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Two types of heuristic estimators based on Parzen kernels are presented. They are able to estimate the regression function
in an incremental manner. The estimators apply two techniques commonly used in concept-drifting data streams, i.e., the
forgetting factor and the sliding window. The methods are applicable for models in which both the function and the noise
variance change over time. Although nonparametric methods based on Parzen kernels were previously successfully applied
in the literature to online regression function estimation, the problem of estimating the variance of noise was generally
neglected. It is sometimes of profound interest to know the variance of the signal considered, e.g., in economics, but it can
also be used for determining confidence intervals in the estimation of the regression function, as well as while evaluating the
goodness of fit and in controlling the amount of smoothing. The present paper addresses this issue. Specifically, variance
estimators are proposed which are able to deal with concept drifting data by applying a sliding window and a forgetting
factor, respectively. A number of conducted numerical experiments proved that the proposed methods perform satisfactorily
well in estimating both the regression function and the variance of the noise.
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1. Introduction

In recent years data stream mining have become a very
important research area (Alippi et al., 2017; Bifet et al.,
2010; Nikulin, 2016; Shaker and Hüllermeier, 2014). It
is due to the significant increase of data amounts which
need to be processed in various fields of human activity.
A data stream can be understood as a sequence in data
elements which constantly arrive at the system. The
size of the stream can be potentially unlimited and there
is no possibility to store all the elements in memory.
Moreover, the data elements often arrive at the system
with very high rates. In light of the above-mentioned
characteristics, traditional data mining algorithms cannot
be directly applied to streaming data. Additionally, in
the streaming scenario the distribution of data values can
often change over time, which is called the ‘concept
drift’ (Ditzler et al., 2015; Gama et al., 2014; Zliobaite
et al., 2014). It is desired that algorithms designed for
data streams be able to react to such changes.

Although the number of the algorithms for data
stream mining is not as large as in the case of traditional
data mining, in the recent decade there has been a

considerable progress in this field. The most successful
seem algorithms based on decision trees (Domingos and
Hulten, 2000; Jaworski et al., 2017; Rutkowski et al.,
2015; 2013; Weinberg and Last, 2017) and ensemble
methods (Pietruczuk et al., 2017; Wang et al., 2003). They
are mainly devoted to data classification problems.

In this paper, however, nonparametric methods for
the regression problem are considered (Krzyżak and
Pawlak, 1984; 1987; Rafajłowicz, 1987; 1989; Rutkowski
and Gałkowski, 1994; Greblicki and Pawlak, 2008; Györfi
et al., 2002; Mzyk, 2007; Andrzejewski et al., 2013; Rao,
2014; Duda et al., 2017; 2018). Additionally, we also
consider the problem of estimating the noise variance. To
the best of our knowledge, no research was conducted
on this issue in the case of data streams. It should be
noted that the problem of variance estimation is very
important. Sometimes it is of deep interest to know the
noise variance of the considered signal, e.g., in estimating
the risk of economic investments. It can be also used for
determining the confidence band for the estimation of the
regression function (Hart, 1997) as well as for evaluating
the goodness of fit (Carroll and Ruppert, 1988), and in
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controlling the amount of smoothing (Gasser et al., 1991).
The confidence interval determination is a very important
issue in many real-world applications, e.g., in turbulence
modeling considered by Ruppert et al. (1997) or in the
analysis of financial time series as shown by Fan and
Yao (1998). It is also of interest in covariance structure
estimation for non-stationary longitudinal data (Diggle
and Verbyla, 1998) or in nonparametric regression with
log-normal errors (Shen and Brown, 2006).

Motivated by the aforementioned wide spectrum of
possible applications, we propose estimators for both
regression function and the noise variance, working in
streaming scenario. It is assumed that the data stream is
a sequence of pairs (Xn, Yn), n = 1, 2, . . . , where Xn

are i.i.d. univariate random variables with some unknown
probability distribution. The probability density function
of variables Xn is denoted by f(x). In the case of
estimation of the regression function we assume that
the target random variables Yn depend on variables Xn

through the following model:

Yn = φn(Xn) + Zn, n = 1, 2, . . . , (1)

where the random variables Zn are random variables with
zero mean and unknown variance

Var (Zn) = sn. (2)

This means that in this case, both the function φn(x)
and the variance of noise sn can change over time. It
should be pointed out that model (1) assumes that the
noise is independent of random variables Xn. In the
case of estimating the noise variance we also consider
a more general problem in which the above-mentioned
dependence is included. However, the function φn(x)
cannot change in time any more since the variance
estimator does not work well otherwise. Therefore,
the model considered in the problem of noise variance
estimation can be expressed as follows:

Yn = φ(Xn) + Zn(Xn), n = 1, 2, . . . , (3)

Var (Zn(x)) = sn(x), (4)

where sn(x) is any function which we will be trying to
estimate. The variance, besides being dependent on X ,
can still change over time.

