
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 4, 737–748
DOI: 10.1515/amcs-2017-0051

INTERPRETABLE DECISION–TREE INDUCTION IN A BIG DATA PARALLEL
FRAMEWORK

ABRAHAM ITZHAK WEINBERG a, MARK LAST a,∗

aDepartment of Software and Information Systems Engineering
Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel

e-mail: weinberA@post.bgu.ac.il,mlast@bgu.ac.il

When running data-mining algorithms on big data platforms, a parallel, distributed framework, such as MAPREDUCE, may
be used. However, in a parallel framework, each individual model fits the data allocated to its own computing node without
necessarily fitting the entire dataset. In order to induce a single consistent model, ensemble algorithms such as majority
voting, aggregate the local models, rather than analyzing the entire dataset directly. Our goal is to develop an efficient
algorithm for choosing one representative model from multiple, locally induced decision-tree models. The proposed SySM
(syntactic similarity method) algorithm computes the similarity between the models produced by parallel nodes and chooses
the model which is most similar to others as the best representative of the entire dataset. In 18.75% of 48 experiments on
four big datasets, SySM accuracy is significantly higher than that of the ensemble; in about 43.75% of the experiments,
SySM accuracy is significantly lower; in one case, the results are identical; and in the remaining 35.41% of cases the
difference is not statistically significant. Compared with ensemble methods, the representative tree models selected by the
proposed methodology are more compact and interpretable, their induction consumes less memory, and, as confirmed by
the empirical results, they allow faster classification of new records.

Keywords: big data, parallel computing, MAPREDUCE, decision trees, editing distance, tree similarity.

1. Introduction

With the vast growth of the information volume and
variety in the recent years, many organizations focus
on big data platforms and technologies (Bekkerman
et al., 2011). In order to perform big data analysis
with data mining algorithms, there is a need for a
framework such as MAPREDUCE, which allows parallel
execution over distributed computing resources. This
includes architectures that are designed for real-time or
near real-time analytics (Fan and Bifet, 2013). Here,
we limit our discussion to architectures that need the
combining phase, known as REDUCE. More specifically,
we focus on decision tree algorithms. Since decision
tree models are simple and effective in classification
(Ben-Haim and Tom-Tov, 2010), they are among the
most popular methods for data mining analysts and users.
In addition, they provide human-readable classification
rules, which is considered important in data analysis.

In order to induce one representative decision tree in

∗Corresponding author

the big data distributed framework, we suggest a novel
approach called—the syntactic similarity method SySM.
The algorithm runs as part of the combining (REDUCE)
phase and chooses one representative model from multiple
trees. This is a different approach from ensemble
methods that combine predictions of multiple decision
trees, which serve as base estimators. SySM is also more
computationally efficient than algorithms like those of
Mehta et al. (1996) or Shafer et al. (1996), which use
time consuming activities in the REDUCE phase such as
sorting attribute values. In addition, SySM classification
accuracy is comparable to ensemble majority voting.

One of the advantages of SySM is fast classification
of new records, which is an important issue for systems
dealing with high-speed data streams. Using SySM,
the new records traverse one representative decision tree.
In this way, we save the computational effort needed
for traversing multiple trees in the ensemble approach
or going back to the raw training data for additional
computation. Though ensemble methods may yield higher
accuracy, their model is less interpretable than a single

weinberA@post.bgu.ac.il,mlast@bgu.ac.il

738 A.I. Weinberg and M. Last

decision tree selected by SySM.
To deal with very large datasets, we use a distributed

framework (Zhang et al., 2012), where we divide the
data into slices (subsets) by using randomization, and
process each data slice independently. Our assumption
is that in a dataset big enough, any slice of data has a
reasonable probability of representing the entire dataset.
The question is which model will be best to represent
the entire large dataset in an interpretable way. The
most important issues in this case are to save the model
combining time and to keep the representative model
as compact as possible. These issues guide the SySM
approach.

The proposed SySM technique is based on
computing syntactic similarity between locally induced
decision trees. We assume that the main reason for two
decision trees to produce the same outcome is their inner
structure: the nodes and their order in the tree. This
implies that for the same dataset, decision trees that are
similar to each other should yield similar classification
decisions and predictions.

According to Andrzejak et al. (2013), distributed
learning approaches should also consider the practical
limitations imposed by the computing environment,
including constraints on the memory of individual nodes,
the size of exchanged messages, and the communication
patterns influencing scalability. This can be done by
reducing memory and data transfer requirements at the
cost of accuracy. The SySM approach adds only minor
computational effort to the parallel induction phase, which
is transformation of the trees into the tree bracket format
and comparing them which each other. As a result, the
SySM combining phase (REDUCE) takes less time than
the other merging methods such as that of Andrzejak et al.
(2013).

Summarizing, the original contributions of our
approach are the following:

• We present a computationally efficient solution
for the challenge of constructing interpretable and
compact decision tree models in the big data parallel
framework.

• The combined tree is chosen out of a set of locally
induced trees rather than built from the global
dataset.

• The representative tree is found by computing
pairwise syntactic similarity of locally induced trees
represented in the tree bracket format.

• Our experimental results show that the proposed
method can find a representative model that
has classification accuracy comparable to that of
ensemble majority voting.

The rest of this paper consists of four sections.
Section 2 discusses possible ways to compare decision
trees and choose one representative tree out of many.
Section 3 presents the SySM algorithm methodology.
Section 4 discusses experimental results on four
benchmark datasets. Finally, Section 5 summarizes the
current work and future research directions.

