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This paper shows how big data analysis opens a range of research and technological problems and calls for new approaches.
We start with defining the essential properties of big data and discussing the main types of data involved. We then survey
the dedicated solutions for storing and processing big data, including a data lake, virtual integration, and a polystore
architecture. Difficulties in managing data quality and provenance are also highlighted. The characteristics of big data
imply also specific requirements and challenges for data mining algorithms, which we address as well. The links with
related areas, including data streams and deep learning, are discussed. The common theme that naturally emerges from
this characterization is complexity. All in all, we consider it to be the truly defining feature of big data (posing particular
research and technological challenges), which ultimately seems to be of greater importance than the sheer data volume.
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1. Introduction

Big data can be defined in several ways. According to
the prevailing opinion, it involves storage and analysis of
massive and complex data sets that exceed the capacity of
conventional computer systems and algorithms. However,
quantity alone does not seem to be sufficient to justify
such a distinction: it is the specific data properties rather
than large volumes that make the difference and call for
new approaches and technologies. This stance is aptly
reflected in the ‘many Vs’ (mVs) definition, the original
and much cited variant which includes (Beyer and Laney,
2012), Volume (referring to the huge amount of data),
Variety (indicating multiple, heterogeneous, and complex
data representations), and Velocity (referring to a speed
at which the data are generated and analysed, as well as
their dynamics and evolution in time, e.g., data streams).
Subsequent extensions brought about other mVs, i.e., Ve-
racity (referring to the worse quality and uncertainty of
data) and Value (referring to a potential business value
that big data analysis could give). Also, these and other
definitions (see a comprehensive review by Mauro et al.
(2015)) point out that big data involve data repositories
that integrate multiple and spatially distributed sources.

The transition from previous approaches developed
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for knowledge discovery from databases to big data
(characterized with the mVs properties) raises new
challenges. The methods for data pre-processing and
analysis, though arguably advanced in the last decades,
are still primarily designed for static and well structured
data representations (usually tabular). There is evident
shortage of approaches, algorithms, and technologies
that explicitly address other mVs, and the demand for
them is growing continuously. It is partially driven
by practice—recent years have brought a deluge of
usage scenarios and applications that result in massive
volumes of complex, poorly-structured, and dynamic
data in many domains such as social networks, mobile
services, network monitoring, smart cities, and intelligent
transportation.

In this paper, we focus on one of the main aspects
of big data, namely the growing complexity of data,
which stems from the need for getting richer and
more precise descriptions of the real world on the one
hand, and the advancement of new technologies of data
acquisition on the other. Many contemporary systems
collect complex data; for instance, modern manufacturing
systems may involve a broad range of data sources such as
specialized sensor networks for monitoring the equipment
of production lines (e.g., robots), systems monitoring
the quality of produced goods, traditional databases of

{{jerzy.stefanowski, krawiec, robert.wrembel}}@cs.put.poznan.pl


670 J. Stefanowski et al.

orders, stocks, planning and logistics, web marketing,
and even social media channels. Other examples are
medical information systems, which store medical records
about patients, diagnoses, treatments, and screening.
Such data are inherently heterogeneous in representation,
ranging from tabular (patient records, results of laboratory
tests), to unstructured texts, to time series (e.g., ECG
examinations), to various types of images.

Although some data analysts and past research
studies have already considered data of more complex
types than the simple attribute-value representation (cf.
relational data mining), the demand for techniques
of efficient and accurate analysis of complex and
heterogeneous data is growing. Furthermore, end users
expect the discovered knowledge to present a full picture
of the problem, rather than an isolated result based only
on a particular data representation. In this respect, not
only predictive but also prescriptive analytics is gaining
popularity (Soltanpoor and Sellis, 2016).

Complexity not only affects the structure of data,
but also the techniques for data collecting and analyzing.
On the input side, new solutions are needed for data
acquisition, quality checks of measurements, preliminary
filtering, compression, integration of various data sources,
and efficient loading data into repositories (Hashem
and Ranc, 2016). Once loaded, complex data require
specialized algorithms for efficient processing and good
scaling. New hardware and software architectures are
typically required for large-scale efficient acquisition,
storage, and analysis of data (in particular, in distributed
and cloud architectures). Last but not least, an analysis of
such data is also more demanding: complex data typically
imply considering several different predictive models (all
of which interact with or impact one another) in order
to provide the best possible results. On top of that, the
ever-increasing customer expectations concerning privacy
and security issues must be satisfied.