In brief, the main results and novelties of this paper
can be summarized as follows:

• Nonparametric estimators for the time-changing
regression function under nonstationary noise are
proposed (model (1)).

• Nonparametric estimators are designed in which the
noise variance Var(Y |x) is estimated. The variance
may change over time and depend on X , whereas the
regression function is stationary (model (3)).

• The estimators for models (1) and (3) are proposed in
two variants. They apply traditional methods which
are often used to deal with concept-drifting data: the
sliding window and the forgetting factor.

All the considered estimators are based on the Parzen
kernel approach, which is often used in various
nonparametric estimation methods.

The rest of this paper is organized as follows. In
the next two sections, the problem of nonparametric
regression function estimation is recalled, starting from
estimators for stationary data in Section 2. The
modifications of commonly known methods using a
sliding window and a forgetting factor are presented in
Section 3. In Section 4 the noise variance estimator is
introduced and precisely explained. Two variants of the
estimator are proposed: one with the sliding window and
the other one containing the forgetting factor. The results
of numerical simulations are presented in Section 5.
Section 6 concludes the paper and outlines possible ideas
for future work.

2. Regression function estimation

The problem of estimating the regression function was
investigated in the literature very broadly for stationary
data, i.e., when φn(x) ≡ φ(x). A proper estimator of
regression can help in predicting the values of the function
for incoming data X . Hence, the aim of regression is to
overcome the noise and extract the information about the
mean signal from noisy data.

At points x for which the probability density function
f(x) �= 0 function φ(x) can be expressed as follows:

φ(x) =
φ(x)f(x)

f(x)
=

R(x)

f(x)
. (5)

An estimator of function φ(x) can then be proposed as
the ratio of two estimators: one for function R(x) and the
second for density function f(x),

̂φn(x) =
̂Rn(x)

̂fn(x)
. (6)

In this paper recursive estimators of functions R(x)
and f(x) will be considered (estimator (6) is then
called semirecursive). The reason is that only recursive
estimators are applicable in the data stream scenario. In
this case the data can be processed incrementally. These
estimators were first proposed by Greblicki (1974):

̂Rn(x) =
n− 1

n
̂Rn−1(x) + Yn

1

hnn
K

(

x−Xn

hn

)

, (7)

̂fn(x) =
n− 1

n
̂fn−1(x) +

1

h′
nn

K ′
(

x−Xn

h′
n

)

(8)
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where K(u), K ′(u) are kernel functions (Parzen, 1962).
The sequences hn, h′

n are called bandwidths and should
satisfy the following conditions:

lim
n→∞hn = 0, lim

n→∞nhn = ∞, (9)

lim
n→∞h′

n = 0, lim
n→∞nh′

n = ∞. (10)

There are many possible kernel functions. In
this work an example of a one-dimensional (i.e., u ∈
R) kernel is considered, i.e., the Epanechnikov kernel
(Epanechnikov, 1969) given by

K(u) =

{

0.75
(

1− u2
)

, |u| ≤ 1,

0, |u| > 1.
(11)

The estimator (6) works well for static data even if the
noise variance grows to infinity (with an appropriately low
rate). However, it is not suited to deal with data for which
the function φn(x) changes over time.

Let us further assume that the sequences hn and
h′
n from the estimators (7) and (8), respectively, are the

same, i.e., hn ≡ h′
n, n = 1, 2, . . . . Moreover, assume

that the same kernels are used for both estimators, i.e.,
K(u) ≡ K ′(u). Then the estimator (6) can be rewritten
in the following form:

̂φn(x) =

n
∑

i=1

Yi
1
hi
K
(

x−Xi

hi

)

n
∑

i=1

1
hi
K
(

x−Xi

hi

)
. (12)

The most frequently considered form of bandwidth
sequence hn is

hn = Dn−H , (13)

where D > 0 and 0 < H < 1. In this paper only the
bandwidths expressed by (13) will be considered. Based
on the estimator (12) for static data, in the next section
we will present regression function estimators able to deal
with concept drifting data.

