of this func-
tion lead to different kinetic solvers. In particular, a dis-
crete entropy inequality can be proved for a particular
choice of the χ function (Perthame and Simeoni, 2001).
For a precise description of 2D kinetic schemes for the
classical Saint-Venant system, we refer the reader to
(Audusse and Bristeau, 2005) where a detailed implemen-
tation is also presented.

4. Finite-Volume Solvers for the Multilayer
Saint-Venant System

Now let us consider the multilayer Saint-Venant system
(4), (5). Here we are concerned only with the hyperbolic
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left-hand side. It is composed of a system of 2M coupled
equations with 2M unknowns: one water height and one
velocity for each one of the M layers. The coupling on the
left-hand side is only due to the total water height that ap-
pears in the conservative pressure term of the momentum
equation (5). It follows that for any layer the advective
flux term is the same as the classical one, i.e.,

∇ · (hαuα ⊗ uα) .

This is not the case for the pressure flux term. Instead
of involving only one water height h as for the classical
Saint-Venant system,

∇
(

1
2
gh2

)
,

it now involves M different water heights: the water
height of the layer we consider (as in the classical Sain-
Venant system), but also all the water heights of the M−1
other layers:

∇
⎛
⎝1

2
ghα

M∑
β=1

hβ

⎞
⎠ .

Hence we cannot directly extend the methods that have
been presented in the previous subsection for the classical
Saint-Venant system to this new problem. For numerical
purposes it would be easier to consider a multilayer model
where, for each layer, the flux term would be identical to
the flux term of the classical Saint-Venant system

∇
(

1
2
gh2

α

)
.

In this case the whole coupling effect due to the pres-
sure term is on the right-hand side. Such a system can also
be obtained by the same procedure and the left-hand side
can be proved to be hyperbolic. Moreover, it would allow
us to use the classical Roe, HLLE or kinetic schemes for
each layer separately. Nevertheless, it would lead to non-
physical solutions as observed in (Audusse, 2005; Castro
et al., 2001). The main reason is that the eigenvalues of
the flux Jacobian of the hyperbolic part of such a system
do not contain the right physical information. In particu-
lar, the barotropic eigenvalues (16) are not recovered.

The problem is now to construct a numerical scheme
for the multilayer Saint-Venant system (4), (5). In partic-
ular, we are interested in knowing if we can use a simple
extension of classical schemes designed for the classical
Saint-Venant system. In this subsection we discuss this
question for the Roe, HLLE and kinetic schemes.

4.1. Approximate Riemann Solvers for the Multi-
layer System. Let us begin with the study of the Roe
and HLLE schemes. The first step here is the definition of
Roe average states for the multilayer case.

Proposition 1. The Roe average states of the multilayer
system (4), (5) are a simple extension of the Roe average
states (8) of the classical Saint-Venant system

ĥα =
hαl + hαr

2
, ûα =

√
hαluαl +

√
hαruαr√

hαl +
√

hαr

,

v̂α =
√

hαlvαl +
√

hαrvαr√
hαl +

√
hαr

.

(13)

Proof. Since the Roe matrix A is here the exact Jacobian
of the physical flux F , it is sufficient to ensure that the
Roe average states (13) satisfy for each α = 1, . . . , M

ĥα(Uα,Uα) = hα, ûα(Uα,Uα) = uα,

v̂α(Uα,Uα) = vα,
(14)

and that the Roe matrix DF (Û) computed from the Roe
states (13) satisfies the consistency relation

F(Ur) − F(Ul) = DF (Û)(Ur − Ul). (15)

The first relation (14) is obvious. The proof for the second
one (15) just needs an easy computation.

For both Roe and HLLE schemes it is also needed
to compute the eigenvalues of the Roe matrix. Here
they are nothing but the eigenvalues of the flux Jacobian.
In (Audusse, 2005), a first-order approximation of these
eigenvalues is given for the two-layer case under the hy-
pothesis that the two-layer velocities are close to mean
velocity u

λ±
ext =um±

√
g(h1+h2)+O

(|u1−u|2, |u2−u|2), (16)

λ±
int =uc±

√
g(h1+h2)

2
+O

(|u1−u|2, |u2−u|2), (17)

λ1
tr =u1, λ2

tr = u2, (18)

where

um =
h1u1 + h2u2

h1 + h2
, uc =

h1u2 + h2u1

h1 + h2
.