For the aforementioned reasons, collecting, storing,
processing, and exploring big data is fundamentally
different from and more challenging than the traditional
data analytics. Thus, research and technological sectors
are working on new approaches. This paper is intended
to discuss new and still open challenges in processing and
analyzing complex, heterogeneous, and large data sets. To
this end, in the following we focus on three aspects of big
data that are closely related to the mVs mentioned above:

(i) architectures for storing, managing, and
pre-processing big data,

(ii) handling complex data representations by deep
learning algorithms,

(iii) mining concept-drifting data streams.

2. Types of complex and big data

Data generation and acquisition are the first steps of
any knowledge discovery process. Traditionally, the
relatively homogeneous data sources were verified and
integrated into well-structured logical forms. However,
applications of big data often require integrating data
from both traditional and non-traditional sources (Che
et al., 2013). With inexpensive sensors, mobile devices,
the Internet, and social collaboration technologies, data
are now generated in numerous forms such as text, web
data, tweets, images, audio, video, log files, and many
more. According to many reports (e.g., Gens, 2011),
only about 10% of big data are well structured; the rest
needs specialized tools for decoding and pre-processing
(e.g., with natural language processing), and are in general
not easy to mold into rigid, predefined categories and
logical formats. As a consequence, data integration,
pre-processing, and analysis (see the next sections) are
challenging. Furthermore, analysts are forced to deal
with structured, semi-structured, and unstructured data
simultaneously, which is another difficult task, as most
standard analytical tools are dedicated to one of those
categories exclusively.

Historically, machine learning researchers have
already studied objects that are complex in the above
sense, e.g., entities with sophisticated internal hierarchies,
multi-dimensional nested structures with different
attribute types, featuring a variable number of attributes
at particular levels, and/or containing varying-length
sequences of symbols or graphs. The popular textbook
by Han and Kamber (2011) distinguishes the following
major types of complex objects: spatial, temporal,
sequence, graph or tree structured data, multidimensional
time series, text, and multimedia data. Heterogeneity
of these data types forms a challenge even on a small
scale; in big data analysis, it leads to further growth of
complexity and difficulty in their analysis. No wonder
that the interest within this area has moved to mining
really very large and heterogeneous graphs or to other
kinds of spatio-temporal data integrating more sources
and time dimensions. Moreover, the sole nature of many
new problems considered in big data analysis, such as
social networks, data streams, sequence mining, leads
to new kinds of data complexity which have not be
considered before (Japkowicz and Stefanowski, 2016a).

Also, even the more traditional learning tasks,
such as training classifiers, are now reformulated in
more demanding ways, for instance, by taking into
account additional constraints or data properties, like
unusual distributions of examples and/or imbalance of
target classes (Fernández et al., 2017; Napierala and
Stefanowski, 2016). Such enriched input to the induction
process requires more advanced and complex algorithms.

Last but not least, there are more works on learning
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more advanced outputs from input data. They mainly
include methods for predicting structured objects, rather
than scalar discrete or real values (see, e.g., multi-labeled
classification, sequence tagging or some variants of
probabilistic graphical models).

3. Architectures for processing big data

Due to the multiple Vs discussed in Introduction, storing
and processing big data is challenging and requires
dedicated hardware and software architectures. It is now
widely agreed that the currently available architectures
that are feasible for big data are mainly data lakes, virtual
architectures, and polystores. Each of them can be run in
a cluster of workstations or on a main memory appliance,
(cf. Francisco, 2012; Bayer and Edjlali, 2014).

3.1. Data lake. The most common and accepted
architecture for physically integrating big data is a data
lake (Russom, 2017; Terrizzano et al., 2015). It is a
repository that stores a vast amount of heterogeneous data
in their original formats. Therefore, an application that
accesses a data lake has to discover and understand the
data formats on the fly. In most data lake deployments,
a data storage layer is based on a distributed file system
(HDFS or GFS), and data are processed in parallel,
typically using the MapReduce model (Chen and Zhang,
2014).

Given the volume and variety of data stored in a data
lake, querying its content is one of the key challenges
in big data management. A query engine needs to
support additional functionalities, including means for
(i) identifying relevant data sets for answering a given
query, i.e., to understand the content of the data lake,
(ii) discovering formats of data sets, (iii) converting data
on-the-fly to the format preferred by a user (Duggan
et al., 2015; Liu and Wang, 2016), and (iv) appropriately
visualizing query results (Chen and Zhang, 2014). To this
end, appropriate and rich metadata are needed.