3. Concept drift handling

It is easily seen that the estimator (12) is a weighted
average of subsequent values of Yi, i.e.,

̂φn(x) =

n
∑

i=1

wiYi

n
∑

i=1

wi

, (14)

where wi, i = 1, . . . , n, are some weights which take
different forms in different kinds of estimators (they
depend on the chosen kernel and bandwidth sequence
parameters). This general form can form a basis for

estimators able to handle data with concept drift, i.e.,
data that are drawn according to the time-varying function
φn(x). It should be noted that Rutkowski (2004) and
Pietruczuk et al. (2014) analyzed an estimator of a
time-varying function φn(x) which applied the ideas of
stochastic approximation. Its convergence under certain
assumptions was proved as well. In this estimator only
the formula for the estimator of R(x) is changed whereas
the estimator of f(x) remains the same as (8). Therefore,
the above-mentioned regression function estimator cannot
be expressed by the general weighted average scheme
(14). Two other types of estimators able to handle concept
drift will be presented below (one with a sliding window
approach and the second which applies the forgetting
mechanism). These estimators are heuristic (i.e., their
convergence is not proved), but they can be expressed
using the general formula (14). The weight wi of the i-th
datum changes over time with n.

3.1. Sliding window approach. In the case of a sliding
window of a size W , the appropriate estimator of the
regression function is given by

φn(x;W ) =

n
∑

i=n−W+1

Yi
1

hi(W )
K
(

x−Xi

hi(W )

)

n
∑

i=n−W+1

1
hi(W )

K
(

x−Xi

hi(W )

)

=
Rn(x;W )

fn(x;W )

(15)

Estimators Rn(x;W ) and fn(x;W ) can be expressed
using recursive formulas respectively as follows:

Rn(x;W )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Rn−1(x;W ) +
YnK

(
x−Xn
hn(W )

)

hn(W )
, n ≤ W,

Rn−1(x;W ) +
YnK

(
x−Xn
hn(W )

)

hn(W )

−
Yn−WK

(
x−Xn−W

hn−W (W )

)

hn−W (W )
, n > W,

(16)

fn(x;W )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

fn−1(x;W ) +
K

(
x−Xn
hn(W )

)

hn(W )
, n ≤ W,

fn−1(x;W ) +
K

(
x−Xn
hn(W )

)

hn(W )

−
K

(
x−Xn−W

hn−W (W )

)

hn−W (W )
, n > W.

(17)

To have the form of the bandwidth sequence
analogous to (13), an effective number of data M(n;W )
should be introduced. This quantity expresses how many
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data elements contributes to the current value of the
estimator. In the case of the sliding window we have

M(n;W ) = min{n,W}. (18)

Therefore,

hn(W ) = D [M(n;W )]
−H

= D (min{n,W})−H
.

(19)

3.2. Forgetting factor approach. If the forgetting
mechanism with a forgetting factor 0 < λ < 1
is applied, then the corresponding estimator of the
regression function is given by

˜φn(x;λ) =

n
∑

i=1

Yiλ
n−i 1

h̃i(λ)
K
(

x−Xi

h̃i(λ)

)

n
∑

i=1

λn−i 1

h̃i(λ)
K
(

x−Xi

h̃i(λ)

)

=
˜Rn(x;λ)

˜fn(x;λ)
.

(20)

The recursive formulas for estimators are

˜Rn(x;λ) = λ ˜Rn−1(x;λ)

+ Yn
1

˜hn(λ)
K

(

x−Xn

˜hn(λ)

)

, (21)

˜fn(x;λ) = λ ˜fn−1(x;λ)

+
1

˜hn(λ)
K

(

x−Xn

˜hn(λ)

)

. (22)

The effective number of data M(n;λ) in the
case of the forgetting factor approach is slightly more
complicated. The i-th datum contributes to the value
of the estimator with weight λn−i. Hence it can be
considered as an incomplete data element, i.e., a fraction
λn−i of an element. Therefore the effective number of
data is a partial sum of the geometric series

M(n;λ) = 1 + · · ·+ λn−1 =

n−1
∑

i=0

λn−i

=
1− λn

1− λ
.

