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This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts
regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank
criterion for output-memory observability is derived. Second, a dead-beat observer which recovers exactly the true state
system from the knowledge of a finite number of delayed inputs and delayed outputs is proposed. The case of the presence
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1. Introduction

Nowadays, it is well recognized that the concept of
fractional calculus has become very popular because
of its many applications in the modeling of physical
phenomena, system theory and controller design (Monje
et al., 2010; Sabatier et al., 2008; Magin, 2004).
Fractional-order integration and differentiation operators
in the field of continuous-time systems have been mostly
successfully used. However, since the work of Miller
and Ross (1989), we have witnessed the emergence of
fractional-order difference operators in the domain of
discrete-time systems. This emergence is demonstrated by
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the multitude of works published in the last two decades
dealing with the definitions of fractional-order differences
operators (Atici and Eloe, 2007; 2009; Abdeljawad
and Baleanu, 2009; Holm, 2011; Ortigueira, 2000;
Chen et al., 2011; Mozyrska and Pawłuszewicz, 2011),
as well as Lyapunov stability (Wyrwas et al., 2015;
Guermah et al., 2008a), controllability and observability
properties (Mozyrska and Bartosiewicz, 2010; Mozyrska
and Pawłuszewicz, 2010; Mozyrska et al., 2015; 2013b;
Guermah et al., 2008b; Pawłuszewicz and Mozyrska,
2013; Balachandran and Kokila, 2012) and optimal
control (Dzieliński, 2016; Bastos et al., 2011b; Bastos
et al., 2011a; Trujillo and Ungureanu, 2018).

Various types of fractional difference operators have
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been introduced such as the Riemann–Liouville type
difference operator, the Caputo type difference operator
and the Grünwald–Letnikov type operator (Trujillo and
Ungureanu, 2018). A more general h-difference operator
has also been considered for these three types taking
into account the presence of the sampling step h,
which is useful in engineering applications (Mozyrska
et al., 2015; 2013b; 2013a). In the present paper,
the Grünwald–Letnikov type difference operator is
considered.

Chaotic behavior of fractional-order systems has
been extensively investigated in the literature. In the
continuous-time domain, several fractional-order chaotic
systems were introduced (see, e.g., the book by Petras
(2011) and the references therein). Similarly, the study
of the chaotic behavior fractional-order discrete-time
systems was considered in the literature. Among the
most important applications of fractional-order chaotic
maps, one finds the fractional-order logistic map (Wu
and Baleanu, 2014b; Munkhammar, 2013) and the
fractional-order Hénon map (Liu, 2014; Tarasov, 2010).

Due to their complex dynamics, chaotic
systems experience widespread success in secure
data communication (Feki et al., 2003; Luo and
Wang, 2013; Pareek et al., 2006). In cryptosystems,
the transmitter (the drive or master system) and the
receiver (the response or slave system) are built as chaotic
systems. The information to be secured is masked
in the chaotic dynamics at the emitter level and then
sent to the receiver through the public channel. At
the receiver level, the secret information is decrypted.
The use of fractional-order chaotic systems in secure
data communication devices is very advantageous.
Indeed, compared with integer-order chaotic dynamics,
fractional-order chaotic dynamics are more complex
because fractional-order derivatives have a complex
geometric interpretation due to their non-local character
and long memory (Podlubny, 2003). This complexity
is an advantage in the design of secure communication
schemes since it is difficult for an intruder to extract
secret information hidden in fractional-order chaotic
dynamics. In addition, the security key space is enlarged
by fractional-order parameters, which therefore yields a
high level of security.

From this perspective, the synchronization of
fractional-order chaotic systems is a central problem.
Inspired by the work of Pecora and Carrol (1990)
and synchronization methods developed in the case
of classical integer-order systems, synchronization of
fractional-order chaotic systems in the continuous-time
domain has received a lot of attention. Various methods
such as the projective method, adaptive control, the
impulsive method, active control and sliding mode
techniques are proposed (Peng et al., 2014; Shao et al.,
2016; Xi et al., 2014; Agrawal et al., 2012; Khanzadeh

and Pourgholi, 2016).
On the other hand, the synchronization of

fractional-order discrete-time systems is a very recent
research topic despite its natural application in secure
digitalized data communication such as image encryption
(Zhen et al., 2012; Wu et al., 2016). Some works were
devoted to this area (e.g., Wu and Baleanu, 2014a; Liao
et al., 2013; Wua et al., 2016). As pointed out by
Nijmeijer and Mareels (1997), synchronization may be
viewed as an observer design problem. Moreover, in the
context of secure communication, the reconstruction of
the encrypted message is achieved within an unknown
input observer (Sharma et al., 2016). The encrypted
message is considered an unknown input. The objective
of the unknown input observer is to estimate both the
state and the unknown input.

In this paper, we investigative the synchronization
of fractional-order discrete-time chaotic systems with
the presence of unknown inputs. It is well known that
observability is a fundamental property for estimating
internal states on the basis of available input/output
data (Nijmeijer, 1982; Hanba, 1982; Albertini and
D’Alessandro, 2002). Also, the observability matching
condition is another property when the system is
subject to unknown inputs (Barbot et al., 2002). The
problem of synchronization with recovery of the input
can be seen as a left invertibility problem (Djemai
et al., 2009). The observability of fractional-order
discrete-time nonlinear systems described with the
Grünwald–Letnikov type difference operator was
studied by Mozyrska and Bartosiewicz (2010), who
stated a rank condition. Similarly, the first aim of the
present paper is to derive some new theoretical results
on the observability and the observability matching
condition of non-linear fractional-order discrete-time
systems described by the Grünwald–Letnikov type
difference operator. The concepts of output-memory
indistinguishability and output-memory observability are
introduced. Furthermore, rank criteria for output-memory
observability and an output-memory observability
matching condition are proposed.

In most works, synchronization is achieved
asymptotically. It has been demonstrated in the case
of non-linear integer-order discrete-time systems that
synchronization can be immediate and accurate thanks
to the use of an exact state reconstructor or a dead beat
observer (Belmouhoub et al., 2003; Sira-Ramirez and
Rouchon, 2001; Sira-Ramirez et al., 2002). In addition,
the immediate recovery of encrypted information is a
real challenge. The second contribution of this work
is designing an exact state reconstructor for non-linear
discrete-time fractional-order systems. The true state
is recovered from a finite ring of delayed inputs and
delayed outputs. The problem of the exact reconstruction
of an unknown input is also considered. Exploiting
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these results, we propose a new chaotic encryption
process to secure digital data communication based
on fractional-order discrete-time chaotic systems. In
the proposed secure data communication scheme, a
fractional-order version of the generalized Hénon map
(Richter, 2002) is used.