The eigenvalues λ±
ext are barotropic quantities since

they are related to surface waves. The eigenvalues λ±
int

are related to internal interface waves and thus are called
baroclinic (Castro et al., 2001). The eigenvalues λ1,2

tr are
concerned with a simple transport process of the tangen-
tial velocity in each layer. Note that a zeroth-order ap-
proximation of the barotropic eigenvalues (16) reduces to
the eigenvalues of the classical Saint-Venant system (9).

In (Castro et al., 2001), the authors consider a
slightly different bifluid Saint-Venant system. They also
compute an approximation of the eigenvalues of the Roe
matrix under the same hypothesis. In the case of a two-
fluid problem this system contains more relevant infor-
mation than the multilayer system that we consider here



316 E. Audusse and M.-O. Bristeau

(Audusse, 2005). But when a single fluid is considered, its
two-layer version turns to be nonhyperbolic since it leads
to complex baroclinic eigenvalues when the densities of
both the layers are equal (Castro et al., 2001).

Since we are interested in these eigenvalues in order
to use Roe or HLLE schemes in a fully multilayer case,
let us go one step further in the analysis by considering a
real multilayer case with an arbitrary number of layers.

Proposition 2. Consider the multilayer Saint-Venant sys-
tem (4), (5) with M layers. We suppose that all the ve-
locities (uα)α=1,...,M are closed to a mean velocity u. A
first-order approximation of the two barotropic eigenval-
ues is given by

λ±
ext = um±

√√√√g

M∑
α=1

hα+O
(|uβ − u|2)

β=1,...,M
, (19)

where

um =

∑
α

hαuα∑
α

hα
.

The 2(M − 1) barotropic eigenvalues (associated with
M−1 interfaces) have the following zeroth-order approx-
imations:

λ
±,α+ 1

2
int = u ±

√√√√1
2
g

M∑
α=1

hα + O (|uβ − u|)β=1,...,M ,

α = 1, . . . , M − 1. (20)

Finally, there are M transport eigenvalues

λα
tr = uα, α = 1, . . . , M. (21)

Proof. Here also the proof relies on technical computa-
tions. An iterative procedure can be used by starting from
the result for the two-layer system (16) and (17).

Remark 1. The first order approximation of the baro-
clinic eigenvalues depends on the number of the layers
that are considered. In particular, when a three-layer sys-
tem is considered, the formula (20) is a first-order approx-
imation to the four baroclinic eigenvalues.

When the assumptions of Proposition 2 are fullfilled,
two groups of M−1 barotropic eigenvalues are very close
to each other. This may lead to numerical difficulties
when evaluating the eigenvalues and eigenvectors of the
Roe matrix. Now if the flow is such that the hypothesis
on the velocities is not satisfied, we cannot apply Roe or
HLLE solvers by using formulas (19) and (20). In any
case note that the approximation of the barotropic eigen-
values (20) is just a zeroth-order approximation and then
is not so good. Moreover, we also have to compute the
corresponding eigenvectors if we want to use a Roe solver.

In (Castro et al., 2001) the authors give some ways to
compute the eigenvalues more precisely. Nevertheless, it
makes the extension of Roe or HLLE solvers to multilayer
system not obvious. Moreover, the computational cost of
the computation of the eigenvalues becomes quite large.

4.2. Kinetic Schemes for the Multilayer Saint-Venant
System. Let us now turn to the extension of the kinetic
solver to the multilayer system (4) and (5). The key point
here is to find a kinetic representation of the multilayer
system. As was the case for the computation of the Roe
matrix, such a representation is an obvious extension of
the classical one.

Proposition 3. We can represent the multilayer system
(4) and (5) through the following M kinetic equations:

∂Mα

∂t
+ ξ · ∇xMα = Qα(t, x, y, ξ), (22)

where the density function Mα is defined by

Mα(t, x, y, ξ) = Mα

(
(hβ)β=1,...,M , ξ − uα

)
=

hα(t, x, y)
c̃2

χ

(
ξ − uα(t, x, y)

c̃

)
, (23)

with

c̃ =
√

1
2
g

∑
β

hβ.

Proof. The integration of the kinetic equations (23) for
1 and ξ gives the mass and momentum equations (4) and
(5), respectively.

Observe that the kinetic representation of the mul-
tilayer Saint-Venant system is very close to the kinetic
representation of the classical Saint-Venant system intro-
duced in the previous subsection. The only difference is
that the water heights that appear inside and outside the χ
function are no more the same. The reason for that is that
the velocity c̃ has to be defined from the total water height
and not from the layer water height. This is related to the
fact that the expression of the barotropic eigenvalues (19)
involves the total water height, see (Audusse, 2005) for
more details.