(23)

Analogously to formulas (13) and (19), we have

˜hn(λ) = D [M(n;λ)]
−H

= D

(

1− λn

1− λ

)−H

. (24)

4. Noise variance estimation

As was stated previously, the aim of regression is to
overcome noise and extract information about the mean

signal from noisy data. On the other hand, knowledge
about the noise variance can be helpful in other kinds of
tasks, i.e., in estimating the interval of possible values of
Y for newly incoming data X . Whereas the estimation of
the regression function was investigated in the literature
for both stationary and non-stationary data, i.e., for φ(x)
or φn(x), to the best of our knowledge, estimation of
the variance was considered only for the stationary case,
mainly within the designed experimental setting in which
properly chosen values of argument x were used instead
of the random variables Xi. The first variance estimators
which did not require the estimation of the regression
function were proposed by von Neumann (1941). This
kind of estimators is called difference-based and they
were further improved by Gasser et al. (1986). Hall and
Carroll (1989) considered a different approach in which
the average of squared residuals from fitting to function
φ(x) was taken into account. The application of kernel
methods to estimate the variance was investigated by
Brown and Levine (2007). Dai et al. (2015) considered
the case of repeated measurements of data (i.e., multiple
measurements of Yn for the same value of x).

Analogously to (14), it seems at first sight that the
general form of the noise variance estimator could be
expressed as the following weighted average:

̂σ2
n(x) =

n
∑

i=1

wi

(

Yi − ̂φn(x)
)2

n
∑

i=1

wi

. (25)

where, as previously, the appropriate forms of weights
correspond to estimators based on sliding windows
or a forgetting mechanism. Such estimators would
approximate the mean squared deviation between the
Yi variables and the value of the regression function
estimator at point x. In other words, they would
try to estimate the quantity E[(Yi − E [Yi|x])2 |x].
However, what is really needed is the estimation of
E[(Yi − E [Yi|Xi = x])

2 |x]. The random variable Xi

corresponding to Yi may be far away from x and, in
consequence, the quantity (Yi− ̂φn(x))

2 may differ much
from (Yi − E [Y |Xi = x])

2, especially if the function
φ(x) has a large value of the derivative at point x.
Therefore, it might be better to directly estimate the
desired square difference E[(Yi − E [Yi|Xi = x])

2 |x].
The resulting noise variance estimators can be thus
proposed as follows. In the case of the sliding window
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approach the estimators are

Ψ2
n(x;W )

=
r2n(x;W )

fn(x;W )

=

n
∑

i=n−W+1

(

Yi − φi(Xi;W )
)2 1

hi(W )
K
(

x−Xi

hi(W )

)

n
∑

i=n−W+1

1
hi(W )

K
(

x−Xi

hi(W )

)
.

(26)

Estimator fn(x;W ) is the same as (17) and r2n(x;W ) is
recursively given by

r2n(x;W ) (27)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r2n−1(x;W )

+
(Yn−φn(Xn;W ))2K

(
x−Xn
hn(W )

)

hn(W )
, n ≤ W,

r2n−1(x;W )

+
(Yn−φn(Xn;W ))2K

(
x−Xn
hn(W )

)

hn(W )

−
(Yn−W−φn−W (Xn−W ;W ))

2
K

(
x−Xn−W

hn−W (W )

)

hn−W (W )
n > W.

In the case of the forgetting factor approach, the
corresponding estimators are

˜Ψ2
n(x;λ)

=
˜r2n(x;λ)

˜fn(x;λ)

=

n
∑

i=1

λn−i
(

Yi − ˜φi(Xi;λ)
)2

1

h̃i(λ)
K
(

x−Xi

h̃i(λ)

)

n
∑

i=1

λn−i 1

h̃i(λ)
K
(

x−Xi

hi(λ)

)
,

(28)

˜r2n(x;λ)

= λ ˜r2n−1(x;λ)

+
(

Yn − ˜φn(Xn;λ)
)2 1

˜hn(λ)
K

(

x−Xn

˜hn(λ)

)

.

(29)

The estimator ˜fn(x;λ) is obviously the same as in (22).

