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In recent years, research in automated facial expression recognition has attained significant attention for its potential appli-
cability in human–computer interaction, surveillance systems, animation, and consumer electronics. However, recognition
in uncontrolled environments under the presence of illumination and pose variations, low-resolution video, occlusion, and
random noise is still a challenging research problem. In this paper, we investigate recognition of facial expression in dif-
ficult conditions by means of an effective facial feature descriptor, namely the directional ternary pattern (DTP). Given a
face image, the DTP operator describes the facial feature by quantizing the eight-directional edge response values, captur-
ing essential texture properties, such as presence of edges, corners, points, lines, etc. We also present an enhancement of
the basic DTP encoding method, namely the compressed DTP (cDTP) that can describe the local texture more effectively
with fewer features. The recognition performances of the proposed DTP and cDTP descriptors are evaluated using the
Cohn–Kanade (CK) and the Japanese female facial expression (JAFFE) database. In our experiments, we simulate difficult
conditions using original database images with lighting variations, low-resolution images obtained by down-sampling the
original, and images corrupted with Gaussian noise. In all cases, the proposed method outperforms some of the well-known
face feature descriptors.

Keywords: directional ternary pattern, compressed DTP, facial feature descriptor, texture encoding, support vector ma-
chine.

1. Introduction

In recent years, with the fast-paced growth of computing
technologies, demands for personalized and customizable
consumer products and applications are also increasing
rapidly. In this context, automated facial expression
recognition (FER) is an interesting research direction,
since vision-based FER provides an intuitive solution
for sensing the emotional states of consumers, thus
enabling products or applications to dynamically respond
to the situation (Uddin et al., 2009). Thus, a more
user-friendly and human-like interaction can be achieved
in an unobtrusive manner. Automated facial expression
recognition can potentially be used in biometrics,
human–computer interaction, social robotics, data-driven
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animation, and consumer products (Ahmed and Kabir,
2012a; Jabid et al., 2010).

A generic FER system comprises two basic
components: (a) facial feature descriptor and (b) classifier.
The facial feature descriptor describes the characteristics
of a given facial image through features, which is used by
the classifier to recognize the corresponding expression
class. The success of an FER system critically depends
on the discriminating capability of the underlying face
feature descriptor (Ahmed and Kabir, 2012a; Ahmed,
2012). Even using the best classifier will result in poor
recognition performance, if provided with features having
low discriminating ability or inadequate information
(Tenne, 2017; Sniezynski, 2015). An effective and
discriminating feature descriptor can be characterized
as having high inter-class and low intra-class variations
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(Rivera et al., 2013). However, obtaining such feature
descriptor for facial expression recognition is difficult
due to several reasons, which are (a) differences in
pose, alignment, and lighting condition, (b) presence of
occlusion and noise, and (c) wearing glasses, ornaments,
etc. Hence, recent research efforts mainly focus on
designing effective and discriminative feature extraction
methods in uncontrolled environments, which constitutes
a difficult and challenging task (Tan and Triggs, 2007).

In this paper, we investigate facial feature description
by means of a robust local texture pattern, namely
the directional ternary pattern (DTP) for FER under
uncontrolled and difficult conditions. The proposed
method presents an intuitive texture encoding approach
that quantizes edge responses obtained from all eight
directions of a local neighborhood and thus represents
the local texture by means of an encoded pattern.
Unlike the other existing texture operators, the proposed
DTP operator can differentiate between smooth and
high-textured facial regions, which allows the classifier
to discard features obtained from non-informative smooth
regions, if necessary. We also introduce an enhancement
of the basic DTP encoding scheme, namely the
compressed DTP (cDTP), which utilizes the symmetric
property of Robinson compass masks to quantize edge
responses from opposite directions with a single level.
Thus, the cDTP operator can effectively compress the
original DTP feature vector length, without compromising
any loss of texture information. To evaluate the
performance of the DTP and cDTP based face feature
descriptors under difficult conditions, we designed a set
of experiments that includes: (a) original expression
images with lighting variations, (b) low resolution images
obtained by down-sampling the originals, and (c) images
corrupted with Gaussian noise. The objective is to
assess the effectiveness and robustness of directional
texture patterns in challenging real-world scenarios, with
respect to other state-of-the-art expression recognition
methods. Experiments with two large databases, namely
the Cohn–Kanade (CK) (Kanade et al., 2000) and
Japanese female facial expression (JAFFE) (Lyons et al.,
1999) databases demonstrate that, the proposed descriptor
is more robust in extracting facial features under difficult
conditions and achieves superior recognition performance
compared to some state-of-the-art FER methods.

