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This investigation is concerned with robust analysis and control of uncertain nonlinear systems with parametric uncertain-
ties. In contrast to the methodologies from the field of linear parameter varying systems, which employ convex structures of
the state space representation in order to perform analysis and design, the proposed approach makes use of a polytopic form
of a generalisation of the characteristic polynomial, which proves to outperform former results on the subject. Moreover,
the derived conditions have the advantage of being cast as linear matrix inequalities under mild assumptions.
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1. Introduction

The study of linear parameter varying (LPV) systems
whose uncertainty lies in a box-like compact has long ago
been developed by subsuming them in the class of linear
differential inclusions (Apkarian and Gahinet, 1995). Via
the direct Lyapunov method, stability of the resulting
polytope of linear systems can be established by checking
the feasibility of a set of linear matrix inequalities
(LMIs) (Boyd et al., 1994; Amato et al., 1996). LMI
feasibility tests can be optimally solved (i.e., they have
a global minimum) and numerical routines are available
for implementation (Gahinet et al., 1995; Sturm, 1999).

Mimicking the LPV/LMI methodologies, sufficient
conditions for analysis and control of nonlinear
systems via exact convex quasi-LPV representations
(Shamma and Cloutier, 1992) have resulted in a
well-established framework (Tanaka and Wang, 2001).
Improvements on the sufficiency of conditions have
been threefold: Pólya-like relaxations exploiting the
representation convexity (Sala and Ariño, 2007),
different classes of Lyapunov functions (Guerra and
Vermeiren, 2004; González and Bernal, 2016) and control
laws (Baumann and Rugh, 1986; González et al., 2017),
and more general models (Sala and Ario, 2009; Guerra
et al., 2015).
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Problem statement. Eigenvalue conditions such as those
employed for linear systems based on the characteristic
polynomial may be useful as a fourth path to tackle the
aforementioned conservativeness in the quasi-LPV/LMI
framework: instead of a convex state-space representation
based on ẋ = A(x)x, this work explores a convex
polynomial alternative based on det(sI−A(x)) = 0. This
approach is inspired in Kharitonov’s theorem (Kharitonov,
1978), which subsumes the coefficient space of a family
of polynomials within a box; this can be used to establish
the stability of LPV systems with frozen parameters such
as ẋ(t) = (A+ΔA)x(t) (Xu et al., 1993); some of these
tests have been successfully expressed as LMIs (Ebihara
et al., 2012).

Methodology. Uncertain nonlinear systems with frozen
parameter uncertainty are considered; their stability is
analyzed through a polytope of polynomials remindful
of the characteristic polynomial of linear systems. LMI
results are found based on the edge theorem, which
establishes the stability of a convex sum of polynomials
(Bartlett et al., 1988). Computational efficiency is
improved by reducing the number of vertexes needed
to be checked (Barber et al., 1996); conservativeness is
tackled by Pólya-like relaxations. For stabilization, the
methodologies of Barmish et al. (1992), Dorf and Bishop
(1998) as well as Henrion et al. (2003) have been adapted
to our proposal.
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Contribution. A methodology for LMI-based robust
analysis and control of uncertain nonlinear systems via
polytopes of polynomials is developed; it overcomes
the feasibility domain of matrix-based stability (Tanaka
et al., 2003; González and Bernal, 2016) and stabilization
results (Rhee and Won, 2006; González et al., 2017).

Organisation. Section 2 explains how to obtain—under
mild conditions—an exact polytope of polynomials
representing the generalized characteristic polynomial of
an uncertain nonlinear system, based on which sufficient
stability conditions are developed; Section 3 provides
sufficient conditions for stabilization under the same
methodology avoiding the bilinear matrix inequality
(BMI) nature of the problem with the aid of the
uncertainty-cluster approach of Henrion et al. (2003).
Examples are provided along the paper to illustrate the
advantages over matrix-based techniques. Conclusions
and future work are discussed in Section 4.