The outline of the paper is as follows. Section 2
is devoted to some definitions and preliminary results
on fractional-order discrete-time system described by
the Grünwald–Letnikov type operator. In Section 3,
the concepts of output-memory indistinguishability
and output-memory observability are introduced.
Rank criteria for output-memory observability and
the output-memory observability matching condition
are established. The proposed exact delayed state
reconstructor of a fractional order is developed in
Section 4. With this tool, in Section 5, a secure data
communication scheme based on the fractional-order
generalized Hénon map is studied. Numerical simulations
demonstrating the efficiency of the proposed approach
are reported in Section 6. In Section 7, some conclusions
and future perspectives end the paper.

2. Preliminaries

Let h ∈ R+ be the sampling step and a ∈ R a fixed real
number. Define the time scale as (hN)a = {a, a+ h, a+
2h, . . . , a+sh, . . .}with s ∈ N, and denote byF the set of
real-valued functions. Many fractional-order h-difference
operator types have been introduced in the literature,
namely, the fractional Riemann–Liouville type difference
operator, the Caputo type difference operator and the
Grünwald-Letnikov type difference operator (Atici and
Eloe, 2007; 2009; Abdeljawad and Baleanu, 2009; Holm,
2011; Ortigueira, 2000; Chen et al., 2011; Mozyrska
and Pawłuszewicz, 2011; 2012). In this paper, the
Grünwald–Letnikov type-h-difference operator, defined
below, is used.

Definition 1. Let t ∈ (hN)a and α ∈ R+ be a given
arbitrary positive real number. The Grünwald–Letnikov
type h-difference operator on a function ν(t) ∈ F :
(hN)a → R is defined as

aΔ
α
hν(t) =

(t−a)/h∑

k=0

ckν(t− kh), (1)

where a denotes the initial time and

ck =
1

hα
(−1)k

(
α

k

)
,

with

(
α

k

)
=

⎧
⎪⎨

⎪⎩

+1 for k = 0,

α(α− 1)(α− 2) . . . (α− k + 1)

k!
for k ≥ 1.

Remark 1. The Grünwald–Letnikov h-difference ope-
rator on a given function ν(t) for t ∈ R is derived from
the definition of the Grünwald–Letnikov fractional-order
derivative

GLD
α
t ν(t)

= lim
h→0

1

(h)α

[(t−a)/h]∑

k=0

(−1)k
(
α

k

)
ν(t− kh),

where [(t− a)/h] represents the integer part of (t− a)/h.

With no loss of generality, in what follows, the
sampling time h is taken as h = 1 and the initial time
as a = 0. Indeed, in the context of designing a secure
data communication scheme, the chaotic system at the
emitter level is naturally discrete and is not derived from
a sampling process. In this context, the step h is therefore
purely contrived. What is important is that the system
acting as the emitter exhibits chaotic behavior.

In the works of Bastos et al. (2011a) as well
as Ferreira and Torres (2011), the fractional difference
operator is defined over the time scale hN. This time
scale is particularly advantageous in numerical solution
of the optimal control problem for fractional-order
continuous-time systems, because if h tends to zero, the
previous fractional continuous-time results are recovered
(Bastos et al., 2011b; Ferreira and Torres, 2011). In
addition, as pointed out by Ferreira and Torres (2011),
the fractional-order difference operator with a given step
h different from 1 can be transformed to an equivalent
operator with h = 1. For simplicity, we use Δα instead of
0Δ

α
1 , N instead of (1N)0 and t ∈ N as an integer number.

If h = 1, then |ck| ≤ αk/k!, and thus the sequence (ck)
is absolutely summable. Provided that the function ν(t)
is uniformly bounded, the series (1) converges. It follows
that Δα is well defined.

Hereafter, the one unit delay operator δ is used in the
sense that δν(t) = ν(t − 1). Its inverse is denoted by
δ−1 so that δ−1ν(t) = ν(t + 1). For any number s ∈ N,
δs and δ−s stand for δsν(t) = ν(t − s) and δ−sν(t) =
ν(t + s), respectively. The identity operator is denoted
by δ0 = Id, i.e., δ0ν(t) = ν(t). The delayed collection
{ν(t− 1), ν(t− 2), . . . , ν(t− s)} is represented by

δsν(t) = {δν(t), δ2ν(t), . . . , δsν(t)},
and the forward shifts {ν(t), ν(t + 1), . . . , ν(t+ s)} by

δ−sν(t) = {ν(t), δ−1ν(t), . . . , δ−sν(t)}.
Definition 2. Let x(t) ∈ X ∈ R

n be an
n-dimensional real-valued vector, where X denotes a
differentiable manifold of dimension n. Denote by xi,
the i-th component of x, i = 1, 2, . . . , n, say x(t) =
[x1(t) x2(t) . . . xn(t)]

T , where xi(t) ∈ F : N →
R, i = 1, 2, . . . , n, are n real-valued functions. Let
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αi ∈ R+, i = 1, 2, . . . , n be given real positive numbers.
The Grünwald–Letnikov type difference operator on the
n-dimensional vector x(t) ∈ X is defined as

Δ[α]x(t)

= [Δα1x1(t) Δα2x2(t) . . . Δαnxn(t)]
T . (2)

Similarly, the delay operator on the n-dimensional vector
x(t) ∈ X is defined as

δsx(t) = [δsx1(t) δsx2(t) . . . δsxn(t)]
T . (3)

Remark 2. In (2), if there exist a real number α > 0
and integers ki, i = 1, 2, . . . , n, such that all orders αi,
i = 1, 2, . . . , n, satisfy the relation

αi = kiα, i = 1, 2, . . . , n,

then the fractional-order difference operatorΔ[α] is said to
be a commensurate fractional-order difference operator of
order α and is denoted simply by Δα (Buslowicz, 2008).
A particular case of an commensurate fractional-order
difference operator is obtained when all orders αi, i =
1, 2, . . . , n, are equal, i.e., ki = 1, i = 1, 2, . . . , n.