2. Related work

Based on the types of the extracted features, various FER
methods found in the literature can roughly be categorized
into two classes: (i) geometric feature-based methods
and (ii) appearance-based methods (Shan et al., 2009).
Early studies on facial expression recognition were mostly
based on extracting geometric relations among different
facial components (Jabid et al., 2010). One of the pioneer

works by Ekman and Friesen has proposed the facial
action coding system (FACS) (1978) which represented
the physical behavior of some specific facial muscles
through action units. This method of characterizing
facial expressions through physical changes in facial
muscles or points was later investigated by several
researchers. Zhang (1999) utilized the geometric positions
of a set of fiducial points, manually selected for each
expression image. A similar type of features was
adopted by Guo and Dyer (2003), who used linear
programming for simultaneous feature selection coupled
with classifier training. More recent studies on tracked
action unit data conducted by Valstar et al. (2005)
showed promising recognition performance for geometric
methods. Compared with existing appearance-based
methods, their method achieved equal or better results in
the experiments. However, most geometric FER methods
largely depend on accurate detection and tracking of facial
components, which is a challenging and difficult task
in a dynamic and changing environment. Therefore,
applications of geometric FER in real world are quite
limited (Jabid et al., 2010; Ahmed and Kabir, 2012a).

While geometric methods focuse on specific facial
components, appearance-based methods extract a holistic
representation of the facial appearance by applying a filter
or filter banks on the whole or some specific regions of
the face image. Various appearance-based methods can be
found in the literature. Among these methods, principal
component analysis (PCA) (Padgett and Cottrell, 1997),
2D PCA (Yang et al., 2004), independent component
analysis (ICA) (Fa and Shin, 2006), Gabor wavelets
(Lyons et al., 1999), and the more recent enhanced
ICA (EICA) (Uddin et al., 2009) are the most common
ones. In a comprehensive study of existing facial action
recognition methods, Donato et al. (1999) investigated
PCA, ICA, Gabor wavelets, local principal components
(PCs), and local feature analysis (LFA). In their study,
Gabor wavelets and ICA achieved the highest recognition
performance. However, according to Jabid et al. (2010),
the performance of PCA and ICA deteriorates in dynamic
conditions, while the facial appearance representation
based on Gabor wavelets is computation and memory
expensive (Kabir et al., 2012).

In recent years, facial appearance descriptors based
on the local binary pattern (LBP) (Shan et al., 2009; Ojala
et al., 2002) and its variants (Ahmed and Kabir, 2012a;
Guo et al., 2010) have attained significant attention. This
is due to the basic advantages provided by the local
texture operators, which are charaterized by relatively
low computational complexity and better robustness
to lighting and pose changes (Zhao and Pietikainen,
2009; Jabid et al., 2012). The local binary pattern
operator encodes the texture information of a small local
neighborhood into an eight-bit binary pattern, which acts
as a template for detecting micro-level texture details.
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However, it is sensitive to large illumination variations
and random noise. Tan and Triggs (2007) addressed this
issue by introducing an extra level in their local ternary
pattern encoding. Zhao et al. (2008) proposed to use
Sobel masks prior to applying the LBP operator in order
to facilitate more robust texture encoding. The descriptor
based on the local directional pattern (LDP) (Jabid et al.,
2010) introduced a different texture encoding approach
that exploits eight-directional edge responses instead of
gray levels. Although LDP yields better recognition
performance than LBP, it tends to produce inconsistent
texture response in smooth facial regions (Ahmed and
Kabir, 2012a; Ahmed, 2012).

3. Proposed method

There are several steps involved in the proposed facial
expression recognition method. First, a face detection
algorithm is applied to detect faces in an image scene
and the detected faces are then cropped from the original
images. The Viola–Jones face detection method (Viola
and Jones, 2004) is used for this purpose. After that,
Robinson masks are applied to obtain the eight-directional
edge response values for each pixel in the face image.
These edge response values are then quantized using the
proposed directional ternary pattern (DTP) operator and
a feature descriptor for the corresponding face image is
constructed based on the DTP codes. Finally, a support
vector machine is used for the classification task. Figure 1
illustrates the components of the proposed method.

3.1. Directional ternary pattern (DTP).

3.1.1. DTP encoding scheme. As previous research
(Chen et al., 2000; Ling et al., 2007) demonstrated,
edge responses are largely insensitive to illumination
variations. Consequently, an encoding scheme that
exploits the edge responses in different directions can
retain more information of the local region, since it
holds the relations among pixels implicitly which is
not available in the intensity space (Rivera et al.,
2013). Hence, the proposed directional ternary pattern
(DTP) operator encodes the local texture by assigning
a three-valued code to each pixel based on the edge
response values in different directions about the center
pixel. Here, eight directional edge response values are
computed by Robinson masks centered on a pixel oriented
in eight different directions as shown in Fig. 2.

