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This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are intro-
duced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system.
To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complex-
ity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods
borrowed from the theory of differential inclusions. Thus, the main contribution of this paper is to show how stability of a
hybrid system can be reduced to a specialization of the well established stability theory of differential inclusions. A number
of examples illustrate the concepts introduced in the paper.
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1. Introduction

In this article, we study the notion of stability for a class
of hybrid systems with state-dependent switching. In
short, a hybrid system consists of a family of dynamical
systems with discrete transitions realized by reset maps.
To this end, we bring simple examples illustrating various
dynamical phenomena which characterize this class of
hybrid systems. In particular, we show that, due to the
underlying topology and reset maps, one has to consider
non-equivalent notions of stability in order to grasp the
asymptotic behavior of the system. We provide examples
that illustrate two non-equivalent stable behavior: the
local version where stability is confined to a single
polyhedral set due to the “directions” of reset maps, and
the global version where “directions” of reset maps do
not play any role. The latter corresponds to the standard
definition of stability (Lygeros et al., 2003; Goebel and
Teel, 2006).

Before providing a detailed description of the content
of this paper, we survey the research field related to the
findings.

Hybrid systems comprise a rich family of dynamical
systems (Liberzon, 2003; van der Schaft and Schumacher,
2000; Tabuada, 2009; Haddad et al., 2006), e.g.,
non-smooth dynamics (Leine and Nijmeijer, 2004; Kunze,
2000), arising from friction, backlash or collision, can

be seen as a hybrid system. Moreover, many real world
systems are subjected to discrete transitions. In particular,
van der Schaft and Schumacher (2000) give a number of
illustrative examples from various application areas, such
as transmission control and variable structure systems,
Tomlin et al. (1998) use hybrid system formalism to
control air traffic, Wisniewski and Leth (2011) model
a system with hysteresis as a piecewise-affine hybrid
system, Ding et al. (2011) discuss the use of the hybrid
system formalism in robotics, whereas Balluchi et al.
(2005) identify challenges and opportunities for hybrid
systems in automotive industry. Furthermore, estimation
of hybrid systems is addressed by Rienmüller et al.
(2013).

Stability of hybrid systems has been studied before
(Lygeros et al., 2003; Goebel and Teel, 2006; Goebel
et al., 2009), and classical concepts of stability and
asymptotic stability were adopted to hybrid systems.
Indeed, this generalization was possible because a single
state space of the hybrid system was allowed, whereas
in this article, as in the works of Simić et al. (2005),
Ames and Sastry (2005) or Bujorianu and Lygeros (2006),
a family of state spaces is permitted. Of the above
references, that by Simić et al. (2005) is mostly related to
this work, which also constructs a single state space in the
process of gluing along reset maps. Nonetheless, contrary
to Simić et al. (2005), we allow equilibria on the boundary
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of the state spaces. As a consequence, the concepts of
stability become more subtle.

Even though the time-dependent switching paradigm
is not considered in this work, which concentrates on
state-depending switching, we mention the stability
analysis of state-varying switched systems under
time-dependent switching (Yang et al., 2013), since it can
be seen as a parallel study in the time-dependent case.

Stability of hybrid systems with state-dependent
switching has also been studied before (Leth and
Wisniewski, 2012; Pettersson and Lennartson, 2002;
Johansson and Rantzer, 1998). The class of hybrid
systems considered in the literature was restricted to be
defined on a single state space—a subset of Euclidean
space partitioned by polyhedral sets. In this paper,
such hybrid systems are called switched systems (with
state-dependent switching) following the terminology by
Liberzon (2003, Chapter 3.3). Asymptotic stability of
switched systems was addressed by Leth and Wisniewski
(2012), who applied the theory of differential inclusions
to formulate a mathematical framework for studying
their dynamic behavior. In the works of Johansson and
Rantzer (1998) as well as Pettersson and Lennartson
(2002), algorithms for finding piecewise quadratic
Lyapunov functions for asymptotically stable switched
systems were devised. In both approaches, the sought
Lyapunov functions were solutions to certain linear matrix
inequalities.