Definition 3. Denote by (Δα)0, the identity operator, i.e.,
(Δα)0x(t) = x(t). The � times iterated commensurate
fractional-order difference operator of order α on a given
n-dimensional real valued vector x(t) for any integer
number � ∈ N is defined as

(Δα)�x(t) = Δα(Δα)�−1x(t), � = 1, 2, . . . (4)

or, equivalently,

(Δα)�x(t) =

t∑

k=0

ck(Δ
α)�−1x(t− k), � = 1, 2, . . . ,

(5)
The next lemma provides a useful identity between

the Grünwald–Letnikov type difference operator and the
delay operator.

Lemma 1. Let x(t) be an n-dimensional vector. For any
given α ∈ R+ and any given integer s ∈ N, we have the
following commutative properties:

Δα
(
δ−sx(t)

)
= δ−s (Δαx(t)) (6)

and, more generally,

(Δα)
� (

δ−sx(t)
)
= δ−s

((
Δα

)�
x(t)

)
, (7)

� = 1, 2, . . . .

Proof. From (1), we have

Δαx(t) = c0x(t) + c1x(t− 1) + · · ·+ ctx(0).

It follows that

δ−sΔαx(t) = c0x(t+ s) + c1x(t+ s− 1)

+ · · ·+ ctx(s).
(8)

On the other hand, we can write

Δαδ−sx(t)

= Δαx(t+ s)

= c0x(t+ s) + c1x(t+ s− 1) + · · ·+ ctx(s).

(9)

Clearly, (8) and (9) imply

Δα
(
δ−sx(t)

)
= δ−s (Δαx(t)) .

The relation (7) is obtained by induction. This completes
the proof. �

3. Observability of nonlinear discrete-time
fractional-order systems

Observability is a crucial property in systems theory.
It informs us about the possibility of constructing a
system capable of estimating internal state variables
from input-output data. The unavailability of state
variables requires the use of reconstruction methods of
state variables such as state observers. Observability
and observer design of fractional-order systems were
investigated by several authors (Kaczorek, 2016; N’Doye
et al., 2016). For linear discrete-time systems, the concept
of observability was introduced and some observability
criteria were proposed (Mozyrska and Bartosiewicz,
2010; Moryrska and Pawłuszkiewicz 2010; Mozyrska et
al., 2015; 2013b; Guermah et al., 2008b; Pawłuszewicz
and Mozyrska, 2013) and observability with finite initial
memory was introduced by Mozyrska and Pawłuszewicz
(2010) as well as Mozyrska et al. (2015). However, for
fractional-order non-linear discrete-time systems, to the
best of our knowledge, only Mozyrska and Bartosiewicz
(2010) formally defined the concept of observability.

In the following, this idea is extended, a new concept
of output-memory observability is introduced, and a
new observability criterion for non-linear discrete-time
fractional-order systems is proposed.

Consider the following fractional-order nonlinear
discrete-time system:

Δαx(t+ 1) = f(x(t), u(t)), x(0) = x0,

y(t) = h(x(t)),
(10)

where x(t) ∈ X ⊂ R
n is the state vector, x0 is the initial

condition, u(t) ∈ U ⊂ R stands for the control input and
y(t) ∈ Y ⊂ R signifies the measured output, where X
and Y are differentiable manifolds of dimension n and
1, respectively, and U denotes an open control interval
in R. The system (10) is assumed to be of class C∞,
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i.e., the functions f : X × U → X are of class C∞.
We assume that the system evolves around an equilibrium
point (xe, ue, ye), xe ∈ X defined as follows.

Definition 4. We say that (xe, ue, ye) is an equilibrium
point of (10) if

Δαxe = f(xe, ue) = xe,

ye = h(xe).
(11)

For convenience, we denote by fu : X → X the map
fu(x(t)) = f(x(t), u(t)) and by f(Δα)�u : X → X the
map f(Δα)�u(x(t)) = f(x(t), (Δα)�u(t)), � = 1, 2, . . ..
Moreover, we write fuj and f(Δα)�uj

for f(x(t), u(j))

and f(x(t), (Δα)�u(j)), j = 0, 1, 2, . . ., respectively.
Below, the classical definitions of indistinguishability
and observability are revisited in the context of
fractional-order non-linear discrete-time systems. More
precisely, we introduce the concept of the output-memory
observability of a state x0 as the possibility to distinguish
the state x0 from any other state xj , j �= 0, by applying
a finite control sequence Uk = {u(0), u(1), . . . , u(k)}
and scanning the corresponding memory of the output
Ymk =

{
y(0),Δαy(1), . . . , (Δα)ky(k)

}
.

Definition 5. Two states x1, x2 ∈ X are said to be output-
memory indistinguishable if, for each control sequence
Uk = {u(0), u(1), . . . , u(k)} and for each k ≥ 0, the
produced output memories are identical, i.e.,

h ◦ f(Δα)kuk
◦ f(Δα)k−1uk−1

◦ . . . fΔαu1 ◦ fu0(x
1)

= h ◦ f(Δα)kuk
◦ f(Δα)k−1uk−1

◦ . . . fΔαu1 ◦ fu0(x
2),

(12)

where “◦” is the composition operator.

Denote by xIx0 the set of all states x
indistinguishable from x0. The concept of output-
memory observability is defined below.

Definition 6. A state x0 is said to be output-memory
observable if xIx0 =

{
x0

}
, ∀x ∈ X .

Remark 3. As for integer-order systems, local weak
and strong observability properties can be defined. We
say that a state x0 is locally weakly output-memory ob-
servable if there exists a neighbourhood Wx0 ⊂ X of x0

such that, for any state x ∈ Wx0 , we have xIx0 =
{
x0

}
,

∀x ∈ Wx0 . Similarly, a state x0 is locally strongly
output-memory observable if there exists a neighbourhood
Wx0 ⊂ X of x0 such that, for each x1, x2 ∈ Wx0 , x1Ix2

implies that x1 = x2.

Definition 7. The fractional-order non-linear discre-
te-time system (10) is output-memory observable if each
state x ∈ X is output-memory observable.

For integer-order nonlinear discrete-time systems,
the notion of observability is often related to the
injectivity of an observation map and the full rank of
its Jacobian (Nijmeijer, 1982; Hanba, 1982; Albertini
and D’Alessandro, 2002). Mimicking these results,
the output-memory observability criterion of the
fractional-order non-linear discrete-time system (10)
is proposed below. Define the observability matrix as
follows:

On−1(x) =

⎛

⎜⎜⎜⎜⎜⎝

dh(x(t))
dh ◦ fu(x(t))

dh ◦ fΔαu ◦ fu(x(t))
...

dh ◦ f(Δα)(n−2)u ◦ . . . ◦ fu(x(t))

⎞

⎟⎟⎟⎟⎟⎠
,

(13)
where d(. . . ) stands for the standard differential operator
with respect to x, i.e., dμ(x) = [∂μ(x)∂x1

. . . ∂μ(x)
∂xn

] for
any real-valued function μ(x). As in the integer-order
case, the dimension On−1(x) may be non-constant in
the domain considered and may decrease (Albertini and
D’Alessandro, 1996; Jakubczyk and Sontag, 1990). A
strong result of output-memory observability can be
derived under the following assumption.