2. Background and related work

We can categorize big data approaches to decision tree
induction as follows: building one big tree (Andrzejak
et al., 2013; Panda et al., 2009; Ntoutsi et al., 2008; Zhang
and Jiang, 2012; Pawlik and Augsten, 2011; Narlikar,
1998; Sreenivas et al., 2000; Goil and Choudhary, 2001;
Amado et al., 2001; Domingos and Hulten, 2000; Dai
and Ji, 2014), transferring all decision trees into one rule
base and back into a decision tree, ensemble approaches
(Louppe and Geurts, 2012; Hansen and Salamon, 1990;
Sollich and Krogh, 1996; Breiman, 1999), and others
(e.g., Kargupta and Park, 2004) that do not build a new
tree and use a combination of tree results. According
to Ben-Haim and Tom-Tov (2010), another way to
categorize the different types of algorithms for handling
large datasets is to divide them into the following
two groups: pre-sorting of data and using approximate
representations of data. Under the first category we
can mention SLIQ (Mehta et al., 1996), its newer
version SPRINT (Shafer et al., 1996) and ScalParC (Joshi
et al., 1998). The second group includes algorithms
that approximate representations of data by sampling
and histograms construction. This group includes the
following algorithms: BOAT (Gehrke et al., 1999),
CLOUDS (AlSabti et al., 1998), and SPIES (Jin and
Agrawal, 2003). Usually, pre-sorting techniques are more
accurate but computationally intensive when running on
big data sets.

As shown in Fig. 1, parallel decision tree
construction algorithms can be grouped by different
approaches to parallelism: task parallelism, data
parallelism and hybrid parallelism (Srivastava et al., 1995;
Amado et al., 2003). Task parallelism distributes the
decision tree nodes among the processors in a dynamic
way. Data parallelism distributes the training set among
the processors so that each processor is responsible for
a distinct part of the data. This category may be
divided into two sub categories: horizontal partitioning
vertical partitioning. The parallel strategy based on
vertical data distribution (DeWitt et al., 1991; Amado
et al., 2003; Kourtellis et al., 2016) splits the data by
letting each processor test different attributes, whereas
horizontal parallelism partitions the data so that different
processors see different records. Hybrid parallelism uses
data parallelism as a combination between horizontal
and vertical approaches. Its decision whether to use

Interpretable decision-tree induction in a big data parallel framework 739

horizontal or vertical parallelism is a function of the
processing capability of each computing node and the
constraints of the communication volume between them.
Our method deals with decision trees constructed by the
horizontal parallelism approach. We use the horizontal
approach since our methodology is based on measuring
the similarity of tree attributes.

Fig. 1. Taxonomy of parallel decision tree construction algo-
rithms.

Building a new decision tree from several induced
decision trees is a well-known approach in big data. This
approach usually excels in accuracy but needs significant
computing resources (Ben-Haim and Tom-Tov, 2010).
The computing resources are needed for controlling the
parallel stage and for dividing the database in a specific
way (Panda et al., 2009) as well as for merging parts
of trees in the post processing phase (Andrzejak et al.,
2013; Panda et al., 2009; Ntoutsi et al., 2008; Zhang
and Jiang, 2012). The need for extensive computational
resources and the long processing time are considered
major disadvantages in cases where fast results are needed
for decision making.

A framework for comparing decision trees in their
induction stage is proposed by Pawlik and Augsten
(2011). They use two types of similarity: semantic
similarity and dataset similarity. The former is
computed in terms of the agreement of the class
predictions the decision trees return over the attribute
space. The latter is based on the decision tree attribute
space probability distribution, the attribute-class joint
probability distribution and the attribute conditional class
probability distribution. The presented framework can be
used to decide when to update the global decision tree
nodes and values as a result of a change in data, which
is most relevant for the parallel stage. In addition, there
is a need to go back to the raw data in order to compute
probabilities.

Most of the methods mentioned above do not treat
locally induced decision trees as final entities. They
use induced decision trees as a basis for additional
computations that go back and forth to the original

dataset. From a computational point of view, this
approach produces redundant work since it requires going
back to the decision tree induction phase that was already
completed and that is supposed to represent the original
data.

Miglio and Soffritti (2004) present a similarity
algorithm that combines the tree structure (syntactic)
information with the agreement percentage (semantic
similarity) on the testing set. The semantic similarity
approach is based on the work of Shannon and Banks
(1999). It is not suitable for big data environments where
the running time is a critical constraint.

3. Methodology

SySM is aimed at selecting the best tree that can represent
the entire dataset. We assume that the choice of the
most representative tree should be based on its syntactic
similarity to other locally induced decision trees. The
syntactic similarity of two trees is calculated by a simple
and fast editing distance algorithm called the RTED
(robust tree edit distance) (Pawlik and Augsten, 2011),
which counts the number of matching nodes having
different labels. The RTED has lower computational
complexity than the tree distance algorithm by Zhang
and Shasha (1989) and it should be more robust than the
Shannon and Banks (1999) approach as it is independent
of the tree structure. The core idea in the RTED is
dynamic decomposition. The RTED strategy recursively
decomposes input trees into subforests by removing nodes
from either the leftmost or the rightmost subtrees, whereas
Zhang and Shasha’s algorithm always removes subtrees
from the right.