Before proceeding to the description of the contents
of this work, we add a remark on applicability of the
chosen class of hybrid systems. The restriction to
polyhedral sets, as described in the above paragraph,
arises “naturally” in engineering applications, for
example, in the presence of saturations (Rantzer and
Johansson, 2000), for control synthesis of piecewise affine
systems (Yordanov et al., 2012), and hysteresis-control
(Wisniewski and Leth, 2011). Moreover, the usage of
this system (under the name of piecewise-linear systems)
as a systematic approach to numerical nonlinear control
was advocated by Sontag (1981) (see also Heemels
et al., 2001). A control method for such systems (this
time, under the name of piecewise-affine hybrid systems)
was developed by Habets and van Schuppen (2005).
The advantage of choosing this approach is reflected
in simplicity of implementation, theoretical analysis,
and calculation. Moreover, Yang et al. (2011) used
polyhedral partitioning of the state space to facilitate
control synthesis with the aim of stabilizing a switched
system under time-dependent switching.

We proceed with the description of the contents
of this work. We analyze a hybrid system consisting
of a family of dynamical systems defined on disjoint
polyhedral sets and discrete transitions, realized by reset
maps defined on the facets of these polyhedral sets.
Likewise, a trajectory of a hybrid system is a disjoint

union of flow lines of the constituent dynamical systems.
The start and end points of the flow lines on the polyhedral
sets are related by the reset maps. A hybrid system as
described above can be locally analyzed in the interior of
each of the polyhedral sets employing standard methods
from the theory of dynamical systems.

For instance, if an equilibrium is contained in the
interior of a polyhedral set, then Lyapunov stability
theory and its descendants apply. The situation becomes
immediately more complex if an equilibrium point lies
on a facet. To this end, we follow Simić et al. (2005),
Ames and Sastry (2005) as well as Wisniewski (2006),
and regard the reset maps as generators of an equivalence
relation which allows gluing the polyhedral sets together.
The result of this construction is a quotient system. We
show that stability of the original hybrid system and that
of the quotient system are related: the hybrid system is
asymptotically (quotient) stable if and only if its quotient
system is.

The behavior of a hybrid system can be overly
complicated; however, by imposing certain regularity
conditions, the methods from dynamical systems can be
applied. This is the reason for introducing the concept
of a chart. A chart is a map from a set in the state
space of a hybrid system (with a non-empty interior) onto
a single polyhedral set. In a chart, a hybrid system is
particularly simple—it is a switched system. It consists
of a single state space, which is partitioned by polyhedral
sets. The dynamical model is given by a differential
inclusion, which reduces to a single valued map in the
interior of each cell of the partition.

Using the concept of a chart, we give necessary
and sufficient conditions for asymptotic stability of an
equilibrium point of a particularly regular hybrid system.
This implies that the stability analysis can be carried out
locally; hence, standard methods can be applied.

The paper is organized as follows. Section 2
introduces terminology and preliminaries used throughout
this paper. A definition and stability results for switched
systems are recalled in Section 3. In Section 4, a
hybrid system and its trajectories are formally defined.
Furthermore, motivated by a number of examples, various
concepts of stability are developed. The notion of a chart
is defined and its properties are devised in Section 5.
It is shown that, in a chart, a hybrid system is merely
a switched system (with state-dependent switching).
Moreover, regular and omnidirectional hybrid systems are
introduced, and it is shown that asymptotic stability in a
chart is equivalent to (quotient) stability of the original
regular omnidirectional hybrid system.

2. Preliminaries

In this section, we bring in the notation and terminology
used in the article. For concepts and results related to
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polyhedral sets and polytopes, we refer the reader to
Appendix.

2.1. Notation and terminology. Let k ∈ N ∪ {∞};
if k ∈ N, let k denote the set {1, 2, . . . , k}, otherwise
k = N. Moreover, by k0 we denote the set k ∪ {0}, and
by k∗ the set k − {k} if k ∈ N, otherwise k∗ = k.

Occasionally, we will consider sets, say {Pi}, where
some of the elements are “copies of each other” meaning
that they are distinguished by their index alone, e.g., Pk =
S × {k} and Pj = S × {j} for some set S. By abuse of
notation, we indicate this by writing Pi = S, i = k, j.

Given a subset U of a topological space X , by
clX(U), intX(U) and bdX(U), we denote respectively
the closure, the interior and the boundary of U in X . The
notation cl(U), int(U) and bd(U) is also used if the space
X is clear from the context.