By applying these eight masks, we obtain eight
edge response values, each of which represents the
edge significance in its corresponding direction. The
presence of an edge or a corner will produce high
edge-response values in their respective directions. On
the other hand, uniform or smooth regions will produce
edge response values of similar or same magnitudes in

Fig. 1. Overview of the proposed methodology.

different directions. Therefore, unlike the LDP operator
(Jabid et al., 2010) that always sets the most prominent
k directions to 1 and others to 0 for forming a binary
code regardless of the local region being uniform or
not, the DTP operator employs a ternary coding scheme
that differentiates between the smooth and high textured
regions using a threshold. After computing the average
μ of all eight directional edge response values, those
responses within a ±t margin about the mean μ are
quantized to 0, those above μ + t and those below μ − t
are quantized to +1 and −1, respectively, i.e.,

SDTP (ri) =

⎧
⎨

⎩

1, ri > μ+ t,
0, μ− t ≤ ri ≤ μ+ t,

−1, ri < μ− t.
(1)

Here, ri is the edge response value in the i-th direction,
μ is the average edge response value, and t is a
threshold value. We illustrate the basic DTP encoding
scheme in Fig. 3. Here, the positive and negative
edge response values indicate the gradient direction of
light and dark areas of the neighborhood, which reveals
important information regarding the underlying structure
of the locality (Rivera et al., 2013). This distinction
between light and dark responses is implicitly captured
in the DTP code by the +1 and −1 discrimination
levels, respectively, which enables DTP to differentiate
between blocks with light and dark areas swapped, by
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generating different DTP code for each individual case.
Unlike DTP, other gradient-based methods (Jabid et al.,
2010; Zhao et al., 2008) ignore the sign information
of the edge response values, and thus, they fail to
differentiate between certain facial regions (such as top
and bottom edges of eyebrows), which have different
intensity transitions (light to dark and dark to light,
respectively). Figure 4 shows an example of the local
binary pattern (LBP) and the proposed directional ternary
pattern (DTP) encoding scheme applied on a small image
patch under the presence of Gaussian white noise. It
can be observed that, introducing the noise results the
LBP code to change from its original pattern, while
the DTP was able to retain the original relationships of
the pixels in the local neighborhood. We argue that
there are two contributing factors to the robustness of
the proposed DTP encoding scheme: first, utilization of
the eight-directional edge response values instead of raw
gray scale values to represent the local neighborhood with
a ternary pattern, which provides robustness under the
presence of nonmonotonic changes. Secondly, utilization
of the threshold t improves the overall stability by
differentiating between smooth and high-textured regions.

In order to reduce the length of the feature vector,
each DTP code is further split into its corresponding
positive (which represents the direction of light area) and
negative parts (which represents the direction of dark
area), and treated as two separate binary patterns, namely
PDTP and NDTP . Thus, the number of features reduces
from 38(= 6561) to 2 × 28(= 512). Here, PDTP and
NDTP take the following form:

PDTP =
7∑

i=0

SP (SDTP (ri))2
i, (2a)

SP (v) =

{
1, v = 1,
0, otherwise,

(2b)

NDTP =

7∑

i=0

SN (SDTP (ri))2
i, (3a)

SN(v) =

{
1, v = −1,
0, otherwise,

(3b)

3.1.2. Adaptive threshold selection. The resultant
texture patterns from the DTP operator is dependent on
the selection of an effective threshold that can differentiate
between the smooth and high-textured regions. In our
earlier works (Ahmed and Kabir, 2012a; 2012b), a global
threshold was found to be sufficient in achieving stable
recognition performance. In this paper, we also present an
adaptive local threshold selection method which derives
the t value based on the edge response statistics of the
local neighborhood. The proposed adaptive threshold can
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0 1 2

N, E, S, W
(rotated 90°)

NW, NE, SE, SW
(rotated 90°)

Fig. 2. Robinson eight directional edge response masks. Differ-
ent orientations are obtained by rotating these masks by
90◦. Here, N, S, E, and W correspond to North, South,
East, and West, respectively.
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Fig. 3. DTP encoding scheme for t = 40. Here, the obtained
DTP code for C is (−1)(−1)0(−1)1101.
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Fig. 4. Example of DTP (t = 40) vs. LBP encoding under the
presence of Gaussian white noise. It can be observed
that, while the LBP code has been affected by the noise,
DTP was able to retain the same texture pattern.

be defined as
t = σ × α. (4)

Here, σ represents the standard deviation of the eight
directional edge response magnitudes and α is a scaling
factor. This approach thus adjusts the threshold value
based on the illumination condition as well as the presence
of texture information in the local neighborhood, resulting
in more robust DTP codes.