We assume that two decision trees induced from the
same dataset using the same splitting metric will yield
the same predictions if they both have the same internal
nodes corresponding to the same attributes. We measure
the similarity of internal nodes in the two compared
decision trees using the following two parameters: the
tested attribute name and the node position. These two
parameters practically determine the tree structure. The
node’s position determines its relation to other nodes in
the tree and hence its influence on the model outcome
with no need to consider the derived split value. The
RTED algorithm (Pawlik and Augsten, 2011) takes these
two parameters into account.

When dealing with the original task of choosing
one representative model out of many, our motivation is
to minimize the need going back from one phase to its
predecessor. For example, we are not interested in going
back to the original training data or modifying induced
decision trees. An additional assumption is that each of
the decision trees produced in the parallel phase represents
the corresponding dataset in its structure. When dealing
with small datasets, each decision tree represents a local

740 A.I. Weinberg and M. Last

Algorithm 1. Decision tree transformation into the tree
bracket format.
INPUT: x—decision tree
OUTPUT: TBF is the tree x in the tree bracket
format

Function UpdateNodes(x):
if NumberOfChildrenOfNM (x) is not null then
NM (x) is the list of node attribute names of x
Set TBF = TBF + ’{ ’+ NM (x)
for j = 1 to NumberOfChildrenOfNM (x) do

Call UpdateNodes(x)
Set TBF = TBF+ ’}’

end for
end if

subset of the training data. When dealing with big
datasets, each data subset should be large enough to
represent the entire dataset.

The SySM algorithm transforms each of the induced
decision trees into the bracket tree format (BTF) as shown
in Fig. 4. This is done by scanning the tree nodes from
the top down. The BTF is a way of representing the tree as
one long sequence of node labels (testing attributes) where
each node is separated from another using the opening
bracket symbol. Different levels of the nodes can be
distinguished by the bracket symbol as well. Calculating
the difference between the number of opened brackets
to the closed ones determines the level of the specific
node in the tree. For example, for the following BTF:
{a{b}{c{d}{e}}}, we can deduce that b and c are at the
same level since the difference between open brackets to
closed brackets before b is 2 and before c is 2 as well. We
can also infer from the bracket locations of the BTF that
both d and e are siblings and children of c. As can be
seen in Figs. 2 and 3, the BTF representation of a tree
shown in Fig. 4 is more compact than other decision tree
representations.

Using the SySM algorithm, we refer only to the
structure of induced trees and hence there is no need
to make any change to the tree structure or to perform
additional computations on the raw data. The RTED
algorithm (Pawlik and Augsten, 2011), which is the
core of our similarity calculation procedure, finds the
distance between each pair of induced trees by finding the
mismatches of each node label at the equivalent positions
of the compared trees. In the case of such a mismatch,
there are three ways (editing operations) to ‘fix’ it: to
delete a node, to insert it or to change it. The relevant
changes are accumulated. Practically, one induced tree
is transformed into another. The RTED (Pawlik and
Augsten, 2011) is symmetric, so regardless of whether
the first induced tree is compared with the second one
or vice versa, the edit distance is the same. For multiple
comparisons between one decision tree with the rest of the

Petal.Width

1

≤ 0.6 > 0.6

Node 2 (n = 50)

setosa
0

0.2

0.4

0.6

0.8

1

Petal.Width

3

≤ 1.7 > 1.7

Petal.Length

4

≤ 4.9 > 4.9

Node 5 (n = 48)

setosa
0

0.2

0.4

0.6

0.8

1

Petal.Width

6

≤ 1.5 > 1.5

Node 7 (n = 3)

setosa
0

0.2

0.4

0.6

0.8

1

Node 8 (n = 3)

setosa
0

0.2

0.4

0.6

0.8

1

Node 9 (n = 46)

setosa
0

0.2

0.4

0.6

0.8

1

Fig. 2. J48 Visual representation of the IRIS dataset.

Model formula:
Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

Fitted party:
[1] root
| [2] Petal.Width <= 0.6: setosa (n = 50, err = 0.0%)
| [3] Petal.Width > 0.6
| | [4] Petal.Width <= 1.7
| | | [5] Petal.Length <= 4.9: versicolor (n = 48, err = 2.1%)
| | | [6] Petal.Length > 4.9
| | | | [7] Petal.Width <= 1.5: virginica (n = 3, err = 0.0%)
| | | | [8] Petal.Width > 1.5: versicolor (n = 3, err = 33.3%)
| | [9] Petal.Width > 1.7: virginica (n = 46, err = 2.2%)

Number of inner nodes: 4
Number of terminal nodes: 5

Fig. 3. J48 Textual representation of the IRIS dataset.

{Petal.Width{Petal.Width{Petal.Length{Petal.Width}}}}

Fig. 4. J48 Bracket format representation (BTF) of the IRIS
dataset.