Assumption 1. The observability matrix On−1(x) is a
constant dimension in a neighbourhood of Wxe ∈ X of
an equilibrium point xe.

Theorem 1. Let Assumption 1 be satisfied. The
fractional-order non-linear discrete-time system (10) is
locally output-memory observable in a neighbourhood
Wxe ∈ X of an equilibrium point xe if and only if the
following rank condition holds:

rank(On−1(x)) = n (14)

for all x ∈ Wxe .

Proof. The proof consists in constructing an appropriate
observability map Θn−1(x) from the input and output
data. From system equations and Lemma 1, the following
relation is obtained:

(Δα)�δ−�y(t) = h ◦ f(Δα)(�−1)u ◦ . . . ◦ fu(x(t)),

� = 1, 2, . . . . Then the observability map is constructed
as

Θn−1(x) =

⎛

⎜⎜⎜⎜⎜⎝

y(t)
Δαδ−1y(t)

(Δα)2δ−2y(t)
...

(Δα)n−1δ−(n−1)y(t)

⎞

⎟⎟⎟⎟⎟⎠
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=

⎛

⎜⎜⎜⎜⎜⎝

h(x(t))
h ◦ fu(x(t))

h ◦ fΔαu ◦ fu(x(t))
...

h ◦ f(Δα)(n−2)u ◦ . . . ◦ fu(x(t))

⎞

⎟⎟⎟⎟⎟⎠
. (15)

The observability matrix is given by the co-distribution
of the observability map, i.e., On−1 = dΘn−1. By
Assumption 1, the observability matrix On−1(x) is a
constant dimension in a neighbourhood of Wxe ∈ X , i.e.,
dimOn−1(x) = n for a all x ∈ Wxe . Then, with this
assumption, if the observability matrix On−1(x) is of full
rank, Eqn. (15) possesses a unique solution x(t). This
completes the proof. �

Remark 4. Note that the observability map Θn−1(x)
and the observability matrix On−1(x) depend on the
input u. The fractional-order nonlinear discrete-time
system (10) is uniformly output-memory observable in a
neighbourhood Wxe ∈ X if the rank condition (14) is
satisfied for all u ∈ U ⊂ R.

Another property of interest is the possibility of
recovering not only the state but also the input assumed
to be unknown from the observation of the output. This
property is connected to the left-invertibility problem
(Djemai et al., 2009). The left-invertibility property
is guaranteed by the so-called observability matching
condition (Barbot et al., 2002). For this problem, we
consider the class of fractional-order discrete-time input
affine non-linear system described by

Δαx(t+ 1) = f(x(t)) + g(x(t))u(t), x(0) = x0,
y(t) = h(x(t))

(16)
We assume that the input u(t) ∈ R is unknown.
Before addressing the observability matching condition,
the relative degree of the fractional-order non-linear
discrete-time system (16) should be defined.

Definition 8. The relative degree of the fractional-order
nonlinear discrete-time system (16) with respect to its
input u(t) is the smallest required number r such that the
output quantity (Δα)rδ−ry(t) depends explicitly on u(t).

Definition 9. We say that the system (16) fulfils
the output-memory observability matching condition
if y(t), Δαδ−1y(t), . . ., (Δα)(n−1)δ−(n−1)y(t) does
not depend on the unknown input while, in contrast,
(Δα)(n)δ−(n)y(t) depends on the unknown input u(t).
Equivalently, the system (16) satisfies the output-memory
observability matching condition if its relative degree is
equal to n.

Accordingly, we have the following proposition.

Proposition 1. The system (16) satisfies the locally
output-memory observability matching condition for x ∈

Wxe ⊂ X if

On−1(x)g(x) =

⎛

⎜⎜⎜⎜⎜⎝

0
0
...
0

π(x)

⎞

⎟⎟⎟⎟⎟⎠
,

∀x ∈ Wxe ⊂ X , (17)

where π(x) is any non-vanishing function of x ∈ Wxe ⊂
X .

This output-memory observability matching condi-
tion allows recovering the unknown input u(t) from a
finite sequence of past values of the output y(t).

4. Exact state reconstructor

In this section, we propose an exact delay reconstructor
which guarantees an exact recovery of the true state
provided that a finite string of past inputs applied and
the produced outputs is available. In the first part of
this section, we assume that the input is known and
only the reconstruction of the state matters. The exact
delayed reconstruction of the true state is announced in
the following proposition.

Proposition 2. Assume that the system (10) is output-
memory observable in a domain Wxe ∈ X around an
equilibrium point (xe, ue, ye). Then the fractional-order
non-linear discrete-time system (10) is reconstructible in
W , i.e., the state x(t) at time t is exactly expressed in
terms of the input and output data collections δn−1u(t)
and δn−1y(t), respectively, provided that these collections
are completely known.

Proof. From Theorem 1, there exists a mapping Ψ such
that the state x(t) at each instant t can be expressed by the
increments in the outputs and the inputs as

x(t) = Ψ(δ−(n−1)y(t), δ−(n−2)u(t)). (18)

It follows that

δn−1x(t) = Ψ(y(t), δ(n−1)y(t), δ(n−1)u(t)), (19)

which means that δn−1x(t) can be expressed by the past
output and input data. On the other hand, from the system
equation (10), expanding Δαx(t+ 1) yields

x(t+ 1) = f(x(t), u(t)) −mx(t)

= F (x(t), u(t)),
(20)

wheremx(t) is the accumulated memory of the state given
by

mx(t) =

t∑

j=0

(−1)j+1cj+1x(t− j). (21)
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Iterating (20), we obtain

x(t) = F (n−1)(δn−1x(t), δ(n−1)u(t)), (22)

where F (n−1) obeys the recursion

F (k)(·) = F (F (k−1))(·), ∀k = 2, 3, . . . ,
F (1)(·) = F (·)

Substituting (19) on the right-hand side of (22) leads to
the following relation:

x(t) = φ(y(t), δ(n−1)y(t), δ(n−1)u(t)). (23)

Clearly, the true state x(t) can be exactly reconstructed
from the delayed input and output data. This completes
the proof. �

In the second part of this section, we discuss the
problem of reconstructing both the system state and input.
For this problem, we consider the observable form of (16),

Δαx(t+ 1) = Ax(t) + Γ(x(t)) + g(x)u(t),

y(t) = Cx(t).
(24)

The system matrices (A,C) take the following Brunowski
form:

A =

⎡

⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 0
...