3.1.3. DTP face descriptor. Applying the DTP
operator on all the pixels of an image, we get two encoded
images, one for the PDTP code and the other for the
NDTP code. First, histograms are computed from these
two encoded images using

HPDTP (i) =
M∑

x=1

N∑

y=1

f(PDTP (x, y), i), (5)
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Fig. 5. DTP histogram generation process.

HNDTP (i) =

M∑

x=1

N∑

y=1

f(NDTP (x, y), i), (6)

f(a, i) =

{
1, a = i,
0, otherwise.

(7)

Here, i is the positive or negative DTP code value
computed on the (x, y) pixel of an M × N encoded
image. Histograms computed from the PDTP and NDTP

encoded images are then concatenated spatially to produce
the DTP histogram, which represents the occurrence
information of the PDTP and NDTP binary patterns. The
process is shown in Fig. 5.

Histograms generated from the whole encoded
image merely express the occurrence frequencies of
the generated micro-patterns. It contains no locality
information of those patterns. However, the presence
of location information and spatial relationships provides
a better facial feature representation and describes the
image content more accurately (Jabid et al., 2010; Ahonen
et al., 2006; Gundimada and Asari, 2009). Therefore, the
DTP histogram is modified to an extended histogram in
order to incorporate some degree of location information.
First, each image is partitioned into a number of regions
and individual DTP histograms are generated from each of
those regions. Finally, the histograms of all the regions are
concatenated to obtain an extended DTP histogram. For
the facial expression recognition process, this histogram
collection is used as the face feature vector. The process
is illustrated in Fig. 6.

3.2. Compressed DTP: A fast DTP encoding scheme.
The strength of the DTP features lies in the quantization
of stable edge response values and the discrimination
between smooth and high-textured facial regions. To
compute the eight directional edge responses, the DTP
operator uses the Robinson compass masks. The reason
is that Robinson masks are easier to implement than
the other compass masks (such as Kirsch masks), since
they rely only on the coefficients of 0, 1, and 2, and
are symmetrical about their directional axis (Umbaugh,
2011). Therefore, only the responses on four of the masks

are required to be computed. The responses from the
other four masks can be obtained by simply negating the
responses obtained from the first four (Umbaugh, 2011).

Assume that RN and RS are the edge response
values from any two opposite directions, such as North
and South, respectively, computed on a 3 × 3 local
neighborhood. Due to the symmetric property of the
Robinson masks, the magnitude of the edge responses RN

and RS will always be the same, only the sign will be the
opposite (for magnitudes greater than 0). Hence, the mean
μ of the eight-directional edge response values around the
center point of a local neighborhood will always be 0. As
a result, while quantizing the edge response values with
a threshold t, the edge responses from any two opposite
directions (RN and RS) will always satisfy one of the
following three instances:

1. If (μ − t) ≤ RN ≤ (μ + t), then (μ − t) ≤ RS ≤
(μ+ t);

2. If RN > (μ+ t), then RS < (μ− t);

3. If RN < (μ− t), then RS > (μ+ t).

From Fig. 7 it can be observed that, if RN lies within
the threshold region μ ± t, RS will also lie within the
same region. Otherwise, edge responses from opposite
two directions will lie at the opposite two sides of the
threshold region. Therefore, instead of quantizing both of
the edge response values from two opposite directions, we
can quantize a single one without any loss of information
(due to their symmetric property). Hence, we propose a
variant of the basic DTP encoding scheme, namely the
compressed DTP (cDTP) encoding, where each time two
opposite edge response values are selected and a single
discrimination level (0, 1, or 2, based on the cases listed
above) is used to label both. Thus, we need only a
4-digit base-3 number to encode the eight-directional edge
response values around the center of a local neighborhood,
which effectively reduces the number of possible DTP
patterns from 38(= 6561) to 34(= 81). The encoding
scheme can be represented formally as follow:

cDTP =

3∑

i=0

ScDTP (Ri)× 3i, (8)

ScDTP (Ri) =

⎧
⎨

⎩

0, μ− t ≤ Ri ≤ μ+ t,
1, Ri > μ+ t,
2, Ri < μ− t.