2. Robust stability

Consider an affine-in-control uncertain nonlinear system

ẋ(t) = A (x, θ)x(t) +B (x, θ) u(t), (1)

where x(t) ∈ R
n, u(t) ∈ R

m, and θ ∈ R
r are the

state, input, and uncertainty vectors, respectively; A(·, ·) :
R

n × R
r → R

n×n and B(·, ·) : Rn × R
r → R

n×m are
sufficiently smooth nonlinear matrix functions.

Assumptions.

(i) ‖A(·, ·)‖ ≤ Ā and ‖B(·, ·)‖ ≤ B̄ for some finite
constants Ā, B̄ ∈ R and any matrix norm ‖ · ‖, within a
compact set C ⊆ (Rn × R

r) such that (0, θ) ∈ C.

(ii) Uncertainties θ are assumed to be frozen as this work
intends to establish stability from a generalization of the
characteristic polynomial1;

(iii) Since this section is concerned with stability analysis
of unforced systems, u(t) = 0.

Rewriting a bounded nonlinear expression,
irrespective of whether it depends on the state or
uncertainties, is a simple task.2 To illustrate this, consider
the term θ ∈ [θ0, θ1]; then

θ =

(
θ1 − θ

θ1 − θ0

)
︸ ︷︷ ︸

ω0(θ)

θ0 +

(
θ − θ0

θ1 − θ0

)
︸ ︷︷ ︸

ω1(θ)

θ1, (2)

1In general, stability of linear time-varying (LTV) systems cannot
be established via an eigenvalue condition: LTV systems with a stable
characteristic polynomial can have unbounded solutions for initial con-
ditions arbitrarily close to the origin; see Example 4.22 in the work of
Khalil (2002).

2See Lemma 1 in the work of Tapia et al. (2017).

where ω0(θ) + ω1(θ) = 1. Moreover, 0 ≤ ωi(θ) ≤ 1, i ∈
{0, 1} for any θ ∈ [θ0, θ1]. Similarly, a bounded nonlinear
expression of the states can be algebraically rewritten as
above, for functions ω0(·) and ω1(·) dependent on the
states x instead of uncertainties θ.

Traditionally, the quasi-LPV/LMI framework uses
the direct Lyapunov method along with a convex rewriting
of (1) in order to establish sufficient LMI conditions for
analysis and control. The convex model is a polytope of
linear systems where every nonlinearity and uncertainty
has been expressed as in (2) (i.e., they are captured in
so-called weighting functions such as ω0 and ω1 therein);
its vertexes are linear systems whose state matrices are
all the combinations of maxima and minima of the
uncertainties and nonlinearities. The convex model and
the original system are the same: the former is not an
approximation (Taniguchi et al., 2001).

In this work, the methodology just described is
employed as in Algorithm 1 to obtain—within a compact
of interest C containing the origin—an exact polytope
of polynomials for an expression remindful of the
characteristic polynomial in linear contexts; we will refer
to it as the generalized characteristic polynomial of (1):

p(s, x, θ) = det(sI −A(x, θ))

= sn + an−1(x, θ)s
n−1+· · ·+a1(x,θ)s

+ a0(x,θ). (3)

Importantly, the algorithm below introduces
conservativeness because there are several options
for choosing nonlinearities and uncertainties, leading
to different polytopes (modelling choices (Robles
et al., 2017)). Moreover, there are different ways of using
the polytope vertices for analysis and synthesis (sum
relaxation choices (Sala and Ariño, 2007)).

As is well-known, the stability of a linear system can
be inferred from that of its characteristic polynomial; a
stable polynomial has all its roots in C

−. In general,
this criterium cannot be applied for nonlinear systems;
nevertheless, it turns out that nonlinear systems holding
the assumptions for (1) allow such an eigenvalue condition
to be employed.

Theorem 1. The origin x = 0 of the nonlinear uncer-
tain system (1) with u(t) = 0, having a stable general-
ized characteristic polynomial (3) in the compact set C, is
asymptotically stable.