Interpretable decision-tree induction in a big data parallel framework 741

Algorithm 2. SySM algorithm.
INPUT: Set T = ti, . . . , tn of induced decision trees,
where n = number of dataset slices
OUTPUT: Selected decision tree tRM

if T is null then
return failure

end if
for i = 1 to n do

Set NM = list of node attribute names of {ti} (the
nodes are in DFS order)
Set TBF = {}, TBF is the tree bracket format
Call UpdateNodes(NM (1)), NM (1) is the root node
of the tree
Set TBF i = TBF

end for
Set DM = 1
for i = 1 to (n− 1) do

for j = (i+ 1) to n do
Set DM ij = RTED (ti, tj) {// DM ij is the
distance matrix, RTED is the robust tree edit
distance}

end for
end for
Set DM = DM +DM�

for i = 1 to n do
Set AED i =

∑n
j=1 DM ij/n { // Compute the

average edit distance per matrix row tree }
end for
Set RM = argmini {AED i} { // Choose the
representative decision tree model (RM) by the
minimal average edit distance tree}
Return tRM

induced decision trees we build a distance matrix where
each cell represents the mutual edit distance between the
trees represented by the row number to each of the trees
represented by the columns. For each row, the average of
the edit distances represents the similarity of the tree to
the rest of the decision trees. The representative model
chosen by our algorithm is the model with the minimal
average edit distance to other models.

We assume that the model chosen by the SySM
algorithm is the best candidate for representing the entire
dataset because of its highest syntactic similarity to other
models. From the computational complexity perspective,
the REDUCE phase of the SySM algorithm has a training
complexity of O(n2), where n is the number of induced
trees/computation nodes, since the algorithm calculates
the average edit distance of each induced tree to the
rest of the trees. The testing (classification) complexity
of our algorithm is O(m), where m is the number of
new instances. In contrast, to it the testing complexity

of ensemble methods is O(nm), since they require
traversing n trees for each m new instances as opposed
to SySM, which uses only one representative tree for
classifying a new instance.

In the next section, we discuss the experimental
results of our method.

Table 1. Datasets used for empirical evaluation.
ID UCI Samples Attributes Classes

Dataset name (number) (number) (number)

DS1 Poker Hand 1025010 11 9
DS2 SUSY 5000000 18 2
DS3 Record Linkage 5749132 9 2

Comparison Patterns
DS4 KDD Cup 1999 4898431 42 23

4. Results

In this section, we perform experiments to evaluate the
performance of the SySM algorithm.

4.1. Design of experiments. We run the evaluated
algorithms over four big multivariate datasets from the
UCI repository, which are used in other papers on big data
(e.g., Triguero et al., 2015) and are shown in Table 1.

We applied the SySM algorithm to each dataset in
six variations: 32 folds, 64 folds, 128 folds, 256 folds,
512 folds and 1024 folds. The folds are equal-size
subsets (slices) of the training dataset assigned to different
computation nodes. The training data are 90% of the
randomly chosen tuples of the original datasets. J48
and CART decision trees were induced for each fold of
every dataset. J48 trees were induced using the RWEKA
package in R. J48 is induced from the POKER dataset
by setting the M parameter (the minimum number of
instances per leaf) to 30. For the SUSY dataset as well
as KDDCUP, we used M = 40. For the RLCP dataset,
J48 is induced using the default value of M = 2. The
best value of M for each dataset was chosen by analyzing
two random slices of 32 folds. For each value of M , we
found model accuracy over training and testing datasets,
the number of leaves and the size of the tree. We selected
the value of M that leads to the highest testing accuracy of
J48 under the memory constraints. The same method was
used for choosing the best value of the CART minbucket
parameter, which is the minimum number of observations
in any terminal (leaf) node. In addition, cp (complexity
parameter) was set to 0. For the POKER dataset, the best
value of minbucket is chosen to be 250, for SUSY—500,
for RLCP—500 and for KDDCUP—7 (the default value).
As mentioned above, the values are the result of a search
procedure aimed at maximizing classification accuracy
with decision trees that fit in computer memory.

742 A.I. Weinberg and M. Last

We use all computer cores for running the algorithms
using R parallel packages. The computer has the
following characteristics:

• processors: i7-4710 MQ,

• cores: 8 per processor (16 threads),

• clock speed: 2.50 GHz,

• cache: 256 MB,

• hard drive: 238.47 GB,

• RAM: 64 GB.

For each dataset, SySM obtains induced trees as
input. The output of the SySM algorithm is one tree
chosen out of all induced trees that is supposed to
represent the entire training dataset. We compared the
accuracy of the chosen tree over the testing data to the
accuracy of ensemble majority voting and the majority
rule that is induced from the entire training dataset.

Table 2. Dataset parameters for empirical evaluation.
ID UCI Dataset name J48 CART

M minbucket

DS1 Poker Hand 30 250
DS2 SUSY 40 500
DS3 Record Linkage 2 500

Comparison Patterns
DS4 KDD Cup 1999 40 7

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024

Ac
cu

ra
cy

No. of Shards

SySM J48 Accuracy

POKER SUSY RLCP KDDCUP

Fig. 5. SySM J48 accuracy.

In practice, the choice of the number of slices
depends on the required processing speed and the
available computational resources (number of CPUs).
With an increase in the number of slices, the overall
processing time will decrease. On the other hand, this will
increase the number of CPUs used and their associated
cost. As can be seen in Fig. 5, in smaller datasets
(like Poker Hand), an increase in the number of slices

45%

55%

65%

32 64 128 256 512 1024

Ac
cu

ra
cy

No. of slices

DS1 - POKER

Ensemble - J48 SySM Accuracy - J48 Ensemble - CART
SySM Accuracy - CART Majority Rule Entire data

Fig. 6. DS1: Poker Hand algorithm accuracy per dataset slice.