(9)

Here, R0, R1, R2, and R3 are the edge response
values from the North, East, North-East, and North-West
directions, respectively. The difference between the basic
DTP and the compressed DTP encoding scheme is that, in
the cDTP encoding, we use one of the three discrimination
levels (0, 1, and 2) for labeling edge response values from
two opposite directions simultaneously (which is then
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Fig. 6. DTP feature vector construction process.
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Fig. 7. Illustration of the possible three conditions for different
values of RN and RS (t = 40).

concatenated to form a base-3 number), while in the basic
DTP encoding, each edge response is labeled individually.
The compressed DTP encoding is illustrated in Fig. 8.

Applying the compressed DTP operator to all the
pixels of an image will result in an encoded cDTP image,
where the value of each pixel will range between 0 and 80.
The distribution information of these compressed DTP
micro-patterns are then represented as a spatial histogram,
namely the cDTP histogram. In order to incorporate
location information of the cDTP micro-patterns, the
cDTP histogram is modified to an extended histogram
using the same method as the DTP. The extended cDTP
histogram is then used as the facial feature vector for the
classifier training and testing.

4. Experiments and results

4.1. Experimental setup and dataset description.
The performance of the proposed method was evaluated
based on its ability to recognize a set of prototypic
emotional expressions, which includes anger, disgust,
fear, joy, sadness, and surprise. By introducing additional
neutral face expression images, this 6-class recognition
problem can further be extended to a 7-class problem.
The experiments were carried out on two well-known
databases, namely the Cohn–Kanade (CK) database
(Kanade et al., 2000) and the Japanese female facial
expression (JAFFE) database (Lyons et al., 1999).

In the CK database, a sample set of 100 students,
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RNE = 42
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-40

0
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RE = 24

Edge Response

Quantization Value: 2 Quantization Value: 2 Quantization Value: 1 Quantization Value: 0

Final base-3 cDTP code: 2210

Fig. 8. cDTP encoding scheme (t = 40) for the 3 × 3 neigh-
borhood shown in Fig. 3. Here, the final cDTP code
is obtained by concatenating the quantization results of
edge responses from North-West (RNW ), North (RN),
North-East (RNE), and East (RE), which is 2210.

aging from 18 to 30 during image acquisition, was
included. A majority of the subjects (65%) were female;
15% of the samples were African American, and 3% were
Asian or of Latin descent. Each of the students displayed
facial expressions starting from nonexpressiveness to
one of the aforementioned six prototypic emotional
expressions in the image acquisition process. These image
sequences were then digitized into 640×480 or 640×690
pixel resolutions. In our setup, a set of 1224 facial image
sequences were selected from 96 subjects and each of
the images were given a label describing the subject’s
facial expression. The dataset containing the 6-classes of
expressions was then extended by 408 images of neutral
facial images to obtain the 7-class expression dataset.

The JAFFE database comprises facial expression
images of 10 Japanese female subjects. All the images
were digitized into a resolution of 256 × 256 pixels.
The images were obtained from a frontal pose, and to
ensure the exposure of all the expressive regions of the
face, the subjects’ hair was tied back. During image
acquisition, tungsten lights were used to create an even
illumination. Instead of revealing the actual names, the
subjects are referred with their initials: KA, KL, KM, KR,
MK, NA, NM, TM, UY, and YM. In our setup, the 6-class
expression dataset consists of a total of 283 images, while
the 7-class expression set includes additional 50 neutral
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Fig. 9. Facial images from the CK and JAFFE databases.

expression images. Figure 9 shows the sample prototypic
expression images from the CK and JAFFE databases.

The selected facial images were cropped from the
original ones based on a bounding box detected using
the Viola–Jones face detection method (Viola and Jones,
2004) and then normalized to 150 × 110 pixels. No
attempt was made to remove illumination changes, since
one of the objectives of our experiments is to demonstrate
the effectiveness of DTP under lighting variations. We
carried out a ten-fold cross-validation to compute the
classification rate. In ten-fold cross-validation, ten subsets
comprising equal numbers of instances are formed by
partitioning the whole dataset randomly. The classifier is
first trained on the nine subsets and then the remaining
set is used for testing. This process is repeated 10 times
and then the average classification rate is computed. A
support vector machine (SVM) equipped with a radial
basis function (RBF) kernel was used as the classifier (Yao
et al., 2014). A grid-search cross-validation was carried
out for each facial descriptor in order to select appropriate
hyper parameter values (C and γ), as suggested by Hsu
and Lin (2002). Hence, for each descriptor, an optimal
parameter setting is adopted. For the proposed DTP and
cDTP operators, the optimal values of C and γ were found
to be 1.0 and 0.105, respectively.