Proof. Since p(s, x, θ) is stable for all (x, θ) ∈ C, A(x, θ)
is a Hurwitz matrix for all (x, θ) ∈ C. In particular, for a
fixed θ0 ∈ θ ∃P ∈ R

n×n such that

P = PT > 0, PA(0, θ0) +AT (0, θ0)P < 0,

defining T1 = PA(0, θ0) +AT (0, θ0)P , ΔA = [Δaij ] ∈
R

n×n such that Δaij ∈ [−α, α] with α > 0, and
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Algorithm 1. Polytope of polynomials.

Step 1. Identify the different terms in ai(x, θ), i ∈
{0, 1, . . . , n− 1}, which depend exclusively on the states
x: let us group them in z(x) = [ z1(x) z2(x) · · · zp(x)]T ;
the remaining terms are grouped in ζ(x, θ) = [ ζ1(x, θ)
ζ2(x, θ) · · · ζρ(x, θ)]T .

Step 2. For each zi(x) ∈
[
z0i , z

1
i

]
and ζj(x, θ) ∈

[
ζ0j , ζ

1
j

]
,

write the following convex sums as described above:3

zi(x) =

(
z1i − zi(x)

z1i − z0i

)
︸ ︷︷ ︸

wi
0(zi(x))

z0i +

(
zi(x) − z0i
z1i − z0i

)
︸ ︷︷ ︸

wi
1(zi(x))

z1i , (4)

ζj(x,θ)=

(
ζ1j −ζj(x,θ)

ζ1j −ζ0j

)

︸ ︷︷ ︸
ωj

0(ζj(x,θ))

ζ0j+

(
ζj(x,θ)−ζ0j

ζ1j −ζ0j

)

︸ ︷︷ ︸
ωj

1(ζj(x,θ))

ζ1j. (5)

In the compact set C, nonlinear functions wi
k (zi(x))

and ωj
k (ζj(x,θ)) satisfy the convex sum property, i.e.,

wi
0 (zi(x)) + wi

1 (zi(x)) = 1, 0 ≤ wi
k (zi(x)) ≤ 1, and

ωj
0 (ζj(x,θ)) + ωj

1 (ζj(x,θ)) = 1, 0 ≤ ωj
k (ζj(x,θ)) ≤ 1.

Step 3. Considering i = (i1, i2, . . . , ip), ∀k : ik ∈
{0, 1}, wi(z) = w1

i1
w2

i2
· · ·wp

ip
, j = (j1, j2, . . . , jρ),

∀k : jk ∈ {0, 1}, and ωj(ζ) = ω1
j1
ω2
j2
· · ·ωρ

jρ
, write (3) as

the following equivalent convex sum of polynomials:

p(s, x, θ) =
∑
i

∑
j

wiωjpij(s), (6)

where pij(s) = p(s, x, θ)|wi=1,ωj=1 are the vertex
polynomials of the desired polytope, ij being the (p +
ρ)-uple which results from i and j put together.

T2 = PΔA + ΔATP , we can always select α > 0
such that λmax(T2) < −λmax(T1), where λmax stands
for the maximum eigenvalue of the argument. Then,
since any pair of symmetric matrices (B,C) satisfies
λmax(B + C) ≤ λmax(B) + λmax(C), it follows that
T1+T2 = P (A(0, θ0)+ΔA)+(A(0, θ0)+ΔA)TP < 0.
Thus, since there is a sufficiently small compact set C0
such that the set of matrices {A(x, θ0) : x ∈ C0} is a
subset of the family A(0, θ0) + ΔA, we obtain

PA(x, θ0) +AT (x, θ0)P < 0, ∀x ∈ C0,
which implies the existence of a quadratic Lyapunov
function V (x) = xTPx that establishes the asymptotic
stability of the origin of ẋ = A(x, θ0)x as a consequence
of p(s, x, θ0) being stable. Since the argument above can
be repeated for each θ ∈ C, the proof is completed. �

The theorem above reduces to a linearization
argument if there are no uncertainties, since A(0)
corresponds to the state matrix of the linearized model;

it does not provide a way of estimating the domain of
attraction nor establishing the stability of p(s, x, θ) for
all (x, θ) ∈ C: the former requires point wise analysis
(Johansen, 2000; Kwiatkowski et al., 2006), which is out
of the scope of this report, while the latter will be solved
through a polytopic representation (6).