50%

60%

70%

80%

32 64 128 256 512 1024

Ac
cu

ra
cy

No. of slices

DS2 - SUSY

Ensemble - J48 SySM Accuracy - J48 Ensemble - CART SySM Accuracy - CART Majority Rule Entire data

Fig. 7. DS2: SUSY algorithm accuracy per datasets slice.

may negatively affect the local models accuracy due to
insufficient amount of training instances per each slice.

4.2. Analysis of results. As we can be seen in Figs. 11
and 12, the more we partition the dataset, the lower the
average tree distances are, which means that the induced
trees become more similar to each other. When referring
to Figs. 13 and 14, we can also see that the trees induced
from smaller dataset slices have a smaller size (number of
nodes).

The same decreasing trend applies to the models’
accuracy, as can be seen in Figs. 6–9. The decrease
in the tree size, the accuracy, and the other parameters
mentioned above can be explained by the decrease in the
number of training records per slice with an increase in
the total number of slices. The difference between the
maximum and the minimum accuracy shown in Figs. 8
and 9 is so low (0.0007 and 0.013, respectively) that it
does not have any practical significance.

The high accuracy of ensemble majority voting
is expected since each induced decision tree that sees
another slice of the trained dataset takes part in voting
for classifying each tuple in the testing dataset. In
this way, although each induced decision tree sees only

Interpretable decision-tree induction in a big data parallel framework 743

99.8%

99.9%

100.0%

32 64 128 256 512 1024

Ac
cu

ra
cy

No. of slices

DS3 - RLCP

Ensemble - J48 SySM Accuracy - J48
Ensemble - CART SySM Accuracy - CART

Fig. 8. DS3: Record linkage comparison pattern accuracy per
dataset slice.

98%

99%

100%

32 64 128 256 512 1024

Ac
ur

ac
y

No. of slices

DS4 - KDDCUP

Ensemble - J48 SySM Accuracy - J48

Ensemble - CART SySM Accuracy - CART

Fig. 9. DS4: KDD Cup 1999 algorithm accuracy per dataset
slices.

0.01

0.1

1

10

100

1000

32 64 128 256 512 1024

Ti
m

e
(s

ec
s.

)

No. of Slices

Running Time over Testing dataset

Ensemble - J48 - KDDCUP SySM - J48 - KDDCUP Ensemble - CART - KDDCUP SySM - CART - KDDCUP

Fig. 10. Algorithm running time over the KDDCUP testing
dataset.

0

1

2

3

4

5

6

7

8

9

10

32 64 128 256 512 1024

Av
g.

 T
re

e
Di

st
.

No. of Slices

Average Tree Edit Distance - 1

RLCP - J48 RLCP - CART KDD CUP - J48 KDD CUP - CART

Fig. 11. Average tree edit distance: RLCP and KDD CUP.

0

20

40

60

80

100

120

140

160

32 64 128 256 512 1024

Av
g.

 T
re

e
Du

st
.

No. of Slices

Average Tree Edit Distance - 2

POKER - J48 POKER - Cart SUSY - J48 SUSY - CART

Fig. 12. Average tree edit distance: POKER and SUSY.

0

50

100

150

200

250

300

32 64 128 256 512 1024

Av
g.

 T
re

e
Si

ze

No. of Slices

Average Tree Size - 1

POKER - CART SUSY - CART POKER - J48 SUSY - J48

Fig. 13. Average tree size: POKER and SUSY.

744 A.I. Weinberg and M. Last

0

5

10

15

20

25

30

35

40

32 64 128 256 512 1024

Av
g.

 T
re

e
Si

ze

No. of Slices

Average Tree Size -2

RLCP - CART KDD CUP - CART RLCP - J48 KDD CUP

Fig. 14. Average tree size: RLCP and KDD CUP.

part of the trained dataset, the voting part combines
their predictions over the testing dataset. However, the
results of the majority voting algorithm are not easily
interpretable, since they are not based on a single decision
tree model. In addition, the classification phase of
ensemble majority voting includes two computation steps:
running the induced trees over the testing dataset and
computing the majority voting result. The number of
runs of ensemble induced trees over the testing dataset
is equal to the number of slices per training dataset. In
a distributed system, the induction of decision trees is
done over each training dataset in parallel. However,
for ensemble decision making there is a need to apply
each decision-tree model to the same testing dataset. This
adds computational and memory complexity to ensemble
algorithms. As can be seen in Fig. 10, the total testing
time is indeed higher for ensemble than for SySM at the
order of the number of folds × tuples .

In Appendix, we also compare the testing accuracy
of the ensemble and SySM for every dataset and each
decision tree algorithm (J48 and CART) using the t-test.
The t-statistic is computed by the following formula:

SySMAccuracy − EnsAccuracy
√
F (SySMAccuracy) + F (EnsAccuracy)

,

where

F (x) =
x(1− x)

number of testing records
.

In the SUSY dataset, we see that most models in each
shard, except the 1024 shard, have a low testing accuracy
of 0.544. For the 32 shard, there are 30 decision trees
(out of 32) with that accuracy, for 64 there are 62, for
128 there are 124, for 256 there are 125 out of 135,
for 512 125 out of 136 and for 1024 only one. Since
ensemble majority voting assigns the majority results to
each record, the predicted class is supposed to be based

on the trees having this low accuracy. On the contrary,
SySM refers to the tree syntactic structure, rather than a
statistical majority, and hence it selects a more accurate
decision tree.