From this kinetic interpretation it is then very easy
to derive a kinetic scheme for the multilayer Saint-Venant
system. As for the classical case, it is sufficient to apply
an upwind scheme to each kinetic equation and then to
integrate this scheme on the velocity variable. Finally, we
obtain a macroscopic scheme with the required stability
properties.

5. Numerical Applications

Here we present two numerical tests. The first one is a 1D
dam break test that highlights the fact that the multilayer
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Saint-Venant system (4) and (5) gives good results (in the
sense that they are in good agreement with Navier-Stokes
solutions) even for cases where the shallow water assump-
tion is not fullfilled. Namely, we consider a no-slip condi-
tion on the bottom. It is equivalent to choosing an infinite
friction coefficient κ in (5). Let us also precise that the
classical Saint-Venant system cannot be used in this case
since this will lead to a zero velocity for the entire flow.
When the multilayer Saint-Venant system is used, this test
leads to a vertical velocity profile (see Fig. 4) for which the
horizontal velocities of the different layers are not close to
the mean velocity since the velocity of the lowest layer is
equal to zero. The assumptions of Proposition 2 are thus
not fullfilled and the approximated eigenvalues (19) and
(20) are not relevant. The use of an extension of the Roe
or HLLE solvers is particularly difficult in this case. Here
the computation is performed with the kinetic solver in-
troduced in Section 4.2. The non-conservative pressure
source term of the momentum equation (5) is treated ex-
plicitly in a finite volume framework. We refer the reader
to (Audusse et al., 2006a; Audusse et al., 2007) for more
details. The viscous source term is computed implicitly.
It leads to the solution of an invertible tridiagonal linear
system. The Navier-Stokes computation is based on an
implicit ALE method. Both computations are performed
with ten layers. The free surface profile computed with the
multilayer model is presented in Fig. 3. When the friction
coefficient is equal to zero, the free surface is flat between
the rarefaction wave (Fig. 3 on the left) and the schock
wave (Fig. 3 on the right). One of the effects of the fric-
tion is that this zone presents a slight slope. In Fig. 4 we
then present the vertical profiles of the horizontal veloc-
ity at some point in this zone. Here we choose x = 10,
but the profile is almost the same everywhere. the Multi-
layer Saint-Venant and Navier-Stokes solutions appear to
be in good agreement. We also perform multilayer com-
putations with only five layers. The comparison with the

 1
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 2
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Fig. 3. Free surface (longitudinal profile): a multilayer Saint-
Venant model with ten layers and no slip.
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Fig. 4. Velocity (vertical profiles): the Navier-Stokes (continu-
ous line) and multilayer Saint-Venant (crosses) models
with ten layers and no slip.

Navier-Stokes solution is presented in Fig. 5 (top). Here
too the two solutions are in good agreement. Even with
a two-layer version of the system, the velocity of the up-
per layer appears to be a quite good approximation of the
velocity of the upper part of the flow, see Fig. 5.

The second numerical example is a 2D test case of
a stationary flow over a bump. It includes a transcriti-
cal transition between sub- and supersonic zones and the
presence of a stationary shock wave. Here we compare
the solution of the multilayer Saint-Venant system (4), (5)
and of hydrostatic Navier-Stokes equations. The solutions
are very similar as for computational cost, which is three
times smaller with the multilayer system. The numerical
solver for the multilayer system is a 2D extension of the
one we described in the previous subsection. The hydro-
static Navier-Stokes computations were performed with
the Telemac code (Hervouet, 2003). Each computation
was performed with six layers. The free surface profiles
are presented in Fig. 6. The horizontal velocities are pre-
sented in Fig. 7.

6. Conclusion

In this paper we considered three well-known finite vol-
ume solvers (Roe, HLLE) and kinetic solvers that are
commonly used for the computation of the classical Saint-
Venant system and we studied their extension to the com-
putation of a multilayer Saint-Venant system. All the three
solvers are proved to have extensions for the multilayer
problem. Nevertheless, the extension of the kinetic solver
is proved to be more natural and less time consuming. We
also presented some numerical results that highlight the
possibility of the multilayer Saint-Venant system when a
kinetic solver is used.
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Fig. 5. Velocity (vertical profiles): the Navier-Stokes (continu-
ous line) and multilayer Saint-Venant (crosses) models
with five (top) and two (bottom) layers, no slip.
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Fig. 6. Free surface comparisons. A multilayer Saint-Venant
model (solid line) and a hydrostatic Navier-Stokes model
(dotted line).
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