Stability of polytopes of polynomials has been
studied via the Hurwitz matrix; for a given polynomial
p(s) = ans

n + an−1s
n−1 + · · · a1s+ a0, it is defined as

H(p(s))=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−3 an−5 · · · 0 0 0

an an−2 an−4 · · · ...
...

...

0 an−1 an−3 · · · ...
...

...
... an an−2

. . . 0
...

...
... 0 an−1

. . . a0
...

...
...

... an
. . . a1 0

...
...

... 0 · · · a2 a0
...

...
...

... · · · a3 a1 0
0 0 0 · · · a4 a2 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)
The next result is an LMI test for the stability of a

convex combination of two polynomials; it is based on
the results of Białas (1985) and the LMI test found in the
work of Ebihara et al. (2012):

Lemma 1. (Sanchez and Bernal, 2017) A convex com-
bination of two n-degree stable polynomials p1(s) =
sn + an−1s

n−1 + · · · + a1s + a0 and p2(s) = sn +
bn−1s

n−1 + · · ·+ b1s+ b0,

λp1(s) + (1 − λ)p2(s), λ ∈ [0, 1], (8)

is stable if and only if there exists M ∈ R
n×n, such that

M + MT > 0 and H12M + MTHT
12 < 0 with H12 =

−H(p1(s))H
−1(p2(s)).

Similarly, convex combinations of an arbitrary finite
number of polynomials have been developed by Bartlett
et al. (1988) via the edge theorem, which states that it
suffices to check the exposed edges of a polytope; thus,
the LMI test that follows establishes stability of p(s, x, θ)
for all (x, θ) ∈ C.

Theorem 2. The origin x = 0 of the nonlinear uncertain
system (1) with u(t) = 0 , having a generalized charac-
teristic polynomial (3) with the exact convex representa-
tion (6) in the compact set C, is asymptotically stable if
there exist matrices Mijkl ∈ R

n×n, such that the follow-
ing LMIs are feasible:

Mijkl+MT
ijkl > 0, HijklMijkl+MT

ijklH
T
ijkl < 0, (9)

with Hijkl = −H(pij(s))H
−1(pkl(s)), pij stable polyno-

mials, i,k ∈ {0, 1}p, j, l ∈ {0, 1}ρ, ij 	= kl.
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Proof. The conditions (9) are equivalent to those
in Lemma 1 for each combination of vertexes in the
polytope, which, by the edge theorem (Bartlett et al.,
1988) guarantees that the whole polytope is stable, which
in turn implies asymptotic stability of the origin by
Theorem 1. �

The above result works on the assumption that the
polynomial (6) has a constant degree for all (x, θ) ∈ C.
This assumption might not hold when singular systems of
the form E (x) ẋ = A (x)x are considered. For the case
in which a degree dropping occurs, Theorem 2 could be
extended using the results of Sideris and Barmish (1989)
as well as Białas and Góra (2012).

Example 1. (Tanaka et al., 2003; González and Bernal,
2016) The nonlinear system

ẋ =

[−3.5− 1.5a sinx1 −4
9.5− 10.5b sinx1 −2

]
x (10)

can be rewritten as the convex sum ẋ =
∑1

i=0 wiAix with

A0 =

[−3.5− 1.5a −4
9.5− 10.b −2

]
, A1 =

[−3.5 + 1.5a −4
9.5 + 10.5b −2

]
,

w0 = (1− sin(x1))/ 2, w1 = 1− w0.

Its stability properties with parameters a ∈ [−4, 4],
b ∈ [−1.5, 1.5] can be analyzed via quadratic stability
(Tanaka and Wang, 2001), yielding the feasibility set
shown in Fig. 1 with the marks (�).