The overall results in Appendix show the following:
SySM accuracy is significantly higher than that of
the ensemble, at a 5% significance level in 18.75%
of experiments with an average accuracy difference of
2.93%. In about 43.75% of the experiments, SySM
accuracy is significantly lower than that of the ensemble
but only by 0.57% on the average. In one case,
the results are the same. In the rest of the cases
(35.41%), the difference is not statistically significant.
Specifically, for J48, in 33.3% of cases the difference is
significantly negative, whereas in 29.2% of experiments
the accuracy difference is significantly positive. For
CART, in 50% of cases the difference is significantly
negative, while in 4.2% of experiments the accuracy
difference is significantly positive.

In general, we can conclude that SySM accuracy is
comparable to ensemble. We also used the non-parametric
Wilcoxon signed rank test for comparing between the
accuracies of SySM and ensemble across all datasets.
The results for J48 indicate that there is no statistically
significant difference between the algorithms. For CART,
we found a statistically significant difference between the
algorithms at the p-value of 0.001. Hence, we can deduce
that in most cases the ensemble approach provides slightly
more accurate CART models than SySM.

5. Conclusions

In this paper, we proposed a novel approach, named
SySM, for selecting one representative model out of
several decision trees induced from different subsets of the
same dataset. This approach is very useful for distributed
systems as well as for cloud and big data environments.
We suggest a syntactic approach that is based solely
on the induced decision trees structure. This approach
saves the computation time and the need to return back
to the training dataset, which is critical in massive data
environments. The SySM algorithm functions well under
memory constraints. It might also fit real-time or near
real-time environments such as data streams, since cache
memory may be used for comparison of induced trees and
for distance matrix manipulation, and there is no need
to use disk memory. In addition, in the case of memory
limitations, SySM can run when the ensemble cannot.

In order to evaluate the accuracy of our algorithm,
we compared it with other well-known algorithms on four
big data benchmark datasets. Each dataset was divided
int. a number of slices from 32 to 1024. A slight decrease
in SySM classification performance vs. the ensemble
method that occurs in some cases is fully justified by

Interpretable decision-tree induction in a big data parallel framework 745

its improved interpretability and significantly higher
classification speed. A common example of a data stream
where a high classification speed is required is online
advertising. The online advertising ecosystem involves
streams of data generated simultaneously by millions of
users including user profiles, clickstream data, cookies,
recent browsing history, etc. One of the online advertising
tasks is to assign ads to specific users in real time via
the process of real-time bidding (RTB). According to the
Google RTB requirements (https://developers.
google.com/ad-exchange/rtb/peer-guide),
the deadline for a response to a bid request is 100 ms
including the network time. Our algorithm should be
more suitable for such a task than the ensemble approach
due to its shorter classification time.

In future work, one may utilize the fast computation
characteristics of the SySM algorithm for distributed data
streaming environment. In this environment, SySM may
save expensive I/O disk operations, since all induced
decision trees can fit in the memory of a single computer
without the need to re-process the raw data. An additional
future approach may use alternative data structures such
as the DAG (directed acyclic graph) and additional
tree similarity metrics. One may also experiment with
other decision tree algorithms and node splitting metrics,
and evaluate them on additional datasets. Choosing
a representative decision tree in the case of vertical
parallelism is another important challenge.

References
AlSabti, K., Ranka, S. and Singh, V. (1998). Clouds:

Classification for large or out-of-core datasets, Conference
on Knowledge Discovery and Data Mining, New York, NY,
USA, pp. 2–8.

Amado, N., Gama, J. and Silva, F. (2001). Parallel
implementation of decision tree learning algorithms, in P.
Brazdil and A. Jorge (Eds.), Progress in Artificial Intelli-
gence, Springer, Berlin/Heidelberg, pp. 6–13.

Amado, N., Gama, J. and Silva, F. (2003). Exploiting parallelism
in decision tree induction, ECML/PKDD Workshop on Par-
allel and Distributed Computing for Machine Learning,
Cavtat/Dubrovnik, Croatia, pp. 13–22.

Andrzejak, A., Langner, F. and Zabala, S. (2013). Interpretable
models from distributed data via merging of decision trees,
IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), Savannah, GA, USA, pp. 1–9.

Bekkerman, R., Bilenko, M. and Langford, J. (2011). Scaling up
Machine Learning: Parallel and Distributed Approaches,
Cambridge University Press, Cambridge.

Ben-Haim, Y. and Tom-Tov, E. (2010). A streaming parallel
decision tree algorithm, The Journal of Machine Learning
Research 11: 849–872.

Breiman, L. (1999). Pasting small votes for classification in large
databases and on-line, Machine Learning 36(1–2): 85–103.

Dai, W. and Ji, W. (2014). A MAPREDUCE implementation
of c4.5 decision tree algorithm, International Journal of
Database Theory and Application 7(1): 49–60.

DeWitt, D.J., Naughton, J.F. and Schneider, D. (1991). Parallel
sorting on a shared-nothing architecture using probabilistic
splitting, Proceedings of the 1st International Conference
on Parallel and Distributed Information Systems, Miami
Beach, FL, USA, pp. 280–291.

Domingos, P. and Hulten, G. (2000). Mining high-speed data
streams, Proceedings of the 6th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, Boston, MA, USA, pp. 71–80.