Once a data lake is built and supplied with data,
another issue is to keep it up-to-date, as the underlying
data sources frequently produce new data and update their
content. Depending on the application domain, a data
lake has to be refreshed either periodically or in (near)
real-time. Refreshing a data lake can be difficult for
several reasons:

• its content typically depends on multiple
heterogeneous and distributed data sources;

• the capabilities of accessing these data sources and
detecting their content and structural changes may be
limited;

• it is often nontrivial to devise and incorporate
incremental data refreshing algorithms for data

formats other than simple tables;

• heterogeneous and complex data have to be
homogenized, cleaned, augmented (Ahmadov et al.,
2015; Miao et al., 2017), and de-duplicated
(Benjelloun et al., 2009) before being analyzed.
These tasks are analogous to those in traditional
data warehouses, where the so-called ETL software
(extract-transform-load) or its ELT or ELTL variants
are used for this purpose. Nonetheless, due to the
heterogeneity, complexity, and volume of big data,
these tasks are much more challenging and require
more complex and efficient algorithms. Typically,
some ETL tasks are implemented as user-defined
functions (UDFs), e.g., MapReduce tasks, which are
treated by the system as black boxes that produce
a given output for a given input. Optimizing such
UDFs has not been explored yet.

3.2. Virtual integration. On the opposite side of
data integration architectures lies the paradigm of virtual
integration. In a virtual integration architecture data
are stored in their original systems but are accessed via
a global schema. The schema provides a view on the
integrated data sources. Queries are expressed on the
global schema and further resolved to be sent to and
executed in the underlying data sources. This architecture
is similar to the well-known federated (Elmagarmid et al.,
1999) or mediated architectures (Wiederhold, 1992). Such
architectures re-gain their popularity in the context of
heterogeneous and complex data, including graphs (Liu
and Wang, 2016) and Web data (Langegger et al., 2008).

The paradigm of virtual integration has two
advantages over the data lake approach. First, data
being accessed are always up-to-date. Second, neither
additional storage nor bespoken refreshing mechanisms
are needed. The price to pay in exchange for these
conveniences is poor query performance. To address this
weakness, virtual architectures typically apply the caching
and reusing of query results (Gessert et al., 2017; Zakhary
et al., 2017), which, though undoubtedly useful, pose
certain research and technological challenges, namely, (i)
deciding what to cache, (ii) deciding how long to store
the cached data, (iii) developing effective means to figure
out whether a cache content is still valid, (iv) developing
algorithms for efficient refreshing of an invalid cache,
(v) developing mechanisms for proactive (in-advance)
caching, which in turn requires predicting which queries
are likely to be executed, (vi) deciding whether to move
the cached data into a permanent storage and, if so, which
cached data to move.

Other still open problems related to a virtual
integration architecture for big data pertain to being
able to (i) (semi-)automatically discover the relevant data
sources to be integrated, (ii) figure out the structures,
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content, and quality of data sources (developing methods
for discovering and profiling (Naumann, 2014) data
sources on the Internet), (iii) (semi-)automatically include
a data source into an integration architecture and
construct an integrated schema, (iv) optimize a query
on an integrated schema, assuming that the underlying
data sources are distributed and may offer various
functionalities: from fully-functional relational databases,
NoSQL engines, distributed file systems, through to Web
tables, pages, and portals.

3.3. Polystore. In the work of Duggan et al. (2015),
yet another alternative big data integration architecture
was proposed, called a polystore. In this architecture,
data sets are organized into the so-called islands of in-
formation. This phenotenon is defined as a collection of
storage engines accessed with the same query language.
For example, a collection of graph databases may form
a graph island. Similarly, a collection of text databases
may form a text island. An island provides a single data
model, which is suitable for all storage engines in it, and
a common query language, pertinent to the island’s data
model.

The data model and language are mapped by
dedicated software modules called shims, into the
languages and models of data management systems
running specific databases/engines within the island.
Users operate on an island by means of the specific
island’s query language. A user query is decomposed
into partial queries—one query for one storage engine in
the island. Next, partial queries are sent to appropriate
shims. Each shim translates its partial query into a query
in a native language of a storage engine. The partial
queries are executed in their proper data sources, and their
results are integrated by a shim and transformed into an
output data model indicated in the original user’s query.
Multi-island queries are also allowed by means of shims
from different islands.

The polystore draws upon the techniques of physical
and virtual data integration. A shim virtually integrates
the underlying storage engines, while data can be
physically moved between islands, if requested by a user.