However, considering the generalized characteristic
polynomial of (10) p(s, x) = s2 + (1.5a sinx1 + 5.5)s+
3a sinx1 − 42b sinx1 + 45, which can be expressed as a
convex combination p(s, x) =

∑2
i=1 wi(x)pi(s), where

p1(s) = s2 + (1.5a + 5.5)s + 3a − 42b + 45 and
p2(s) = s2+(−1.5a+5.5)s− 3a+42b+45, conditions
in Theorem 2 yield the feasibility set marked with (×)
in Fig. 1: it clearly overcomes the quadratic matrix-based
analysis usually adopted in the quasi-LPV context, while
preserving the LMI quality of solutions. �

Example 2. Consider the uncertain nonlinear system

ẋ =

[−5 + θ x2

x2 −10 + θ + x2

]
x, (11)

within C = {|θ| ≤ 2, |x2| ≤ 3}.

Its generalized characteristic polynomial is given by

p(s, x, θ) =s2 + (−2θ − x2 + 15)︸ ︷︷ ︸
a1(x,θ)

s

+ θ2 + θx2 − 15θ − x2
2 − 5x2 + 50︸ ︷︷ ︸

a0(x,θ)

. (12)

a
-3 -2 -1 0 1 2 3

b

-1

-0.5

0

0.5

1

Fig. 1. Feasibility regions: quadratic approach (�) and polyno-
mial convex approach (×).

In Fig. 2, the coefficient space of the previous polynomial
is illustrated as black dots; it is obtained by considering
the way a1 and a2 vary when the state x2 and the
uncertainty θ vary in C.

A convex rewriting of (12) can be obtained by
considering z1 = x2, z2 = x2

2, ζ1 = θ, and ζ2 =
θ2; this choice is not unique and, as seen later, may
be determinant in the feasibility of the proposed test,
a characteristic which is shared by any polytope-based
methodology (Kwiatkowski et al., 2006):

p(s,x,θ)=
1∑

i1=0

1∑
i2=0

1∑
j1=0

1∑
j2=0

w1
i1w

2
i2ω

1
j1ω

2
j2pi1i2j1j2(s), (13)

with w1
0 = (3 − z1)/6, w1

1 = 1 − w1
0 , w2

0 = (9 − z2)/9,
w2

1 = 1 − w2
0 , ω1

0 = (2 − ζ1)/4, ω1
1 = 1 − ω1

0 ,
ω2
0 = (4−ζ2)/4, ω2

1 = 1−ω2
0, and 16 vertex polynomials

pi1i2j1j2(s) = p(s, x, θ)|w1
i1

=w2
i2

=ω1
j1

=ω2
j2

=1, which
constitute a box in the space z − ζ. The coefficients of
these polynomials are marked in Fig. 2 with empty circles
along with their convex hull (the gray closed polyhedral
including all of them); clearly, the convex hull of only
5 of these vertex polynomials enclose the same region
as the one enclosed by the original 16, i.e., 11 of them
are redundant. The nonredundant vertex polynomials can
be extracted by convex hull algorithms, e.g., quickhull
(Barber et al., 1996); their use reduces the number of
edges to be checked in Theorem 2 from m = 16×15/2 =
120 to only 5. Thus, for 2nd-order systems, the number of
LMIs can be reduced from 2p+ρ−1 (2p+ρ − 1) to 2p+ρ or
fewer.

The product and powers of convex sums are convex
sums themselves;4 thus, if z1 = x2 and ζ1 = θ, then
x2
2 and θ2 can be written as nested convex sums of the

former variables: z2 = x2
2 =

(
w1

0(−3) + w1
1(3)

)2
, ζ2 =

4Indeed, since
∑1

i=0 wi = 1, we get
(∑1

i=0 wi

)n
= 1.
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Fig. 2. Coefficient space of (12): (•), vertex polynomials of
(13): (◦), convex hull of (13): (−), “associated” vertex
polynomials of (14): (�), convex hull of “associated”
(14): (−), unstable result from (14): (- -).