Fan, W. and Bifet, A. (2013). Mining big data: Current status,
and forecast to the future, ACM sIGKDD Explorations
Newsletter 14(2): 1–5.

Gehrke, J., Ganti, V., Ramakrishnan, R. and Loh, W.-Y.
(1999). Boat—optimistic decision tree construction, in S.
Davidson and C. Faloutsos (Eds.), ACM SIGMOD Record,
Vol. 28, ACM, New York, NY, pp. 169–180.

Goil, S. and Choudhary, A. (2001). Parsimony: An
infrastructure for parallel multidimensional analysis and
data mining, Journal of Parallel and Distributed Comput-
ing 61(3): 285–321.

Hansen, L.K. and Salamon, P. (1990). Neural network
ensembles, IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence 12(10): 993–1001.

Jin, R. and Agrawal, G. (2003). Communication and memory
efficient parallel decision tree construction, Proceedings of
the 3rd SIAM International Conference on Data Mining,
San Francisco, CA, USA, pp. 119–129.

Joshi, M.V., Karypis, G. and Kumar, V. (1998). SCALPARC: A
new scalable and efficient parallel classification algorithm
for mining large datasets, Parallel Processing Symposium,
Los Alamitos, CA, USA, pp. 573–579.

Kargupta, H. and Park, B.-H. (2004). A Fourier spectrum-based
approach to represent decision trees for mining data
streams in mobile environments, IEEE Transactions on
Knowledge and Data Engineering 16(2): 216–229.

Kourtellis, N., Morales, G.D.F., Bifet, A. and Murdopo, A.
(2016). VHT: Vertical Hoeffding tree, arXiv preprint,
1607.08325.

Louppe, G. and Geurts, P. (2012). Ensembles on random
patches, in P.A. Flach et al. (Eds.), Machine Learn-
ing and Knowledge Discovery in Databases, Springer,
Berlin/Heidelberg, pp. 346–361.

Mehta, M., Agrawal, R. and Rissanen, J. (1996). SLIQ: A
fast scalable classifier for data mining, in P. Aspers et
al. (Eds.), Advances in Database Technology, Springer,
Berlin/Heidelberg, pp. 18–32.

Miglio, R. and Soffritti, G. (2004). The comparison between
classification trees through proximity measures, Computa-
tional Statistics & Data Analysis 45(3): 577–593.

Narlikar, G.J. (1998). A parallel, multithreaded decision tree
builder, Technical report, DTIC Document, http://
www.dtic.mil/docs/citations/ADA363531.

https://developers.google.com/ad-exchange/rtb/peer-guide
https://developers.google.com/ad-exchange/rtb/peer-guide
http://www.dtic.mil/docs/citations/ADA363531
http://www.dtic.mil/docs/citations/ADA363531

746 A.I. Weinberg and M. Last

Ntoutsi, I., Kalousis, A. and Theodoridis, Y. (2008). A
general framework for estimating similarity of datasets and
decision trees: Exploring semantic similarity of decision
trees, in C. Apte et al. (Eds.), SIAM Conference on Data
Mining, SIAM, Philadelphia, PA, pp. 810–821.

Panda, B., Herbach, J.S., Basu, S. and Bayardo, R.J. (2009).
Planet: Massively parallel learning of tree ensembles
with MapReduce, Proceedings of the VLDB Endowment
2(2): 1426–1437.

Pawlik, M. and Augsten, N. (2011). RTED: A robust algorithm
for the tree edit distance, Proceedings of the VLDB Endow-
ment 5(4): 334–345.

Shafer, J., Agrawal, R. and Mehta, M. (1996). Sprint: A scalable
parallel classifier for data mining, International Confer-
ence on Very Large Data Bases, Mumbai (Bombay), India,
pp. 544–555.

Shannon, W.D. and Banks, D. (1999). Combining classification
trees using MLE, Statistics in Medicine 18(6): 727–740.

Sollich, P. and Krogh, A. (1996). Learning with ensembles:
How overfitting can be useful, in D.S. Touretzky et al.
(Eds.)Advances in Neural Information Processing Systems
8, MIT Press, Cambridge, MA, pp. 190–196.

Sreenivas, M.K., AlSabti, K. and Ranka, S. (2000). Parallel
out-of-core decision tree classifiers, in H. Kargupta and P.
Chan (Eds.), Advances in Distributed and Parallel Knowl-
edge Discovery, Cambridge, MA, pp. 317–336.

Srivastava, A., Han, E.-H., Kumar, V. and Singh, V.
(1995). Parallel formulations of decision-tree classification
algorithms, Data Mining and Knowledge Discovery 3(3):
237–261.

Triguero, I., Peralta, D., Bacardit, J., Garcı́a, S. and Herrera,
F. (2015). MRPR: A MAPREDUCE solution for
prototype reduction in big data classification, Neurocom-
puting 150(A): 331–345.

Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the
editing distance between trees and related problems, SIAM
Journal on Computing 18(6): 1245–1262.

Zhang, X. and Jiang, S. (2012). A splitting criteria based on
similarity in decision tree learning, Journal of Software
7(8): 1775–1782.

Zhang, Y., Gao, Q., Gao, L. and Wang, C. (2012).
IMAPREDUCE: A distributed computing framework
for iterative computation, Journal of Grid Computing
10(1): 47–68.