The performance of the proposed method can be
influenced by adjusting two parameters: the threshold
selection method (global or local adaptive) and the
number of regions into which the expression images are to
be partitioned. In literature, the commonly-used number
of regions are 3 × 3, 5 × 5, 7 × 7, 7 × 6, and 9 × 8.
In our experiments, we consider three different cases
where the images were partitioned into 3 × 3, 5 × 5, and
7 × 6 regions. In order to determine the optimal global
threshold t, we first fixed the number of regions to 3 × 3,
and then searched for a t value that achieves the best
recognition performance for the CK 6-class dataset. In our
experiments, the highest classification rate was achieved
for t = 40, hence the value of t was set to 40 for the global
thresholding technique in all other experiments. For the
proposed local adaptive thresholding, the scaling factor α

was empirically set to 0.8.

4.2. Experimental results for the CK dataset. We
have compared the performance of the proposed method
with three well-known local pattern operators, namely
local binary pattern (LBP) (Shan et al., 2009), local
ternary pattern (LTP) (Tan and Triggs, 2007), and local
directional pattern (LDP) (Jabid et al., 2010). Tables 1 and
2 show the recognition rates of these local pattern-based
feature descriptors against the 6-class and the 7-class
expression datasets, respectively. In both cases, DTP
and cDTP exhibit superior performance in recognizing
expression images. For the 6-class dataset, DTP and cDTP
(with local thresholding) attain the highest recognition
rates of 97.5% and 97.6%, respectively. On the other
hand, for the 7-class dataset, the highest recognition
rates of DTP and cDTP (both with local thresholding)
are 96.0% and 95.3%, respectively. Here, inclusion of
neutral expression images results in a decrease in the
accuracy. For both the 6-class and the 7-class recognition
problem, the highest classification rate is obtained for
images partitioned into 7× 6 regions.

Table 1. Confusion matrix for the CK 6-class recognition us-
ing the DTP feature descriptor (for images partitioned
into 7 × 6 regions). Rows represent true classes and
columns represent classification rates (%).

Anger Disgust Fear Joy Sad Surprise
(%) (%) (%) (%) (%) (%)

Anger 97.7 0 0 0 0 2.3
Disgust 0 97.9 0 1.6 0 0.5
Fear 0 0.4 96.0 0 0 3.6
Joy 0.6 0.5 0 98.9 0 0
Sad 0 0 0 0 100 0
Surprise 0 0 0 3.4 0 96.6

Table 2. Confusion matrix for the CK 7-class recognition using
the DTP feature descriptor (for images partitioned into
7× 6 regions).

Anger Disgust Fear Joy Sad Surprise Neutral
(%) (%) (%) (%) (%) (%) (%)

Anger 98.5 0 0 0 0 0 1.5
Disgust 0 98.0 0 0 0 2.0 0
Fear 0 0.4 98.5 0 0 1.1 0
Joy 0.5 0.5 0 93.2 0 5.8 0
Sad 0 0 0 0 93.4 0 6.6
Surprise 0 0 0 1.9 0 98.1 0
Neutral 5.9 0 0 0 3.0 0 91.1

It can be observed that dividing an image into a
higher number of regions results in a higher classification
rate, since the feature descriptor then contains more
location and spatial information of the local patterns.
Nevertheless, the feature vector length is also higher in
such cases, which affects the computational efficiency.
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In addition, dividing an image into too many regions
will result in a decrease in the recognition performance,
since then the texture histograms of those very small
local regions will fail to represent any significant texture
information. In our case, the recognition rate decreased
for images partitioned into more than 9×8(= 72) regions.
Hence, selection of the number of regions is a trade-off
between computational efficiency and classification rate.

The confusion matrix of recognition using the
original DTP descriptor for the CK 6-class and the
CK 7-class datasets are shown in Tables 3 and 4,
respectively. These two tables provide a better picture
of the recognition performance of the DTP descriptor
for individual expression types. It can be observed that,
for the 6-class recognition problem, all the expression
types can be recognized with a high accuracy. On
the other hand, for the 7-class recognition, while anger,
disgust, fear, and surprise can be recognized with high
accuracy, the recognition rates of joy, sadness, and
neutral expressions are lower than the average. Here,
the neutral expression images are confused with anger
and sad and vice versa, which results in a decrease
in the average recognition performance. In addition,
the class labels in the CK database represent what the
participants were asked to perform, rather than what were
performed originally (Kanade et al., 2000). This could
also potentially lead to a mislabeling of some training
data, causing cross-class errors.