(
ω1
0(−2) + ω1

1(2)
)2

. In this way, (12) can be rewritten
without the need of introducing w2

0 , w2
1 , ω2

0 , and ω2
1 :

p(s,x,θ)=

1∑
i1=0

1∑
i2=0

1∑
j1=0

1∑
j2=0

w1
i1w

1
i2ω

1
j1ω

1
j2pi1i2j1j2(s). (14)

If similar terms are not algebraically associated (those
sharing the same w − ω decomposition), 16 vertex
polynomials are again obtained; the corresponding convex
hull is the polyhedral in dashed black lines shown in
Fig. 2: it includes one unstable vertex which makes the
stability of the system (11) impossible to establish via
Theorem 2.

On the other hand, if similar terms in (14) are
associated, less conservative results arise as the convex
sum passes from 16 to 9 different terms, which correspond
to the vertexes shown in Fig. 2 with empty square marks;
the corresponding convex hull is the polyhedral in solid
black lines for which Theorem 2 yields a feasible solution.

Whenever a nested convex sum appears in the
polytopic representation (6), it can benefit from
asymptotically exact sum relaxations based on the
Pólya theorem (Sala and Ariño, 2007). This can be done
in this example as (14) has double sums. Conditions
thus obtained progressively enclose the actual coefficient
space further reducing conservativeness. �

3. Robust control

A direct way to employ the results of the previous
section for stabilization purposes consists in placing poles

(via LMIs, for instance) of the vertex polynomials of
the open-loop system; then, using a convex sum of
the stabilizing gains as a control law and verifying
the stability of the whole convex sum of stabilized
polynomials. To do so, a control law in the form of a
parallel distributed compensation (PDC) (Baumann and
Rugh, 1986; Wang et al., 1996) can be used, employing
the same state-dependent weights wi used to convexly
rewrite the generalised characteristic polynomial in (6):

u(t) = F (x)x(t) =
∑
v

wv(z(x))Fvx(t), (15)

with Fv ∈ R
m×n, v ∈ {0, 1}p, being gains stabilizing the

uncertainty cluster
∑

i

∑
j wi(x)ωj(x,θ)pijv(s), which

comes from the convex representation of the closed-loop
generalized characteristic polynomial p(s, x, θ) =
det (sI −A(x, θ) −B(x, θ)F (x)):

p(s, x, θ) =
∑
i

∑
j

∑
v

wi(x)wv(x)ωj(x,θ)pijv(s).

(16)
In other words, gains Fv should stabilize every uncertain
variation of the corresponding vertex polynomial as
uncertainty cannot be used for control purposes. This task
can be performed by constructing as many Routh–Hurwitz
tables as variations in i (states) and j (uncertainty) for
each instance of v (gain index), a method resembling
that employed by Barmish et al. (1992). The foregoing
argumentations lead to simpler conditions for 2nd-order
systems since these polynomials are stable if and only
if their coefficients are positive (Dorf and Bishop, 1998),
something that can be straightforwardly tested via LMIs.
The next example illustrates this discussion.

Example 3. Consider a slight variation of Example 1:

ẋ(t) =

[ −3.5 −4
9.5 + 5.25 sinx1 −2

]
x(t) +

[
1
0

]
u(t),

with u(x) = F (x)x =
[
f1(x) f2(x)

]
x; the closed-loop

system is

ẋ(t) =

[ −3.5 + f1(x) −4 + f2(x)
9.5 + 21 sinx1 −2

]
x(t),

and the generalized characteristic polynomial is given by

p(s, x) = s2 + (5.5− f1(x)) s

+ sinx1 (84− 21f2(x))

− 9.5f2(x)− 2f1(x) + 45.

Using the convex modelling techniques of the previous
section, this polynomial can be rewritten as

p(s, x) =

1∑
i=0

wi(x)
{
s2 + (5.5− f1(x)) s

+ zi (84− 21f2(x))

− 9.5f2(x) − 2f1(x) + 45
}
,
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with w0 = (1 − sinx1)/2, w1 = 1 − w0, z0 = −1, and
z1 = 1. Once the proposed PDC control structure F (x) =∑1

v=0 wv(x)
[
fv
1 fv

2

]
is applied, the polynomial can be

written as a double nested convex sum:

p(s, x) =

1∑
i=0

1∑
v=0

wi(x)wv(x)
{
s2 + (5.5− fv

1 ) s

+ zi (84− 21fv
2 )− 9.5fv

2 − 2fv
1 + 45

}
.