Abraham Itzhak Weinberg has spent over 25 years in the fields of
software and information systems. He had served for six years in the
IAF (Israeli Air Force) and retired as a captain. In recent years, he has
managed a BI (business intelligence) unit and data warehousing projects,
and has consulted data science projects as well as projects integrating big
data and cybersecurity. His academic background consists of a BSc in
industrial engineering and management as well as computer science, and
an MSc in industrial engineering. Nowadays, in addition to working in
cybersecurity industry, he is pursuing his PhD studies at the Department
of Software and Information Systems Engineering, Ben-Gurion Univer-
sity of the Negev, Israel.

Mark Last is a full professor at the Department
of Software and Information Systems Engineer-
ing, Ben-Gurion University of the Negev, Israel,
and the head of the Data Mining and Software
Quality Engineering Group. In the years 2009–
2012, he served as the head of the Software Engi-
neering Program at Ben-Gurion University. Prof.
Last obtained his PhD degree from Tel Aviv Uni-
versity, Israel, in 2000. He has published over
190 peer-reviewed papers and 10 books on data

mining, text mining, and software engineering. He currently serves as
an associate editor of IEEE Transactions on Cybernetics and an edito-
rial board member of Data Mining and Knowledge Discovery. From
2007 to 2016, he served as an associate editor of Pattern Analysis and
Applications. His main research interests are focused on data mining,
cross-lingual text mining, cyber intelligence, and medical informatics.

Interpretable decision-tree induction in a big data parallel framework 747

Appendix

SySM accuracy vs. ensemble majority voting (3 digits)

Table A1. J48 testing accuracy.

Dataset
Number
of slices

Ensemble J48
accuracy

SySM J48
accuracy

Difference P-value
Testing

size

Poker 32 0.632 0.592 -0.04 <0.001 100000
Poker 64 0.594 0.566 -0.028 <0.001 100000
Poker 128 0.537 0.533 -0.003 0.051 100000

Poker 256 0.499 0.521 0.022 <0.001 100000
Poker 512 0.499 0.525 0.026 <0.001 100000
Poker 1024 0.499 0.484 -0.014 <0.001 100000

SUSY 32 0.543 0.788 0.245 <0.001 500000
SUSY 64 0.543 0.786 0.242 <0.001 500000
SUSY 128 0.543 0.783 0.239 <0.001 500000

SUSY 256 0.543 0.778 0.234 <0.001 500000
SUSY 512 0.543 0.772 0.228 <0.001 500000
SUSY 1024 0.781 0.767 -0.013 <0.001 500000

RLCP 32 0.781 0.767 -2E-05 0.281 100000
RLCP 64 0.999 0.999 -5E-05 0.137 100000
RLCP 128 0.999 0.999 -6E-05 0.144 100000

RLCP 256 0.999 0.999 -4E-05 0.327 50000
RLCP 512 1 1 0 – 10000
RLCP 1024 1 0.999 -0.0002 0.078 10000

KDD CUP 32 0.998 0.993 -0.005 <0.001 150000
KDD CUP 64 0.997 0.997 -0.0007 <0.001 150000
KDD CUP 128 0.996 0.995 -0.001 <0.001 150000

KDD CUP 256 0.995 0.993 -0.002 <0.001 150000
KDD CUP 512 0.988 0.987 -0.001 0.036 50000
KDD CUP 1024 0.984 0.984 1E-04 0.477 10000

748 A.I. Weinberg and M. Last

Table A2. CART testing accuracy.

Dataset
Number
of slices

Ensemble CART
accuracy

SySM CART
accuracy

Difference P-value
Testing

size

Poker 32 0.563 0.549 -0.014 <0.001 100000
Poker 64 0.550 0.542 -0.007 <0.001 100000
Poker 128 0.536 0.533 -0.003 0.096 100000

Poker 256 0.521 0.504 -0.016 <0.001 100000
Poker 512 0.499 0.486 -0.013 <0.001 100000
Poker 1024 0.499 0.471 -0.027 <0.001 100000

SUSY 32 0.791 0.784 -0.006 <0.001 500000
SUSY 64 0.787 0.779 -0.008 <0.001 500000
SUSY 128 0.781 0.769 -0.012 <0.001 500000

SUSY 256 0.781 0.765 -0.016 <0.001 500000
SUSY 512 0.781 0.756 -0.025 <0.001 500000
SUSY 1024 0.781 0.751 -0.03 <0.001 500000

RLCP 32 0.999 0.999 -1E-05 0.44 100000
RLCP 64 0.999 0.999 -1E-05 0.44 100000
RLCP 128 0.999 0.999 -5E-05 0.222 100000

RLCP 256 0.999 0.999 -0.0007 <0.001 50000
RLCP 512 0.999 0.999 -1E-04 0.352 10000
RLCP 1024 0.999 0.999 0.0003 0.182 10000

KDD CUP 32 0.992 0.990 -0.002 <0.001 150000
KDD CUP 64 0.987 0.987 0 0.5 150000
KDD CUP 128 0.987 0.987 -8E-05 0.455 150000

KDD CUP 256 0.987 0.987 2E-05 0.488 150000
KDD CUP 512 0.984 0.984 0.0003 0.431 50000
KDD CUP 1024 0.984 0.998 0.0139 <0.001 10000

Received: 30 November 2016
Revised: 1 May 2017
Re-revised: 21 July 2017
Accepted: 8 August 2017

	Introduction
	Background and related work
	Methodology
	Results
	Design of experiments
	Analysis of results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