The disjoint union of a family of topological spaces
{Xi} is the space

⊔
iXi =

⋃
i(Xi × {i}) with the

topology making eachXi×{i} open and closed, and each
inclusion Xi × {i} ↪→

⊔
iXi a homeomorphism to its

image. By abuse of notation, we sometimes write Xi in
place of the subspace Xi × {i} ⊂

⊔
iXi. Moreover, an

element (x, i) ∈
⊔
iXi will sometimes be written as (x; i)

or simply x.

2.1.1. Polyhedral complex. Let K = {Pj | j ∈ I} be
a collection of polyhedral sets for some index set I . We
define |K| =

⋃
i∈I Pi ⊂ R

n, with the subspace topology.
We say that K is a (polyhedral) complex if (i) P ∈

K implies that any F ≺ P is also an element of K , (ii)
P,Q ∈ K implies that P ∩Q ≺ P and P ∩Q ≺ Q, and
(iii) any point of |K| has a neighborhood intersecting only
finitely many elements of K . If I is finite, as assumed
in the following, then the last condition is automatically
satisfied. Let E be any polyhedral set (Rn inclusive). A
piecewise linear partition (or, for short, partitioning) of
E is a complex K such that E = |K|. Note that any
polyhedral set P induces, in a canonical way, a (convex)
complex {F | F 	 P}. This and other standard facts from
the theory of convex polytopes (Grünbaum, 2003) will be
used throughout without further mentioning.

LetK be a complex with index set I . We define Ij =
{i ∈ I| dim(Pi) = j} and Kj = {Pi ∈ K| i ∈ Ij}.

3. Switched systems with state-dependent
switching

In this section, we discuss a special class of hybrid
systems called switched systems with state-dependent
switching. Such systems were studied by Leth and
Wisniewski (2012) under the name of switched systems.
The purpose of introducing them will become clear in
Section 5, where it is shown that some hybrid systems

can be modeled locally as a switched system with
state-dependent switching.

Definition 1. (Switched system with state-dependent
switching) A switched system with state-dependent
switching (of dimension n) is a triple (Q,K,F), where

• Q is a polyhedral set in R
n,

• K = {Pj | j ∈ I} is a (piecewise linear) partition of
Q with finite index set I ,

• F = {fi : Pi → R
n | i ∈ In} is a family of smooth

functions.
We use the word “smooth” in the above definition in

the following sense: fi is the restriction of a smooth map
R
n → R

n. In the sequel, we usually write “switched
system” in place of the more cumbersome “switched
system state-dependent switching”.

Analysis of a switched system is cast in the
framework of differential inclusions. The dynamics of the
switched system (Q,K,F) are governed by the following
differential inclusions:

ẋ(t) ∈ F c(x(t)), (1)

where ẋ = dx/dt and F c is the convexification of the set
valued map F defined by

F : Q→ 2R
n

; x 
→ {v ∈ R
n | v = fi(x) if x ∈ Pi},

with 2R
n

being the power set of R
n.

Now, let (Q,K,F) denote a switched system of
dimension n. From the theory of ordinary differential
equations, we conclude that at any interior point x of
Q there exists a solution at x, i.e., there exist 0 <
T < ∞ and an absolutely continuous function [0, T ] →
E′; t 
→ x(t), which solves the Cauchy problem ẋ(t) ∈
F c(x(t)) a.e. for x(0) = x.

Moreover, if x is interior to a P ∈ Kn, then the
solution is a classical one, i.e., there exist 0 < T <
∞ and a continuously differentiable function [0, T ] →
E′; t 
→ x(t), which solves the Cauchy problem ẋ(t) ∈
F c(x(t)), x(0) = x.

After Leth and Wisniewski (2012, Proposition 1 and
Theorem 1(b)), we conclude the following.

Proposition 1. Let (Q,K,F) denote a switched system
of dimension n, and TQ(x) the contingent cone to Q at
x, i.e., the closure of the convex cone of Q − {x}. For
each unbounded Pi ∈ Kn, assume that fi(Pi), fi ∈ F ,
is bounded. Then at any x ∈ Q there exists a solution
defined on [0,∞)

(i) if Q = R
n,

(ii) iff F c(x) ∩ TQ(x) �= ∅ for all x ∈ Q, in the case
Q �= R

n.
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Recall that an equilibrium x∗, i.e., 0 ∈ F c(x∗), is
F c-stable (resp. weakly F c-stable), if for each ε > 0 there
exists δ > 0 such that

|x− x∗| < δ ⇒ |x(t) − x∗| < ε, ∀t ∈ [0,∞),

for each (resp. some) solution at x. An equilibrium point
which is not weakly F c-stable is called F c-unstable. An
equilibrium point x∗ is called asymptotically F c-stable
(resp. weakly asymptotically F c-stable) if it is F c-stable
(resp. weakly F c-stable) and x(t) → x∗ for t → ∞.
We remark that F c-stable is called stable by Leth and
Wisniewski (2012). This change in nomenclature is to
avoid confusion with the notion of stability presented in
Section 4.1.1.