3.4. Data provenance. According to Gupta (2009),
data provenance “refers to a record trail that accounts for
the origin of a piece of data (in a database, document
or repository) together with an explanation of how and
why it got to the present place”. It helps in assessing the
quality of data, identifying sources from which a given
piece of data was ingested, and analyzing step-by-step
transformations executed on a given piece of data.

To collect, represent, store, and share provenance
data, the open provenance model (OPM) (Moreau
et al., 2011) was proposed. It recommends to use

five components, namely, (i) an abstract model, (ii)
a domain-specific model, (iii) mechanisms for model
extension, (iv) data acquisition and mapping to RDF,
and (5) APIs for querying. The specifications of
these components remain under development, so the
problems related to developing and implementing the
OPM architecture are still open. For example, even
though provenance data may be available in a system,
their querying and visualizing is still a challenge.
Moreover, augmenting a user query with the most
pertinent provenance of data could help in explaining
the obtained query results, but such a universal query
mechanism is still an open issue.

In the integration architectures outlined in
Sections 3.1, 3.2, and 3.3, data undergo multiple
transformations in order to make their format and
values suitable for analysis. Such transformations are
typically modeled as transformation workflows, e.g., ETL
ones. For traditional applications, provenance datasets
on a transformation workflow are large—often larger
than the transformed dataset itself. In big data, data
transformation workflows are much more complex and
generate much larger provenance data sets. For this
reason, efficient querying of such provenance data is of
crucial importance. Moreover, ‘intelligent’ methods for
deciding which provenance data are essential and should
be thus recorded, still to be developed (Glavic, 2014).

Big data transformation workflows are often based
on MapReduce tasks, which are implemented as
user-defined functions and executed in a distributed
environment. Gathering provenance data for such
workflows is difficult. Some approaches and software for
gathering provenance data from MapReduce have already
been developed, e.g., RAMP, HadoopProv, Pig Lipstick
(Wang et al., 2015). Nonetheless, they are usually
dedicated to a particular architecture (i.e., MapReduce)
and a particular type of processing (i.e., batch). In a
data lake architecture, data are processed not only in
large batches by disk-resident MapReduce but also in
the main memory, either as small batches (e.g, Spark)
or data streams (e.g., Kafka, Storm, Flink). There are
other specialized approaches for storing the provenance
of data given in a particular format, e.g., RDF only (Wylot
et al., 2017). However, big data solutions involve data
of various formats, from simple rows to complex graphs,
yet the provenance for all these data should be preferably
recorded and stored in a unified manner to allow efficient
and unified querying.

3.5. Open research and technological challenges.
In the area of collecting and storing big data we have
identified the following, fundamental and still open,
research and technological challenges. They include the
development of
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• optimization mechanisms for user-defined functions
in data transformation workflows,

• techniques for (semi-)automatic discovery of
relevant data sources to be integrated in a big data
architecture,

• query optimization and data caching strategies for
virtual big data integration architectures,

• tracking mechanisms for data changes and structural
changes in data sources for the purpose of
propagating them to a big data architecture (e.g.,
a data lake or a polystore),

• a well-defined metadata standard capable
of providing reach metadata to support the
aforementioned features of a big data integration
architecture,

• comprehensive mechanisms for big data provenance,
including representation, maintenance, storage, and
querying,

• mechanisms for gathering essential provenance data
(for data of heterogeneous and complex origins) and
automatically augmenting user queries with the most
relevant provenance data.

4. New requirements for data mining
algorithms

Most machine learning algorithms were originally
developed for static and relatively small data sets, often
assumed to fit into memory. Attempts to apply such
methods to real-world datasets quickly met with memory
limitations. Soon, a range of techniques were proposed
to address this issue, including sampling, incremental
processing, or training multiple models on partitioned
data. Furthermore, the development of knowledge
discovery from databases in the 1990s led to new solutions
for more efficient communication with disk-residing data
and new data structures that sped up data mining (DM)
algorithms.

Nevertheless, the dawn of big data exaggerated some
of the scalability problems: the efficiency challenges,
which seemed to be at least partly resolved, resurfaced
again when the volumes of data skyrocketed by several
orders of magnitude. These problems, and those
stemming from the difficult nature of data (cf. the mVs
discussion), need to be addressed to better realize the
potential of big data analysis. As follows from multiple
ongoing discussions in the community (e.g., Japkowicz
and Stefanowski, 2016b), the new requirements refer both
to properties of data and analytical issues. We briefly
review them individually here.

Scaling. The size of data remains one of the main
problems. However, besides the large number of
instances, it is even more challenging to efficiently handle
the growing numbers of attributes and classes, e.g., the
multi-labeled learning or the extreme classification.