5. Simulation results

All experiments considered in this paper were conducted
on synthetic datasets. Unfortunately, there is no real
dataset which could allow measuring the performance of
proposed algorithms for noise variance estimation on real
data. None of the existing real sets contains information

about the variance of noise according to which the data
were generated. However, we believe that the experiments
on synthetic data presented further in this section will
help in gaining insight into how the proposed estimators
work on any kind of datasets including the real ones. In
each experiment the dataset consisted of 100000 elements
where the random variables Xi were drawn from the
uniform distribution in interval [min,max] = [−3, 3].
Each estimator was evaluated on a set of Np = 101
equidistant points xj , j = 1, . . . , 101, i.e.,

xj = min+
j (max−min)

Np − 1
= −3 + 0.06j. (30)

To evaluate the performance of any regression function,
the mean squared error estimator can be applied,

MSE
(

̂φn(x)
)

=

√

√

√

√

1

Np

Np
∑

j=1

(

̂φn(xj)− φn(xj)
)2

.

(31)
In the case of variance estimators, an analogous measure
can be defined, i.e.,

MSE
(

̂σ2
n(x)

)

=

√

√

√

√

1

Np

Np
∑

j=1

(

̂σ2
n(xj)− sn(xj)

)2

.

(32)

5.1. Regression function estimation. In the first
experiment the performance of the proposed estimators
(15) and (20) was examined in the case where the
function φn(x) changes over time. Then the model (1)
was considered with noise variables (2). The following
function φn(x) was analyzed:

φn(x) = nβ2 cos(2x− 3) sin(x+ 2), (33)

where the coefficient β was set to 0.1. The noise variables
Zn were sampled from the Gaussian distribution with zero
mean and the variance was set as the following increasing
sequence:

sn = nα, (34)

with α set to 0.15. The Epanechnikov kernel given by (11)
was applied and the parameters D and H of sequences
hn(W ) and ˜hn(λ) were set to D = 2 and H = 0.3.

At the beginning of the experiment, the most
appropriate values of λ and W were found. In preliminary
simulations we tested 60 different values of λ in interval
[0.999, 1] as well as 60 different sliding window sizes
W in interval [1000, 35000]. We wanted to choose the
values of parameters which would provide high estimation
quality not only at the end of the simulation (i.e., after n =
100000 data elements processed in this case) but during
the whole simulation. Therefore, another performance
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Fig. 1. Dependence of the averaged MSE on the value of λ for
the regression function estimator with the forgetting fac-
tor in the case of non-stationary variance sn and the non-
stationary function given by (33).

Fig. 2. Dependence of the average MSE on W for the regression
function estimator with the sliding window in the case of
non-stationary variance sn and the non-stationary func-
tion given by (33).

measure of any estimator ̂φn(x) is introduced, i.e.,
average mean square error (aMSE) which is defined as
the arithmetic mean of the MSE results obtained for all
values of n,

aMSE
(

̂φn(x)
)

=
1

n

n
∑

q=1

MSE
(

̂φq(x)
)

. (35)

The dependence between the obtained values of
aMSE and the forgetting factor λ for estimator ˜φn(x;λ)
is depicted in Fig. 1. Similarly, the values of aMSE as
a function of the sliding window size W for estimator
φn(x;W ) is presented in Fig. 2. The obtained
results demonstrate that the most effective values of the
forgetting factor and the sliding window are λ = 0.99985
and W = 11000. Therefore, two different estimators
were investigated in the further part of the experiment,
φn(x; 11000) and ˜φn(x; 0.99985). The resulting MSE
values for the considered estimators are presented in Fig.

Fig. 3. MSE as a function of the number of processed
data elements for the regression function estimators
φn(x; 11000) and ˜φn(x; 0.99985) in the case of non-
stationary noise variance sn and the non-stationary func-
tion given by (33).

Fig. 4. Fit of the regression function estimators φn(x; 11000)

and ˜φn(x; 0.99985) to the true function φn(x) given by
(33) after processing n = 100000 data elements.

3. In Fig. 4 the fits of the estimators are compared with
the true function φn(x) given by (33).

It seems that the estimators with the sliding window
and the forgetting factor are comparable. Despite the
fact that both the variance and the regression function
φn(x) were increasing with n, the estimators are almost
indistinguishable from the true function.