Table 3. Recognition rate (%) for the CK 6-class dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 79.3 89.7 90.1
LTP 91.3 92.3 94.6
LDP 80.2 91.9 93.7

Original DTP 94.5 97.1 97.5
Original cDTP 94.2 96.8 97.3

DTP with adaptive threshold 94.7 97.2 97.3
cDTP with adaptive threshold 94.6 96.5 97.6

Table 4. Recognition rate (%) for the CK 7-class dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 73.8 80.9 83.3
LTP 85.3 88.5 88.9
LDP 75.7 86.3 88.4

Original DTP 90.3 93.9 95.8
Original cDTP 89.9 93.5 95.2

DTP with adaptive threshold 90.7 93.2 96.0
cDTP with adaptive threshold 88.7 93.7 95.3

4.3. Experimental results for the JAFFE dataset.
For the JAFFE 6-class dataset, the global threshold-based

DTP and cDTP feature descriptors achieve the highest
classification rates of 92.5% and 91.2%, respectively. For
the 7-class dataset, the highest recognition rates of 88.9%
and 88.2% are obtained for the local thresholding-based
DTP and cDTP descriptors, respectively. Tables 5 and
6 show the comparison of the recognition performances
of the different feature descriptors for the JAFFE 6-class
and the 7-class datasets, respectively. It can be observed
that DTP and cDTP achieve the best two recognition rates
for both datasets. Here, too the highest classification rate
is obtained for images partitioned into 7 × 6 regions.
The recognition performance in the JAFFE database are
relatively lower than the CK database. The reason is that
in the JAFFE database, some of the expression images are
labeled with incorrect class labels or expressed incorrectly
by the subjects (Jabid et al., 2010).

Table 5. Recognition rate (%) for the JAFFE 6-class dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 84.1 87.6 90.5
LTP 84.3 87.9 90.9
LDP 83.2 88.9 90.7

Original DTP 87.5 90.1 92.5
Original cDTP 87.1 89.8 91.2

DTP with adaptive threshold 87.7 89.9 92.3
cDTP with adaptive threshold 86.9 89.5 91.0

Table 6. Recognition rate (%) for the JAFFE 7-class dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 81.5 82.3 85.3
LTP 84.6 85.0 86.7
LDP 83.3 85.3 85.9

Original DTP 85.3 86.9 88.7
Original cDTP 85.9 86.5 88.0

DTP with adaptive threshold 85.4 86.8 88.9
cDTP with adaptive threshold 86.1 86.3 88.2

4.4. Experimental results for low-resolution im-
ages. Automated facial expression analysis is useful in
smart meeting, surveillance, and many other applications
(Jabid et al., 2010), where often only low-resolution
video data are available. Since geometric-feature based
methods like detection of facial action units or fiducial
points are difficult to accommodate in these scenarios,
appearance-based methods seem to be a better solution.
Therefore, the performance of the proposed method is
also evaluated on low-resolution images. Experiments
were conducted on images from the CK 6-class expression
dataset. We considered three different image resolutions:
75× 55, 48× 36, and 37× 27. Sample expression images
are shown in Fig. 10.
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Original Image 75 x 55 48 x 36 37 x 27

Fig. 10. Sample low resolution images used in the experiments.

Original Image 0.01 0.02 0.03 0.04 0.05

Fig. 11. Sample expression images contaminated with Gaussian
white noise with zero mean and different variances.

The original images were down sampled to obtain
these low-resolution images. All the images were
partitioned into 7 × 6 regions while applying the texture
operators. In this experiment also, the performances of
the DTP and cDTP feature descriptors are compared with
LBP, LTP, and LDP. Table 7 shows the recognition
rates of different descriptors for low resolution expression
images. From the recognition accuracy, it is evident that
facial feature representation based on DTP and cDTP is
more robust than other existing local texture patterns over
a useful range of low resolutions.

4.5. Experimental results for noisy images. To
investigate the robustness of the proposed DTP descriptor
under the presence of noise, further experiments were
conducted on the images from the CK 6-class expression
dataset. In the experimental setup, the images in the
testing set were contaminated with Gaussian white noise
of different variances (as shown in Fig. 11), while
the training samples were kept unchanged. All the
images were partitioned into 7 × 6 regions during feature
vector generation. Table 8 shows the corresponding
recognition rates of LBP, LTP, LDP, and DTP against
images corrupted with Gaussian white noise with zero
mean and different variances (0.01, 0.02, 0.03, 0.04, and
0.05). It can be observed that in all cases DTP and cDTP
achieve significantly higher recognition rates than the
other texture operators. The superiority of DTP encoding
is due to the utilization of stable edge responses and
its discriminating capability of smooth and high textured
areas from different face regions.