...
...

...
...

...
0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎦
,

C =
[
1 0 . . . 0

]
.

(25)

The non-linear vector function Γ(x(t)) possesses the
following triangular structure:

Γ(x) =

⎛

⎜⎜⎜⎜⎜⎝

Γ1(x1)
Γ2(x1, x2)

Γ3(x1, x2, x3)
...

Γn(x1, x2, x3, . . . , xn)

⎞

⎟⎟⎟⎟⎟⎠
, (26)

and the vector field g(x) is given by

g(x) =

⎛

⎜⎜⎜⎜⎜⎝

0
0
0
...

bn(x)

⎞

⎟⎟⎟⎟⎟⎠
, (27)

with bn(x) �= 0 ∀x(t) ∈ Wxe ⊂ X . This means that
the unknown input affects only the dynamics of the last
variable xn(t).

In general, a given system is not in this particular
form. However, if this system satisfies the output-memory

observability condition, this form can be obtained after
a suitable change of coordinates (Barbot et al., 2002;
Djemai et al., 2009). With this form, the observability
map Θn−1(x) does not depend on the unknown input u.
This implies that the state x(t) in (23) does not depend on
the input, i.e.,

x(t) = φ(y(t), δ(n−1)y(t)). (28)

The state x(t) is reconstructed uniquely from the output
data. The relative degree is equal to n. This means that
the input u(t) appears explicitly in (Δα)(n)δ−(n)y(t), i.e.,

(Δα)(n)δ−(n)y(t) = Γ̃(x(t)) + bn(x(t))u(t), (29)

where Γ̃(x(t)) is the compound function of Γi(x(t)),
i = 1, 2, . . . , n. The relation (28) means that the input
depends on the advances of the output. It follows that, if
b(x) �= 0, for all x(t) ∈ Wxe ⊂ X , the unknown input
u(t) can be exactly recovered after n backward shifts from
the reconstructed state x(t) and the past output data.

5. Exact synchronization of the
fractional-order chaotic generalized
Hénon map for secure communication

The Hénon map (Hénon, 1976) has been widely studied
to illustrate the chaotic behaviors of integer-order
discrete-time non-linear systems. The map depends on
parameters two a and b (a �= 0, b �= 0), and is described
by the two following difference equations:

x1(t+ 1) = a− x2
1(t)− bx2(t),

x2(t+ 1) = x1(t).
(30)

A generalized Hénon map was proposed by Richter
(2002). It is described by the following difference
equations:

x1(t+ 1) = a− x2
n−1(t)− bxn(t),

xi(t+ 1) = xi−1(t), i = 2, 3, . . . , n.
(31)

The equivalent commensurate fractional-order
generalized Hénon map is written as

Δαx1(t+ 1) = a− x1(t)− x2
n−1(t)− bxn(t),

Δαxi(t+ 1) = xi−1(t)− xi(t), i = 2, 3, . . . , n.

(32)

In what follows, a three-dimensional fractional-order
generalized Hénon map is considered to built a secure
communication scheme. The transmitter is given by the
driven (master) system

Δαx1(t+ 1) = a− x1(t)− x2
2(t)− bx3(t),

Δαx2(t+ 1) = x1(t)− x2(t),

Δαx3(t+ 1) = x2(t)− x3(t) + w(t),

(33)



186 S. Djennoune et al.

where w(t) represents a confidential message to be
securely transmitted to the receiver. This message is
modulated into chaotic system dynamics.

5.1. Chaotic behaviour of the fractional-order
Hénon map. Chaotic behaviour of discrete-time
fractional-order systems has been investigated recently by
many authors. Generally, the main tools used to confirm
the strange chaotic attractor are the phase portrait,
the bifurcation diagram, and the computation of the
Lyapunov exponents. It must be emphasized that there
are major differences between integer-order chaotic maps
and the corresponding fractionalized maps.

Despite the difficulties brought about by the complex
aspect of fractional-order systems, these tools have
been successfully exploited. For instance, the chaotic
behaviour of the fractional-order Hénon map has been
proven by using the bifurcation diagram and phase
portraits (Liu, 2014; Tarasov, 2010). Similarly in
the works of Wu and Baleanu (2014b) as well as
Munkhammar (2013), the bifurcation diagram and the
phase portrait of the fractional-order logistic map were
used to detect the chaotic behaviour. Wu and Baleanu
(2015) investigated the Lyapunov exponent analysis for
the fractional-order logistic map and the fractional-order
delayed logistic map.

As is mentioned by Wu and Baleanu (2015),
the computation of the Lyapunov exponents for
fractional-order maps is difficult because the Jacobian
matrix cannot be directly obtained. Indeed, the current
state of the fractional-order system depends on all past
states as given by Eqn. (20). Because of this accumulated
memory effect, the Jacobian matrix algorithm (Wolf
et al., 1985; Eckmann and Ruelle, 1985) is no longer
possible. A tangent map based on the Volterra solution
was proposed by Wu and Baleanu (2015). Even in this
representation, the memory, effect is still present.

In order to make the calculations more accessible, we
reduce the length of memory which is called the short
memory principle in the literature (Podlubny, 1998). It
is obvious that the system with the reduced memory is a
new one, whose behaviour is different from the original
system. The short memory system without the message is
given in the following explicit form:

x1(t+ 1) = a+ (α− 1)x1(t)− x2
2(t)− bx3(t)

−
L∑

k=1

ck+1x1(t− k),

x2(t+ 1) = x1(t) + (α− 1)x2(t)

−
L∑

k=1

ck+1x2(t− k),

Fig. 1. Strange attractor for the fractional-order generalized dis-
crete Hénon map in the (x1, x3)-plane.

Fig. 2. Bifurcation diagrams versus the parameter a of the
fractional-order generalized discrete Hénon map for α =
0.9, b = 0.1 and L = 5.