Proposition 2. Assume that 0 ∈ F c(0). If there exists
r > 0 and continuous positive definite and negative defi-
nite functions v : R

n → R and w : R
n → R, respectively,

such that for each x, with |x| < r,

D+v(x)(u) = lim sup
h→0+

u′→u

v(x+ hu) − v(x)
h

≤ w(x),

for all u ∈ F c(x), then the equilibrium point 0 is asymp-
totically F c-stable. Moreover, the equilibrium point 0 is
F c-stable if w is negative semi-definite.

The following example, borrowed from Leth and
Wisniewski (2012), illustrates that a solution can converge
to an equilibrium point in finite time (which cannot
happen for solutions of ordinary differential equations
with a Lipschitz continuous right-hand side). Moreover,
it will serve as a motivation for concepts introduced later
in Section 4.

Example 1. Consider the switched system (Q,K,F)
where Q = R

2, K2 = {Pi}i∈I2 with I2 = {1, 2, 3, 4}
and Pi being the i-th quadrant. Let F = {fi} with f1,
f2, f3 and f4 being the constant vector fields (−2, 1),
(−1,−1), (1,−1) and (1, 1), respectively.

It follows that the unique solution t 
→ x(t) to
(1) at x = (2, 0) is defined on [0, 8], that it “spirals”
towards the origin (limt→8 x(t) = 0), and that it
switches infinitely many times from fi to fi+1 (here
f4+1 = f1). That is at each time instant tj+1 =
4
∑j
i=0 1/2i, j ∈ {0, 1, 2, . . .}, with the corresponding

state instant x(tj+1) = (1/2j, 0), the system switches
from f4 to f1, and tj+1 → 8, x(tj+1) → (0, 0) as
j → ∞.

Since each solution can be extended trivially to
[0,∞) at the origin, it follows that x∗ = 0 is
an asymptotically F c-stable equilibrium point. Note,
however that before the convexification (replace F c by F
in (1)) x∗ was not even an equilibrium point; in fact, no
solution exists at x∗ = 0. �

4. Hybrid systems

We introduce a class of hybrid systems defined on a
family of polyhedral sets. Each such system consists of
a family of dynamical systems equipped with a collection
of reset maps realizing discrete transition between these
dynamical systems. Formally, we consider the class of
hybrid systems expressed as a triple (P ,S,R), where

• P = PJ is a finite family of polyhedral sets:

P = {Pj ⊂ R
n | Pjbeing a polyhedral set,

dim(Pj) = n, j ∈ J},

with J as a finite index set;

• S is a (finite) family of smooth vector fields:

S = {ξj : Pj → R
n | Pj ∈ P , j ∈ J};

• R = RL is a finite family of polyhedral maps, called
reset maps:

R = {Rl : F → F ′ | F ≺ P ∈ P , F ′ ≺ P ′ ∈ P ,
dim(F ) = dim(F ′) = n− 1, l ∈ L},

with L being a finite index set.

In what follows, we refer to elements of this class
simply as hybrid systems instead of the more precise but
awkward name: hybrid systems on polyhedral sets with
state-dependent switching. Note that a such a system
can be regarded as an automaton with discrete modes
corresponding to affine systems living on polyhedral sets.

The formalism of a hybrid system allows for
the existence of facets where no transition occurs.
Furthermore, a hybrid system (P ,S,R) has in a natural
way associated a di-graph (P , E), where an edge e =
(P, P ′) ∈ E ⊂ P×P exists whenever there is a reset map
R : F → F ′ in R such that F ≺ P and F ′ ≺ P ′. As a
consequence, the definition of a hybrid system presented
here is a special case of that presented by Goebel et al.
(2009) and Haddad et al. (2006), where each vertex of a
transition system has assigned a dynamical system.