Parallelization. Developing optimally distributed and
parallel implementations of existing algorithms (e.g.,
in the Hadoop or Spark frameworks) is important.
Nevertheless, the demand for genuinely new algorithms
is growing, too (Bekkerman et al., 2011).

New data types. Most algorithms still work with
attribute-valued tabular data only, but many applications
require complex data types (cf. Section 2). Furthermore,
some tasks involve heterogeneous data sources and need
to integrate the results of their analysis, which calls for
new information fusion approaches.

Mining data streams also constitutes a new challenge, and
given the growing importance of this ‘data modality’, we
elaborate more on this in a Section 6.

Data imperfectness and uncertainty. Data inconsistency
and incompleteness, imprecision, ambiguity and
vagueness of available descriptions, latency of
getting access to important data elements—all these
imperfections have been partly addressed in the
machine learning and data mining (ML/DM) community.
Nevertheless, together with uncertainty, they are inherent
and more important in many aspects of big data,
particularly when learning from the social media, text,
multimedia, language translations, or summarizing
human opinions (Che et al., 2013).

Timeliness. There are many situations in which results are
required immediately or at least fast enough, e.g., in fraud
detection, stock market predictions, technical diagnostics
of equipment, and monitoring systems. This calls for the
development of new data processing architectures (e.g.,
parallel and distributed, main memory, NVRAM servers)
and index structures that meet specific time-related criteria
(cf. Scaling above). Whenever such criteria cannot be
met with exact algorithms, approximate solutions with
sufficient theoretical error bounds need to be developed.

Trust and provenance. Early on, DM algorithms were
typically applied to thoroughly pre-processed data, which
were assumed to come from well-defined sources. In
big data scenarios, data sources have less clear origins,
are unverified, and are in general of lower quality than
in traditional systems (Che et al., 2013). Therefore, it
becomes important to be aware of the provenance, quality,
and value of such data (cf. Section 3.4).

Privacy. Privacy preserving DM deals with drawing
conclusions about entire populations while protecting the
privacy of individuals. This imposes constraints on the
DM practice: ways have to be found to mask the actual
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data while preserving their aggregate characteristics,
in particular, maintaining the accuracy of estimates
(Matwin, 2013). Privacy issues, though studied earlier,
have become extremely important with the emergence
of big data, where achieving a desired effect often
requires more personal and sensitive information, like
localization-based and personalized recommendations
of services, or targeted and individualized marketing.
However, many contemporary privacy techniques can be
hacked, allowing the user’s identity to be inferred when
several pieces of information from various repositories are
available (Japkowicz and Stefanowski, 2016a).

Data ownership. Big data are in essence collected
everywhere, which may interfere with people’s rights to
their electronic records. Users need to understand, and
have the right to be appropriately informed, that their data
may be shared and used for analytical aims other than
those they envisioned. New legal and social mechanisms
need to be developed to this aim. The danger is that too
strong laws protecting the data and limiting data sharing
may have negative impact on the value of the knowledge
to be discovered (Japkowicz and Stefanowski, 2016a).

Transparency and ethics. The results of mining personal
data may be applied to predict the actions of other pe-
ople. Although more and more researchers become
aware that DM techniques should be used in a fair,
non-discriminating and transparent manner, research on
these postulates is still in the premature stage (Custers
et al., 2013).

Comprehensibility and human interaction. Although
the majority of research in machine learning aims
at maximizing the predictive accuracy, models’
comprehensibility (interpretability and understandability)
for users is very important in many applications. This
aspect was in focus in the early machine learning research,
but largely neglected later on, with the prevalence of black
box models (e.g., SVMs, neural networks, ensembles)
that can be hardly interpreted by users. Many big data
applications demonstrated that model comprehensibility
is also important for users trust and willingness to
implement the outcomes in practice (Rudin, 2014). In
some application domains, users need to understand
systems recommendations enough to explain the reason
for their decisions to other people. Last but not least, in
most usage scenarios, big data analysis cannot be fully
automated, but needs to include a domain expert in the
loop. The expert’s guidance can help narrow down the
analysis to the most promising regions in data, choosing
potential models, tuning their parameters, verifying
data and operation correctness, and interpreting results.
The above discussion shows that these expectations are
hard to meet in big data practice due to its complexity
and multi-faceted character. More research is needed
to improve the comprehensibility of models and allow

humans to seamlessly interact with the analytical
processes.