Due to the system order and the fact that
the open-loop system consists only of two vertex
polynomials, stabilization is reduced to finding a pair
of gains F0 =

[
f0
1 f0

2

]
and F1 =

[
f1
1 f1

2

]
stabilizing the polynomials piv(s) = s2 + (5.5− fv

1 ) s+
zi (84− 21fv

2 ) − 9.5fv
2 − 2fv

1 + 45, i, v = {0, 1}.
These gains are the decision variables of the following
LMIs, which ensure that the polynomials have positive
coefficients:

zi (84−21fv
2 )−9.5fv

2−2fv
1+45>0, 5.5−fv

1 >0, (17)

for i, v = {0, 1}. These LMI conditions can be relaxed by
associating the polynomials piv(s); a feasible solution is
f0
1 = −41.0133, f0

2 = 1.8452, f1
1 = −41.0133, and

f1
2 = 1.8452. In Fig. 3 it is shown how these gains

stabilize the system along with the control law that they
produce. �

Fig. 3. Stabilised states x(t) and control law u(t).

Clearly, finding gains Fv for which some guarantee
of feasibility exists is a hard task. In the context of
single-input single-output (SISO) LPV systems, Henrion
et al. (2003) considered robust stabilization of a polytope
of polynomials with a fixed-order controller. Naturally,
the conditions thereby proposed are also only sufficient:
failing to find a feasible solution does not discard
the existence of a controller. This methodology is
now extended to our proposal while preserving their
LMI nature; to do so, let alijv, l ∈ {0, 1, . . . , n −

1}, anijv = 1, denote the coefficients of the vertex
polynomials pijv in (16), grouped in a vector as
aijv =

[
a0ijv a1ijv · · · an−1

ijv 1
]
. Recall that these

coefficients depend linearly on the entries of Fv ∈ R
1×n,

where Fv =
[
f1
v f2

v · · · fn
v

]
. Consider also a given

stable polynomial dnsn + dn−1s
n−1 + · · · + d1s + d0,

whose coefficients will be grouped in a vector d =[
d0 d1 · · · dn−1 dn

]
. Under these hypotheses, the

following result is established.

Theorem 3. The origin of a SISO uncertain nonlinear
system of the form (1), having a generalized characteris-
tic polynomial (16) in the compact set C under the con-
trol law (15), is asymptotically stable if there are matrices
Qijv = QT

ijv ∈ R
n×n, i,v ∈ {0, 1}p, j ∈ {0, 1}ρ, and

gain entries f l
v, l ∈ {1, 2, . . . , n}, such that the following

LMIs are feasible:

n∑
k=1

n∑
l=1

(
ΠT

k

[
0 1
1 0

]
Πl +ΠT

l

[
0 1
1 0

]
Πk

)
Qkl

ijv

+ aTijvd+ dTaijv − 2γdTd ≥ 0, (18)

for an arbitrarily small γ > 0, with Πi ∈ R
2×(n+1) be-

ing matrices with ones at entries (1, i) and (2, i+ 1), and
zeros elsewhere.

Proof. Using convex sum properties on (18), i.e., taking
into account that

∑
i wi = 1, 0 ≤ wi ≤ 1,

∑
j ωj = 1,

0 ≤ ωj ≤ 1, and omitting arguments when convenient,
yields

∑
i

∑
j

∑
v

wi(x)wv(x)ωj(x,θ)