In the rest of this paper, it is assumed that for each
j ∈ J and each x ∈ Pj the solution to the Cauchy
problem x′(t) = ξ(x(t)), x(0) = x does not exhibit blow
up behavior, i.e., 0 < T < ∞ does not exists such that
t 
→ x(t) is defined on [0, T ), and limt→T |x(t)| = ∞.
Note that this assumption is irrelevant if Pj is a polytope.

For a hybrid system (PJ ,S,R), let ∼⊂ X × X
with X =

⊔
j∈J Pj be the smallest equivalence relation

containing the relations p ∼′ R(p) for points p ∈ dom(R)
and a reset map R ∈ R. The equivalence class containing
N ⊂ X will be denoted by [N ], and π : X → X∗, with
X∗ = X/ ∼, denotes the canonical (quotient) map.
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We now turn to some basic properties of reset maps
and show how these are related to the equivalence relation
∼. To this end, we fix a hybrid system (P ,S,R) with P
consisting of polytopes only. Let R0 = R ∪ R−1 with
R−1 = {R−1 | R ∈ R}. By Lemma A1, in Appendix,
R0 consists of polyhedral maps. If R1, R2 ∈ R0 and
V = im(R2) ∩ dom(R1) �= ∅, then we define R1 � R2 :
R−1

2 (V ) → R1(V ) by R1 � R2(x) = R1(R2(x)). Since
the reset maps are polyhedral, dom(R1 �R2) and im(R1 �
R2) are faces of some polyhedral sets in P . We proceed
inductively and define a set R1 of finite compositions of
maps belonging to R0:

R ∈ R1 ⇔ R = R1 � . . . �Rk, k ∈ N, (2)

where Ri ∈ R0 for i ∈ k, and im(Ri+1) ∩ dom(Ri) �= ∅
for i ∈ k∗. Hence the mapR in (2) is injective. Moreover,
it follows that the relation between the elements of R1 and
the equivalence relation ∼ is x ∼ y if and only if there is
R ∈ R1 such that R(x) = y.

In the next lemma, we prove that it is also polyhedral
if P consists of polytopes.

Lemma 1. Let (P ,S,R) be a hybrid system with P
consisting of polytopes only. Any map R ∈ R1 is polyhe-
dral. Furthermore, dom(R) and im(R) are faces of some
polytope in P .

Proof. We prove Lemma 1 by induction on the length k
in (2). By definition, the reset maps are polyhedral, and
by Lemma A1 so are their inverse maps. Furthermore, by
the same lemma, the domain and the image of a reset map
are facets of some polytopes in P . Thus, the lemma is true
for k = 1.

For the inductive step, let R = R1 � . . . �Rk �Rk+1,
where dom(R) ⊂ P ∈ P and im(R) ⊂ P ′′ ∈ P . By the
induction hypothesis, R̄ = R1 � . . . � Rk is a polyhedral
map, and dom(R̄) and im(R̄) are faces of P ′ and P ′′ in P ,
respectively. Let V = im(Rk+1) ∩ dom(R̄) �= ∅. Hence,
V 	 im(Rk+1) and V 	 dom(R̄) since P ′ is a complex.
We show that the map R̄ � Rk+1 : R−1

k+1(V ) → R̂(V ) is
polyhedral.

By Lemma A1, the map R−1
k+1 is polyhedral; hence,

R−1
k+1(V ) 	 dom(Rk+1). Let F 	 R−1

k+1(V ) then F 	
dom(Rk+1). Therefore, by the inductive assumption,
Rk+1(F ) 	 im(Rk+1). Since Rk+1(F ) ⊂ V , we have
Rk+1(F ) 	 V . Now R(F ) = R̄ (Rk+1(F )) is a face of
im(R̄), by the induction hypothesis; thus, it is also a face
of R̄(V ) and P ′′. The dimensions of F and R(F ) are the
same since R is an injection. �

Corollary 1. R1 consists of a finite number of distinct
maps.

Proof. The corollary follows from the following two
observations: The sets P and R are finite, and the family
of faces of a polyhedral set is finite. �

4.1. Trajectories of a hybrid system. We need the
following technicality in order to introduce the concept of
a hybrid system trajectory. Let k ∈ N ∪ {∞} be fixed.
A subset Tk ⊂ R+ × Z+ will be called a k-time domain
(or simply a time domain) if there exists a non-decreasing
sequence {ti}i∈k0 in R+ ∪ {∞} such that Tk =

⊔
i∈k Ti,

where Ti = [ti−1, ti] if either i ∈ k∗ or i = k and tk <
∞, otherwise Tk = [tk−1,∞) = [tk−1, tk).