For a comprehensive review of the above
requirements, the reader is referred to Che et al.
(2013) as well as Japkowicz and Stefanowski (2016b)
for a detailed discussion on the differences between the
earlier ML algorithms and newer big data approaches.

Furthermore, the reader should be aware of more
critical discussions about the risks or even negative effects
of big data analysis along with its pitfalls (cf. Boyd and
Crawford, 2012). Yet another interesting issue concerns
the influence of big data on methodological changes
in scientific research; see, e.g., discussions in the first
two chapters of the book by Japkowicz and Stefanowski
(2016b).

5. Complex data representation and deep
learning

As pointed out in Section 1, one of the major challenges
for big data is the complexity and variety of data
representations. The recent advancement in deep learning
brought an unexpected ally to address this issue—artificial
neural networks. Today, we witness them being
surprisingly versatile when it comes to learning from data
represented in a variety of forms. It has been known
for long that convolutional neural networks are useful
tools in image analysis. However, it is only within
the last decade that conceptual progress, combined with
easy access to the massive power of GPU computing
and large volumes of training data, has led to qualitative
breakthroughs, including superhuman performance on
well-defined object/image recognition tasks. More recent
approaches, particularly within recurrent models, have
proven deep learning to be capable of effective learning
from data representations that are arguably ‘even less
tabular’: variable-length sequences (time series, sound,
speech, text), graphs and networks (including social
networks), natural language, and even the source code of
computer programs (see the works of LeCun et al. (2015)
and Schmidhuber (2015) for extensive reviews).

Another aspect of deep neural networks that seems
confluent with big data is their capability to perform
sophisticated feature engineering. The complexity of
big data problems mentioned earlier often implies that
well-performing predictors cannot be easily induced:
training data need to be re-represented to, e.g., allow the
decision classes in question to be successfully delineated.
In the past, the search for useful representations had to
be conducted by experts, via manual feature engineering,
or explicit feature selection and construction techniques
(see, e.g., Krawiec, 2016). Deep neural networks help
in automating this task: feature construction becomes an
inherent part of the training process, tightly bound to the
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search in the hypothesis space. Tools that come in handy
here include, among others, convolutions (for spatial or
temporal data) and multi-dimensional embeddings. Some
neural models allow synthesis of features in the form
of latent variables with certain desirable properties, e.g.,
distributions (cf., e.g., variational autoencoders (Kingma
and Welling, 2013)).

Modular design of deep learning architectures
facilitates construction of models that handle multiple data
representations simultaneously, like generating textual
annotations from images, speech synthesis from text,
or end-to-end translation. This enables handling tasks
beyond the traditional classification and regression, and
comes in particularly handy when data come from a range
of sources, which is common in big data settings. Also,
the representations learned from various data repositories,
materialized in the form of networks’ layers or feature
maps, can be easily reused in other contexts, and further
tuned/trained if necessary. As a matter of fact, transfer
learning, so natural and easy in deep learning, it is now
in routine use: for instance, it is now common to re-use
the initial layers of AlexNet (Krizhevsky et al., 2012),
the network that once famously advanced deep learning
performance on ImageNet benchmarks.

In a sense, the big data framework is a natural
environment for deep learning, where models
typically require substantial volumes of data to learn
effectively—large numbers of models’ parameters,
often in the order of millions, make overfitting almost
inevitable when learning from small data sets. It seems
rightful to claim that the dawn of big data actually
started the deep learning era. Though this convergence
seems fortunate, one must admit that massive training
data combined with complex deep learning architectures
lead to exorbitant demands for computing power. The
continuous progress in hardware, including the ever
more powerful GPUs, capacious and fast NVRAMs, and
other specialized hardware, seems to partially satisfy this
demand. Nevertheless, more work is needed to seek the
opportunity for reducing the computational requirements.
Also, deep learning is clearly not a panaceum to all
big data challenges; for instance, deep learning models
hardly ever provide for transparency and human-readable
explanation.

6. Challenges for mining data streams

We discuss data streams as they perfectly represent many
Vs properties of big data. In particular, compared with
Section 5, we focus more on challenges of dealing with
huge volumes of data, their rapid speed or arrival into
a system, limited memory usage, and changes of data
distribution in time.

6.1. Data characteristics. A data stream is a
potentially unbounded sequence of data items available
over time. It is typically assumed that the items
are continuously produced at a rapid rate so that the
data arrival speed is relatively high compared with
the computational capabilities of a processing system.
Furthermore, the items often cannot be stored in memory
and must be processed immediately upon their arrival and
discarded after being processed, in order to make space
for new ones.