Fig. 3. Lyapunov exponents of the fractional-order generalized
discrete Hénon map for α = 0.9, a = 1.5, b = 0.1 and
L = 5.

x3(t+ 1) = x2(t) + (α− 1)x3(t)

−
L∑

k=1

ck+1x3(t− k),
(34)

where L denotes the memory length.
The use of this new system is highly interesting in the

design of secure communication schemes. In fact, as we
will see in the next section, the length L of the memory is
an additional parameter of the security key. The chaotic
behaviour of the new system depends on the parameters
but also the length of the memory. Note that the stability
and trajectory boundedness depend on both L and α, as
reported by Dzieliński and Sierociuk (2008) or Edelman
(2018).

In what follows, the chaotic behaviour of the
fractional-order map (34) is analyzed. The phase portrait,
the bifurcation diagram and the Lyapunov exponents are
successively used. The phase portrait is plotted in Fig. 1.
The simulations performed for the values of the system
parameters taken as α = 0.9, a = 1.5, b = 0.1 and
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L = 5 indicate that the fractional-order system presents
chaotic behaviour. Indeed, Fig. 1 plots the strange
chaotic attractor of the three-dimensional fractional-order
generalized Hénon map on the (x1, x3) plane.

Bifurcation diagrams versus the parameter a are
plotted in Figs. 2(a)–(c) for α = 0.9, b = 0.1 and L = 5.
From these figures, we deduce that the chaos phenomenon
appears for a = 1.5. Other simulations not reported here
show that the chaotic behaviour still appears for higher
values of L, while other parameters remain unchanged.

Finally, the Lyapunov exponents method is
investigated. To apply the classical Jacobian matrix
algorithm (Wu and Baleanu, 2015), the short-memory
system (34) for L = 5 is rewritten in augmented form as
follows. Define new state variables zji (t) = xi(t − j),
i = 1, 2, 3 and j = 1, 2, 3, 4, 5. Then the system (34)
becomes

z11(t+ 1) = a+ (α− 1)z11(t)− (z12)
2(t)− bz13(t)

−
5∑

j=1

cj+1z
j
1(t),

z12(t+ 1) = z11(t) + (α− 1)z12(t)

−
5∑

j=1

cj+1z
j
2(t),

z13(t+ 1) = z12(t) + (α− 1)z13(t)

−
5∑

j=1

cj+1z
j
3(t),

zji (t+ 1) = zj−1
i (t), i = 1, 2, 3, j = 2, 3, 4, 5.

Figure 3 plots the Lyapunov exponents for α = 0.9,
a = 1.5, b = 0.1 and L = 5. The eighteen Lyapunov
exponents are 0.079277, 0.035635, −0.0045199,
−0.045184, −0.062916, −0.089242, −0.093286,
−0.10464, −0.13501, −0.16417, −0.17261,−0.1804,
−0.18501, −0.19651, −0.32537, −0.39704, −0.572424,
−0.6341. The system possesses two positive Lyapunov
exponents. Then, it is hyperchaotic. This confirms the
chaotic behaviour.

5.2. Observability and observer design. We use
single channel communication. The only information to
be transmitted to the receiver is taken as y(t) = x2(t).
In order to develop the observer, the output-memory ob-
servability property and the output-memory observability
matching condition should be satisfied. The system (33)
with the output y(t) = x2(t) is written as

Δαx(t+ 1) = f(x(t)) + g(x(t))w(t),

y(t) = h(x),

where x(t) = [x1(t) x2(t) x3(t)]
T , h(x) = x2(t) and

f(x) =

⎛

⎝
a− x1(t)− x2

2(t)− bx3(t)
x1(t)− x2(t)
x2(t)− x3(t)

⎞

⎠ ,

g(x) =

⎛

⎝
0
0
1

⎞

⎠ .

From the relations

y(t) = h(x(t)) = x2(t),

Δαδ−1y(t) = h ◦ f(x(t)) = Δαx2(t+ 1)

= −x2(t) + x1(t),

Δα(2)δ−2y(t) = h ◦ f (2)(x(t))

= −Δαx2(t+ 1) + Δαx1(t+ 1)

= −2x1(t) + a+ x2(t)− x2
2(t)− bx3(t),

the observability matrix of (33) is deduced as

O2(x) =

⎛

⎝
dh(x(t))

dh ◦ f(x(t))
dh ◦ f (2)(x(t))

⎞

⎠

=

⎡

⎣
0 1 0
1 −1 0
−2 1− 2x2 −b

⎤

⎦ .

(35)

Since det(O2(x)) = b �= 0, the system (33) is
output-memory observable for all x(t) ∈ R

3. The output-
memory observability matching condition can also be
checked. Indeed, we have

O2(x)g(x) =

⎡

⎣
0
0
−b

⎤

⎦ .

Since b �= 0, the output-memory observability match-
ing condition is satisfied for all x(t) ∈ R

3. As mentioned
by Nijmeijer and Mareels (1997), synchronization of a
chaotic system can be formulated as an observer design
problem. The receiver is described by the following
response (slave) system:

Δαx̂1(t+ 1) = a− x̂1(t)− y2(t)− bx̂3(t),

Δαx̂2(t+ 1) = x̂1(t)− y(t),

Δαx̂3(t+ 1) = y − x̂3(t),

(36)

where x̂1, x̂2 and x̂3 are the estimates of the driven state
variables x1, x2 and x3, respectively.

Without any additional control signal injection,
except the transmitted signal y(t), we show that this
observer permits us to exactly reconstruct the true
variables xi(t), i = 1; 2, 3, and to find the original
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message w(t). Subtracting (36) from (33) yields the
dynamic error given by

Δαe1(t+ 1) = −e1(t)− be3(t),

Δαe2(t+ 1) = e1(t),

Δαe3(t+ 1) = −e3(t) + w(t),

(37)

where ei(t) = xi(t)− x̂i(t), i = 1, 2, 3, are the estimation
errors. Since y(t) = x2(t) is known from the receiver,
e2(t) is known at each instant t. We can then consider
e2(t) to be an output of the estimation errors system (37),
i.e.,

ey(t) = e2(t) = x2(t)− x̂2(t) = y(t)− ŷ(t). (38)

The objective is to find the secret message w(t).
By applying the exact delayed recontructor developed in
the previous section for (37), the errors e1(t) and e3(t)
are determined from e3(t), and the message w(t) is also
found. The error system (37) is written as

e1(t+ 1) = (α− 1)e1(t)− be3(t)−me1(t− 1), (39)

ey(t+ 1) = e1(t)−mey(t), (40)

e3(t+ 1) = (α− 1)e3(t)−me3(t− 1) + w(t), (41)

with

mei(t− 1) =

t∑

k=1

ck+1ei(t− k), i = 1, 3,

mey(t) =

t∑

k=0

ck+1ey(t− k).