{
aTijvd+dTaijv−2γdTd

+

n∑
k=1

n∑
l=1

(
ΠT

k

[
0 1
1 0

]
Πl +ΠT

l

[
0 1
1 0

]
Πk

)
Qkl

ijv

}

=

⎛
⎝∑

i,j,v

wiwvωjaijv

⎞
⎠
T

d+dT

⎛
⎝∑

i,j,v

wiwvωjaijv

⎞
⎠

︸ ︷︷ ︸
c

−2γdTd

+
n∑

k=1

n∑
l=1

(
ΠT

k

[
0 1
1 0

]
Πl+ΠT

l

[
0 1
1 0

]
Πk

)∑
i,j,v

wiwvωjQ
kl
ijv

︸ ︷︷ ︸
Q

≥ 0,

which, by Theorem 1 by Henrion et al. (2003), allows
establishing the desired result with c and Q as defined
above with underbraces. �

The result above can also be established using
Theorem 2 by Henrion et al. (2003), which is concerned
with robust stability of a convex sum of N plants
bi(s)/ai(s) of order n in a closed-loop configuration
with a fixed m-th order controller of the form y(s)/x(s);
thereby, the closed-loop polynomials are denoted as
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ci(s) = ai(s)x(s) + bi(s)y(s) with coefficients grouped
in vectors of the form ci =

[
ci0 ci1 · · · cim+n

]
.

Correspondingly, in our case the closed-loop polynomials
are pijv with coefficients grouped in vectors aijv =[
a0ijv a1ijv · · · an−1

ijv 1
]
.

Note that the PDC control law (15) in Theorem 3
includes that from the work of Henrion et al. (2003) as
a particular case (Fv = F , ∀v); it is a convex sum
of order-0 controllers (i.e., m = 0), while the index
triplet (i, j,v) leads to N = 2(2p+ρ) LMIs of the form
(18). The results just presented can be improved in two
ways: exploiting Pólya-like relaxations on the double
convex sums in (18) and replacing the stable polynomial
d(s) by a stable polytope of polynomials sharing the
same weighting functions of the generalized characteristic
polynomial.

Example 4. (Rhee and Won, 2006) We now turn our
attention to a more complex system whose feasibility
under different control laws has been examined in
previous works (González et al., 2017; Pan et al., 2012):

ẋ(t) =

[
0.5a sinx1+0.5a−sinx1+1 2.5 sinx1−7.5

1.5−0.5 sinx1 sinx1+1

]
x(t)

+

[
0.5b sinx1+0.5−0.5 sinx1+0.5

0.5 sinx1+1.5

]
u(t).

A PDC controller has been fetched through four different
approaches for each integer instance (a, b) in a ∈ [7, 11]
and b ∈ [0, 20]; whenever a solution was found, a
mark was put in the corresponding coordinate of Fig. 4:
(×) when the LMI (17) was used, (∗) when Theorem 3
was employed without grouping polynomials sharing the
weighting functions, (�) when both the LMI (17) and
Theorem 3 were used with grouped polynomials, (◦) when
Theorem 1 of González et al. (2017) was used (which is
a nonquadratic proposal). As can be seen, the proposed
methodology has increased the feasibility set of former
approaches. �

4. Conclusion

A methodology for stability and stabilization of uncertain
nonlinear systems via an exact convex representation of
their generalized characteristic polynomial was presented.
Uncertainties and nonlinearities were exactly modeled
within a polytope of polynomials allowing a richer class of
controllers to take advantage of the available states while
robustly stabilizing the plant. In contrast to its customary
application to quasi-LPV models, convexity was proved
to be advantageous when applied to the notion of a
generalized characteristic polynomial; its LMI treatment
and Pólya-like relaxations were preserved. Higher-order
controllers (as those in the work of Henrion et al. (2003)),
corresponding to dynamic control schemes, may better fit
a polynomial approach as the one proposed in this work;

a
7 8 9 10 11

b

0

5

10

15

20

Fig. 4. Feasibility sets: LMI (17) without grouping polynomials
(×), Theorem 3 without grouping polynomials (∗), LMI
(17) and Theorem 3 (both with grouped polynomials)
(�), Theorem 1 by González et al. (2017) (◦).

as they might be relevant for observer-controller setups,
future work may focus on these issues.
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