The processing of a data stream is different from
the conventional batch, static processing and implies
new requirements for algorithms, such as constraints on
memory usage, restricted processing time, and scanning
the incoming items only once. Another challenge is a
dynamic, non-stationary environment, where data and a
target concept may change over time due to the so-called
concept drift.

Many standard algorithms cannot meet the data
stream requirements, so several new proposals have been
introduced (see the work of Gama (2010) for a review).
The simplest algorithms for processing or querying stre-
ams extend the earlier incremental algorithms for counting
event occurrences in the stream or the number of distinct
values, basic statistics, frequency moments, etc. It is not
an easy task, as a stream is unbounded in length and the
domain of possible values may change in time. These
and the aforementioned stream constraints may mean that
an algorithm produces an approximate answer based on
a summary or a ‘sketch’ of the data stream in memory
(Gama, 2010). To this end, new techniques for sampling
(e.g., reservoir sampling) have been developed.

Data stream mining is the process of discovering
knowledge structures from streams. It includes such
tasks as clustering, discovering frequent patterns and
associations, classification, regression, change detection,
novelty identification, and time series mining.

6.2. Classification of streams. Classification is the
most widely studied task in data stream mining. Apart
from the aforementioned general difficulties of streams,
the concept drift is particularly important challenge. It
deteriorates the predictive accuracy of classifiers, as the
current data differ from the instances they were trained
on. Thus, the algorithms should monitor the ‘evolution’
of incoming data and properly react to changes.

The new proposed streaming classifiers can be
categorized with respect to different criteria. Most former
researchers distinguish between active (trigger-based) and
passive (adaptive) approaches. The Active approaches
include drift detectors that analyze the incoming examples
and indicate the need for rebuilding a classifier. Drift
detectors are usually implemented using statistical tests
based on a sequential analysis, process control charts, or
monitoring the differences between distributions (Gama
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et al., 2014). The latter do not contain drift detectors
and continuously update a classifier each time a new data
item arrives. Some of the adaptive approaches exploit for-
getting mechanisms, such as sliding windows or fading
functions assigned to incoming examples.

Another categorization makes a distinction between
single classifiers and ensembles. The prominent
representative of the former is the very fast decision
tree (VFDT), originating from the Hoeffding tree
algorithm (Domingos and Hulten, 2000), which induces
a decision tree from a data stream incrementally, without
the need for storing examples after they have been used to
update the tree. It is based on exploiting the Hoeffding
bound to select an attribute good enough for a split
test in the tree nodes, which is done without viewing
all the examples but guarantees the split to be correct
at a user-specified probability. Enhancements to the
basic VFDT algorithm include limiting memory usage,
dealing with numerical attributes, pruning mechanisms,
and sliding windows or drift detectors, to adapt the
algorithm to non-stationary settings (Gama, 2010).

An ensemble of classifiers, also called a multiple
classifier, is a set of individual component classifiers
whose predictions are combined to assign a class label
to a new instance. The ensembles are inherently capable
of adapting to changing streams by introducing new
component classifiers created using batches of incoming
examples, updating existing components, or changing the
weights in the aggregation phase.

Depending on the way the incoming examples
are processed and the component classifiers updated,
data stream ensembles are categorized into block-based
(process small chunks of examples) and online (process
single instances). The former re-evaluate the component
classifiers with the recent block of incoming items
and usually replace the worst component with a new
candidate classifier trained on the most recent items.
The latter integrate several incremental single classifiers,
and are often based on extending standard ensembles
(like many variants of online bagging) or the weighted
majority algorithm (Brzezinski and Stefanowski, 2014).
Comprehensive reviews of various ensembles can be
found in some recent surveys (Ditzler et al., 2015;
Krawczyk et al., 2017).

6.3. Open research problems. Though mining data
streams have experienced increased interest in recent
years, several problems still need to be addressed.
For instance, most of the current research on stream
classifiers assumes full and immediate access to class
labels of incoming examples. This, however, may be
unrealistic in situations when getting true class labels
for all examples in the stream may be too costly or
even impossible. Moreover, in some other situations,
information about labels may be delayed. Thus, the

following scenarios of processing data streams should
be more deeply investigated: (i) delayed labeling (the
classifier has to adapt to changes without knowing labels
but then it may exploit them to update its model; (ii) semi-
supervised learning, where labels are not available for all
incoming examples (but they may be provided in limited
portions from time to time, or active learning strategies
are applied to query the most useful examples); (iii) unsu-
pervised framework, where the initial classifier is learned
from a limited number of examples and then it has to
process the stream of unlabeled examples (this scenario is
the most challenging; see the discussion by Ditzler et al.
(2015)).