4.6. Discussion. The experimental results validate
that the DTP and cDTP-based feature representation
perform consistently better than some widely-used
appearance-based face descriptors, even under the
presence of illumination variations, random noise and

Table 7. Recognition rates (%) for low-resolution images from
the CK 6-class dataset.

Feature descriptor
Image resolution

75x55 48x36 37x27

LBP 88.9 83.5 79.7
LTP 89.7 85.9 83.3
LDP 90.7 89.1 84.4

Original DTP 93.9 92.2 89.1
Original cDTP 93.5 91.9 88.7

DTP (adaptive threshold) 93.7 92.4 89.2
cDTP (adaptive threshold) 93.1 91.8 88.9

Table 8. Recognition rate (%) on images from the CK 6-class
dataset corrupted with Gaussian white noise with zero
mean and different variances.

Feature descriptor
Noise variance

0.01 0.02 0.03 0.04 0.05

LBP 73.7 66.7 64.5 62.3 61.9
LTP 77.1 70.4 67.3 65.0 62.3
LDP 70.9 61.3 55.1 52.4 48.2

Original DTP 87.7 79.7 73.4 69.6 66.5
Original cDTP 87.5 79.3 73.1 68.8 65.3
DTP (adaptive) 87.8 79.5 73.6 69.8 66.6
cDTP (adaptive) 87.6 79.2 73.3 68.7 65.2

in low resolution images. In a controlled environment
with no illumination normalization, the proposed texture
descriptors can attain an average recognition rate of
95.05% for the CK 6-class and JAFFE 6-class datasets
and an average recognition rate of 92.45% for the CK
7-class and JAFFE 7-class datasets, while the existing
texture operators can attain an average of 92.75% and
87.8% at most, respectively. On the other hand, under
the presence of random noise and low resolution images,
the performance of the proposed method is significantly
higher than existing approaches. A summary of the
recognition performances of the proposed method against
other existing face descriptors can be found in Table 9.
On the other hand, Table 10 shows the results of statistical
two-sample t-tests performed on the recognition rates (%)
obtained for DTP, compared with other facial descriptors.
Here, for the t-tests performed on the (DTP vs. LBP) and
(DTP vs. LDP) pairs, the null hypotheses was rejected
due to low p-values of 0.0074 and 0.0321, respectively,
which indicates the recognition rates obtained for the
DTP descriptor is statistically significant with respect
to LBP and LDP. However, the p-value obtained for
the (DTP vs. LTP) was found to be higher than the
threshold 0.05. Although computation of the eight
directional edge response values makes the proposed
texture descriptors more expensive than pure gray-level
based methods like LBP, utilization of the symmetric
property of the Robinson compass masks enables the
computation of DTP features faster than other edge
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Table 9. A summary of performances of different face descriptors under various conditions.

Feature descriptor
Average recognition rates (%) for different datasets

All 6-class datasets All 7-class datasets Low-resolution Gaussian noise

LBP 86.90 81.18 84.03 65.82
LTP 90.21 86.50 86.30 68.42
LDP 88.10 84.15 88.06 57.58

Original DTP 93.20 90.15 91.73 75.38
Original cDTP 92.73 89.83 91.37 74.80

DTP (adaptive threshold) 93.18 90.16 91.76 75.46
cDTP (adaptive threshold) 92.68 89.71 91.27 74.80

Table 10. Two-sample t-test results for DTP vs. other methods.
Descriptors p-value Reject null hypotheses?

DTP vs. LBP 0.0074 Yes
DTP vs. LTP 0.1255 No
DTP vs. LDP 0.0321 Yes

response-based texture patterns, such as LDP (Jabid et al.,
2010) and LDPv (Kabir et al., 2012).

5. Conclusion

This paper describes a local facial feature descriptor based
on DTP for expression recognition. The DTP operator
integrates the local edge responses for texture encoding,
and also discriminates between smooth and non-smooth
areas with three different levels. We also present a variant
of DTP encoding, namely the compressed DTP, which can
effectively reduce the feature vector length without any
significant loss of information, resulting in almost similar
recognition performance with a very low computational
cost. In our experiments, both DTP and cDTP achieve
superior performance than some widely-used feature
descriptors. The effectiveness of the proposed method
is due to its texture discriminating capability, robustness
under illumination variations and the presence of noise the
compared the existing representations. Therefore, it can
also be used for face recognition and gender classification
systems in consumer products.
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