From (40), we have

e1(t) = ey(t+ 1) +mey(t). (42)

Since ey(t+1) is not available, we must delay (42) by one
time step; then

e1(t− 1) = ey(t) +mey(t− 1). (43)

This means that e1(t) can be known after one backward
shift. This allows us to reconstruct the state variable x1(t)
after one backward shift. Applying two backward shifts
for (39), we get

e1(t− 1) = (α− 1)e1(t− 2)− be3(t− 2)

−me1(t− 3).
(44)

Since e1(t − 1), e1(t − 2) and, obviously, me1(t −
3) are known, e3(t − 2) can be obtained. This allows
us to reconstruct x3(t) after two backward shifts. Now,
applying three backward shifts to the last equation (41),
we get

e3(t−2) = (α−1)e3(t−3)−me3(t−4)+w(t−3). (45)

Fig. 4. Bifurcation diagrams versus the order α of the
fractional-order generalized discrete Hénon map for a =
1.5, b = 0.1 and L = 5.

Fig. 5. Message w(t) = 0.1rand(500, 1).

Again here, since e3(t − 2), e3(t − 3) and me1(t − 4)
are known, it follows that w(t − 3) can be recovered.
Accordingly, one has to wait three steps to receive the
transmitted message. Of course, the first three bits of the
message are lost. In practice, in order to avoid any loss
of information, meaningless information which is three
samples long is added at the beginning of the message.

Remark 5. In the study of output-memory observability
and deadbeat observer design, the results are established
for any value of the parameter α. On the other hand, the
behaviour of the fractional-order Hénon system depends,
of course, on this parameter. Indeed, for some values of
α the system can converge towards a fixed point, while
for other values of α it can become unstable. The most
important in the application of the chaotic system in the
design of secure communication schemes, which is our
goal, is that the system exhibits chaotic behaviour whose
strange attractor can be reached for initial conditions
judiciously chosen in the basin of attraction.

To illustrate this, we give, in Fig. 4, the bifurcation
diagram versus the parameter α for L = 5, a = 1.5, b =
0.1. As we can see, the system presents chaotic behaviour
for α between 0.76 and 1.1. However, for α < 0.76 and
α > 1.1, the system becomes unstable. In the case of
fractional linear discrete systems, a study of the stability
as a function of the memory length L and of the order α
has been proposed by Dzieliński and Sierociuk (2008). In
the case of non-linear systems, although stability has been
the subject of some studies (e.g., Wyrwas et al., 2015), the
investigation of stability with respect to the parameters α
and L remains, to our knowledge, an open problem.
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6. Numerical simulations

The efficiency of the proposed technique of encryption is
illustrated by the following simulation results.

6.1. Example 1: Signal reconstruction. In this first
example, the message w(t) is generated randomly and is
represented in Fig. 5. The amplitude of the signal w(t) is
chosen sufficiently small in order to maintain the chaotic
behaviour of the fractional-order generalized Hénon map
as depicted in Fig. 6, where the chaotic attractor is
plotted in the (x1, x3) plane. As pointed out in the
previous section, the secret message w(t) is injected in the
dynamics of the third variable x3(t), while the transmitted
signal is the second variable x2(t) = y(t). The signal
y(t) transmitted via the public channel is reported in
Fig. 7, which illustrates the unintelligibility character.
The effectiveness of the synchronization between the
transmitter and the receiver achieved by the proposed
dead-beat observer is illustrated in Figs. 8 and 9 where the
true variables x1 and x3 and the reconstructed variables
x̂1 and x̂3 are plotted. It is shown that the first variable x1

is reconstructed exactly after one-unit delay and the third
variable x3 is reconstructed after two units of delay. Then,
the synchronization is exactly successful after two-unit
delay. The decrypted message ŵ(t) is plotted in Fig.
10. It is clear that the message is recovered exactly
after three units of delay corresponding to the dimension
of the chaotic system. It is important to note that the
message was reconstructed accurately in finite time after
only three units of delay. This is an advantage over other
methods, where the message is estimated asymptotically
and with an estimation error converging to zero as t goes
to infinity. This property is interesting in the design of
secure speech communication as illustrated in the second
example below.

6.2. Example 2: Speech encryption and decryption.
The proposed deadbeat observer can be really used for
secure speech communication scheme design as basically
depicted in Fig. 11. The confidential digitalized speech
signal is masked by inclusion in the fractional-order
chaotic map. The encrypted drive signal is sent to the
receiver throughout the public channel. The proposed
deadbeat observer decrypts and recovers the original
speech signal.

The following test is performed using MATLAB.
The speech signal illustrated in Fig. 12 is sampled at
a frequency of 44.1 kHz. The encrypted drive signal
is illustrated in Fig. 13. The decrypted signal given
in Fig. 14 is very similar to the original speech. The
proposed speech encryption scheme permits us to recover
the original signal very quickly with good performance.

The robustness of a transmission scheme against
attacks by intruders depends on the space of the

Fig. 6. Strange attractor for the fractional-order generalized dis-
crete Hénon map in the (x1, x3)-plane in the presence of
the input w(t) = 0.1rand(500, 1).

Fig. 7. Signal transmitted x2 via the public channel.
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Fig. 8. True state x1 (solid line) and reconstructed signal x̂1

(dashed line).
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Fig. 9. True state x3 (in continuous line) and reconstructed sig-
nal x̂3 (in dashed line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

t

am
pl

itu
de

 

 

w
\hat{w}
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Fig. 11. Block diagram of the speech encryption scheme based
on the fractional-order chaotic map.
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Fig. 12. Histogram of the original speech signal.

security key, which is evaluated by the number of secret
parameters constituting this key. The greater the number
of these parameters, the higher the transmission scheme.
In an integer-order chaotic system based transmission
scheme, the parameters of the security key are the
parameters of the chaotic system and the initial conditions
of the state variables. An intruder who attempts to retrieve
secret information must determine these parameters by
any means.

The use of fractional order chaotic systems improves
the level of security through the fact that the orders of the
fractional difference operators are considered additional
parameters of the security key. In the case of secure
transmission based on integer-order chaotic systems,
methods of breaking the key have been proposed, such
as as the geometric one (Orue et al., 2008). However, to
the best of our knowledge, no method of identifying the
orders of fractional difference operators and the length of
the memory has been implemented.