The multiplicative polynomial non-stationarity used
in the presented simulation was chosen arbitrarily as an
example. The estimators also deal well with other types
of non-stationarities. As another example, the following
function with the ‘moving’ argument is considered:

φn(x) =
10(x− cn)

1 + (x− cn)2
, (36)

where c = 0.00003. As previously, the noise variables
are normally distributed with zero mean and the variance
given by (34) with α = 0.15. The best values of W =
2100 and λ = 0.999 were chosen experimentally. The
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Fig. 5. MSE as a function of the number of processed
data elements for the regression function estimators
φn(x; 2100) and ˜φn(x; 0.999) in the case of non-
stationary noise variance sn and the non-stationary func-
tion given by (36).

Fig. 6. Dependence of the averaged MSE on λ for the variance
estimator with the forgetting factor in the case of non-
stationary variance sn(x) given by (38) with α = 0.15.

obtained results are shown in Fig. 5.

5.2. Variance estimation. In this subsection the
performance of proposed estimators (26) and (28) was
examined in the case where the noise variance depends on
x, i.e., model (3) was considered with the noise variables
(4). The following function φ(x) was considered:

φ(x) = 10 atan(x) + 10. (37)

The noise variables were normally distributed zero mean
and the variance

sn(x) = nα (0.5 sin (2x) + 5) . (38)

The parameter α was set to 0.15. The Epanechnikov
kernel given by (11) was applied and the parameters D

and H of sequences hn(W ) and ˜hn(λ) were set to D = 2
and H = 0.3. As was previously done for the case of
regression function estimation, satisfactory values of λ
and W were found first. In preliminary simulations we

Fig. 7. Dependence of the average MSE on W for the variance
estimator with the sliding window in the case of non-
stationary variance sn(x) given by (38) with α = 0.15.

Fig. 8. MSE as a function of the number of processed data el-
ements for the variance estimators Ψ2

n(x; 22300) and
˜Ψ2

n(x; 0.99991) in the case of non-stationary noise
variance sn(x) given by (38) with α = 0.15.

tested 60 different values of λ in interval [0.999, 1] as
well as 60 different sliding window sizes W in interval
[1000, 36000]. The dependence between the obtained
values of aMSE (calculated analogously as in (35)) and
the forgetting factor λ for estimator ˜Ψ2

n(x;λ) is depicted
in Fig. 6. Similarly, the values of aMSE as a function
of the sliding window size W for estimator Ψ2

n(x;W ) is
presented in Fig. 7.

According to the obtained results, for the further
part of the experiment the following values of the
forgetting factor and the sliding window size were chosen:
λ = 0.99991 and W = 22300. Summarizing, two
different estimators were investigated: Ψ2

n(x; 22300)

and ˜Ψ2
n(x; 0.99991). The resulting MSE values obtained

for the estimators considered are depicted in Fig. 8
whereas Fig. 9 demonstrates the fits of the estimators to
the true variance.

It can be seen that both the estimators with the
sliding window and the forgetting factor keep around the
true variance—they track satisfactorily well the increasing
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Fig. 9. Fit of the variance estimators Ψ2
n(x; 22300) and

˜Ψ2
n(x; 0.99991) to true variance sn(x) given by (38)

with α = 0.15 after processing n = 100000 data ele-
ments.

value of the true variance. The estimators provide
comparable results after processing a sufficiently large
number of data elements. At the beginning of the data
stream, the estimator with the sliding window is slightly
worse than the one with the forgetting factor. This is
due to the fact that by the time when the sliding window
have been filled up, estimators (16) and (17) behave like
stationary estimators (7) and (8).

6. Conclusions

In this paper nonparametric algorithms based on
semirecursive kernel estimates for recovering of
regression function and noise variance were considered.
The estimators were proposed in two variants. They
contain commonly known tools which allow dealing with
concept drifting data, i.e., the sliding window and the
forgetting factor. In a series of numerical experiments,
the proposed methods proved to perform satisfactorily
well in estimating both the regression function and the
variance of the noise.

The conducted research opens up several possible
directions for future work. In the case of variance
estimation, the time-varying variance was considered, but
the function φ(x) was stationary. It would be worth
working on proposing appropriate estimators in the case
in which both the variance and the function φ(x) change
over time. Another idea is to propose new estimators in
which the Parzen kernels are replaced by application of
some orthogonal series, e.g., Hermit’s or Fourier’s ones.
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