Modern applications often involve more complex
data representations than flat attribute vectors. Streams of
documents, text or tweets are more and more commonly
examined. Researchers have also started studying
streams of graphs and more sophisticated relational
structures (e.g., relational learning in streams) as well as
multi-labeled data streams or sequence predictions. In
recent years, class imbalances (also with variable class
cardinalities or swapping roles of minority vs. majority
classes) and detection of novel, appearing classes have
been receiving increased interest (Sun et al., 2016).
However, research on these topics is still in the early phase
(Krawczyk et al., 2017).

Some other open problems include (i) handling
incomplete information (mainly on missing attribute
values), (ii) studying parallel streams (where pieces of
information are linked between streams), (iii) integrating
both offline and online approaches, (iv) dealing with
censored event streams (e.g., multi-dimensional
adaptation of a survival analysis (Shaker and
Hüllermeier, 2014)), (v) developing new measures
for stream evaluation (e.g., for imbalanced streams or
for a multiple criteria aggregation of prediction and fast
reaction to drifts), and (vi) estimation procedures (also
including better adaptive scenarios to tune parameters).
These and other open challenges are discussed by Krempl
et al. (2014).

7. Final remarks

Big data, arguably one of the terms that have recently won
immense popularity in computer science and beyond, also
happens to be one of the most abused notions, with all too
many and too hazy definitions, and hard-to-define extent.
In this paper, while building upon the past attempts, we
aimed at concise and possibly precise characterization of
the big data issue as it is being contemporarily practiced.
We covered, among others, the essential features of big
data domains, discussed the types of data involved, system
architectures for their efficient processing, and touched
upon the particularly relevant trends of deep learning
and data streams. Furthermore, we highlighted open
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challenges in these sub-fields.
Big data are clearly not a closed chapter in the

history and present of data analytics. Quite the opposite,
at least for the time being: it is hard to see why the
volumes of data to be handled should ever shrink and their
complexity decrease. Growing bandwidth, storage, and
processing power will only facilitate this trend. In this
light, persistence in meeting the requirements discussed
in Sections 4 and 3, as well as addressing the challenges
outlined in other sections, is the only way to go.
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web middleware for virtual data integration on the web,
European Semantic Web Conference on the Semantic Web:
Research and Applications (ESWC), Tenerife, Canary Is-
lands, Spain, pp. 493–507.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning,
Nature 521(7553): 436–444.

Liu, M. and Wang, Q. (2016). Rogas: A declarative
framework for network analytics, International Confe-
rence on Very Large Data Bases (VLDB), New Delhi, India,
pp. 1561–1564.

Matwin, S. (2013). Privacy-preserving data mining techniques:
Survey and challenges, in B. Custers et al. (Eds.), Discri-
mination and Privacy in the Information Society, Vol 3.
Springer, Berlin/Heidelberg, pp. 209–221.

Mauro, A.D., Greco, M. and Grimaldi, M. (2015). What is big
data? A consensual definition and a review of key research
topics, International Conference on Integrated Informa-
tion, Madrid, Spain, pp. 97–104.

Miao, X., Gao, Y., Guo, S. and Liu, W. (2017). Incomplete data
management: A survey, Frontiers of Computer Science,
DOI: 10.1007/s11704-016-6195-x.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P.,
Kwasnikowska, N., Miles, S., Missier, P., Myers, J., Plale,
B., Simmhan, Y., Stephan, E. and den Bussche, J.V. (2011).
The open provenance model core specification (v1.1), Fu-
ture Generation Computer Systems 27(6): 743–756.

Napierala, K. and Stefanowski, J. (2016). Types of minority
class examples and their influence on learning classifiers
from imbalanced data, Journal of Intelligent Information
Systems 46(3): 563–597.

Naumann, F. (2014). Data profiling revisited, SIGMOD Record
42(4): 40–49.

Rudin, C. (2014). Algorithms for interpretable machine
learning, ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY,
USA, pp. 1519–1519.

Russom, P. (2017). Data lakes: Purposes, practices, patterns,
and platforms. TDWI White Paper, https://
info.talend.com/rs/talend/images/
WP_EN_BD_TDWI_DataLakes.pdf.

Schmidhuber, J. (2015). Deep learning in neural networks: An
overview, Neural Networks 61(C): 85–117.
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