In our case, additional parameters constitute the
space of the key in addition to the other parameters already
used in the integer-order case. These parameters are the
fractional orders of the fractional difference operators and
the length of the memory. The key space space consists of
eight numbers (α1 = 0.9, α2 = 0.9, α3 = 0.9, L1 = 5,
L2 = 5, L3 = 5, a = 1.5, b = 0.1), where αi and Li

are the order of the fractional difference operator and the
length of the memory on the state variable xi, i = 1, 2, 3,
respectively.

To be able to recover secret information, it is
necessary to know the exact values of these parameters.
Thus, breaking the security key is a complex, if not
impossible, task. To demonstrate this, we study the
sensitivity of the proposed secure speech communication
scheme to the key parameters. Suppose that an intruder
gets in some way approximate values of the parameters of
the key. Denote by (α̃1, α̃2, α̃3, L̃1, L̃2, L̃3, ã, b̃) these

approximate values.
In Figs. 16(a), 16(b), 17(a), 17(b), the following

intruder’s parameters: (α̃1 = 0.901, α̃2 = 0.9, α̃3 = 0.9,
L̃1 = 5, L̃2 = 5, L̃3 = 5, ã = 1.5, b̃ = 0.1), (α̃1 = 0.899,
α̃2 = 0.9, α̃3 = 0.9, L̃1 = 5, L̃2 = 5, L̃3 = 5, ã = 1.5,
b̃ = 0.1), (α̃1 = 0.9, α̃2 = 0.9, α̃3 = 0.9, L̃1 = 4, L̃2 =
5, L̃3 = 5, ã = 1.5, b̃ = 0.1), and (α̃1 = 0.9, α̃2 = 0.9,
α̃3 = 0.9, L̃1 = 6, L̃2 = 5, L̃3 = 5, ã = 1.5, b̃ = 0.1)
are considered, respectively. As depicted in these figures,
for a slight mismatch with the real values of the key
parameters, the original speech message is not recovered.
Then the proposed fractional-order chaotic system based
communication scheme guarantees high security.

To analyze robustness with respect to the noise of the
transmission channel, we assumed that the emitted output
sent to the receiver is corrupted by white Gaussian noise
and is written as

yn(t) = x2(t) + b(t).

where b(t) denotes the white Gaussian noise. Figure 17
shows that, for a signal-to-noise ratio of 40 dB, the
message could not be reconstructed. Indeed, the observer
used is very sensitive to noise because the reconstruction
of the states and the secret message is done directly from
the noisy output without any filtering process. This is a
major drawback of the deadbeat observer. A design of
a fractional-order deadbeat Kalman filter would be more
appropriate. This is an interesting perspective to consider
in future work.

7. Conclusion

In this paper, first, some theoretical results on output-
memory observability and the output-memory observ-
ability matching condition for nonlinear fractional-order
discrete-time systems were introduced. Second, an
exact state reconstructor which can be considered a
dead beat observer for this class of systems was
proposed. Third, an application to the design of
a secure speech communication scheme based on a
fractional-order chaotic map was developed. The benefit
of the new secure data transmission scheme comes
from the fact that the secret message is reconstructed
accurately and in finite time after a certain number of
units of delay equal to the dimension of the chosen
chaotic system. As an example, an application to
speech encryption was given. However, to evaluate the
security performance of the proposed speech encryption
system, important features with standard quantitative
measure such as statistical analysis, sensitivity analysis,
key space analysis, robustness to channel noise and speed
performance should be investigated. Future works in these
directions are in progress.
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Fig. 13. Histogram of the drive signal.
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Fig. 14. Histogram of the decrypted speech signal.

Fig. 15. Key sensitivity analysis: histogram of the decrypted
speech signal.

Fig. 16. Key sensitivity analysis: histogram of the decrypted
speech signal.

Fig. 17. Histogram of the decrypted speech signal in the pres-
ence of a noise signal in the channel.
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Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete
fractional state-space systems, Journal of Vibration and
Control 14(9–10): 1543–1556.

Eckmann, J.P. and Ruelle, D. (1985). Ergodic theory of
chaos and strange attractors, Review of Modern Physics
57(3): 617–656.

Edelman, M. (2018). On the stability of fixed
points and chaos in fractional systems, Chaos
28(023112): 023112-1–023112-9.

Feki, M., Robert, B., Gelle, G. and Colas, M. (2003).
Secure digital communication using discrete-time
chaos synchronization, Chaos, Solitons and Fractals
18(4): 881–890.

Ferreira, R.A.C. and Torres, D.F.M. (2011). Fractional
h-difference equations arising from the calculus of
variations, Applicable Analysis and Discrete Mathematics
5(1): 110–121.

Guermah, S., Djennoune, S. and Bettayeb, M. (2008a).
Asymptotic stability and practical stability of linear
discrete-time fractional order systems, 3rd IFAC Workshop
on Fractional Differentiation and its Applications, Ankara,
Turkey.

Guermah, S., Djennoune, S. and Bettayeb, M. (2008b).
Controllability and observability of linear discrete-time
fractional-order systems, International Journal of Applied
Mathematics and Computer Science 18(2): 213–222, DOI:
10.2478/v10006-008-0019-6.

Hanba, S. (1982). Further results on the uniform observability
of discrete-time nonlinear systems, IEEE Transactions on
Automatic Control 55(4): 1034–1038.

Hénon, M. (1976). A two-dimensional mapping with
a strange attractor, Communications in Mathematical
Physics 50(1): 69–77.

Holm, M. (2011). The Laplace transform in discrete fractional
calculus, Computers & Mathematics with Applications
62(3): 1591–1601.

Jakubczyk, B. and Sontag, E. (1990). Controllability of
nonlinear discrete time systems: A Lie-algebraic approach,
SIAM Journal of Control and Optimization 28(1): 1–33.

Kaczorek, T. (2016). Reduced-order fractional descriptor
observers for a class of fractional descriptor
continuous-time nonlinear systems, International Jour-
nal of Applied Mathematics and Computer Science
26(2): 277–283, DOI: 10.1515/amcs-2016-0019.

Khanzadeh, A. and Pourgholi, M. (2016). Robust
synchronization of fractional-order chaotic systems
at a pre-specified time using sliding mode controller
with time-varying switching surfaces, Chaos Solitons &
Fractals 91: 69–77.

Liao, X., Gao, Z. and Huang, H. (2013). Synchronization
control of fractional-order discrete-time chaotic systems,
European Control Conference (ECC), Zürich, Switzerland,
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