In particular, Ti = [ti−1, ti] for all i ∈ k
whenever k = ∞; see Example 3. The sequence
{ti}i∈k0 corresponding to a k-time domain will be called
a switching sequence, a name justified by Definition 2.

Now, we introduce the concept of a trajectory of
a hybrid system. It is the concatenation of trajectories
induced by vector fields of the hybrid system by means
of its reset maps. A similar definition was put forward by
Goebel and Teel (2006).

Definition 2. (k-trajectory) A k-trajectory, or just a
trajectory, of the hybrid system (PJ ,S,RL) is a pair
(Tk, γ), where k ∈ N ∪ {∞} is fixed, and

• Tk ⊂ R+ × Z+ is a time domain with the
corresponding switching sequence {ti}i∈k0 , such
that intR(Ti) �= ∅ for at least one Ti ∈ Tk;

• γ : Tk →
⊔
j∈J Pj is continuous and satisfies:

(i) For each i ∈ k∗, there exists a pair {j, j′} ⊂ J
with j �= j′ and such that γ(ti; i) ∈ bd(Pj),
and γ(ti; i+ 1) ∈ bd(Pj′ );

(ii) for each i ∈ k, there exists j ∈ J such that
γ(t; i) ∈ Pj for all t ∈ Ti, and ∂

∂tγ(t; i) =
ξj(γ(t; i)) for almost all t ∈ Ti;

(iii) for each i ∈ k∗, there exists l ∈ L such that
Rl(γ(ti; i)) = γ(ti; i+ 1).

A trajectory at (x; j), j ∈ J , is a trajectory (Tk, γ) with
γ(t0; 1) = (x; j).

In the above definition, property (ii) is vacuous
whenever ti−1 = ti. Furthermore, k − 1 is the number
of discrete transitions that a k-trajectory makes. To
avoid purely discrete behavior, that is, trajectories with
only discrete transitions, we have imposed the premise
intR(Ti) �= ∅ for at least one Ti. Note that the exclusion
of this premise does not change the results of this paper,
and it would make the formulations and proofs awkward
with separate treatment in this case; reckon for instance,
Proposition 9. Nonetheless, if a precise analysis of the
space of trajectories is to be conducted, it is important
to include such trajectories due to the completeness
property: the limits of trajectories have to be trajectories.
This subject is not the matter of study in this paper.

Unless explicitly mentioned otherwise, we let, in the
sequel, t0 = 0 and write γ̇ instead of ∂γ∂t , and γ(t) instead
of γ(t; j) whenever the index j is irrelevant. Moreover,
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we will always assume that trajectories are maximal, that
is, if (Tk, γ) is a trajectory, then there exists no trajectory
(T ′
k′ , γ

′) such that k ≤ k′, Tk � T ′
k′ and γ(Tk) = γ′(Tk).

4.1.1. Local and global stability. Now, we define the
notion of stability for hybrid systems. A point x∗ ∈
X =

⊔
j∈J Pj is called an equilibrium point of the hybrid

system (PJ ,S,RL), if ξ(x∗) = 0 for some ξ ∈ S (recall
our notation convention, x∗ = (x∗; i)).

An equilibrium x∗ is said to be locally stable (resp.
locally weak stable) if for each open neighborhood V ⊂
X of x∗ there exists an open neighborhood U ⊂ V of
x∗ such that for each x ∈ U and for each (resp. some)
trajectory (Tk, γ) at x we have γ(t) ∈ V for all t ∈ Tk.
An equilibrium point which is not locally weak stable is
called locally unstable.

An equilibrium point x∗ is called locally
asymptotically stable (resp. locally weak asymptotically
stable) if it is locally stable (resp. locally weak stable) and
γ(t) → x∗ for t→ ∞.

Example 2. Let (P ,S,R) be a hybrid system with P =
{P1, P2}, where Pi = R+ × R, i = 1, 2, and S =
{ξ1, ξ2}, where ξ1(x) = (−x1,−x2) and ξ2(x) = (1, 0).
Suppose that there is one reset map id : bdR2(P1) →
bdR2(P2), the identity.

The origin x∗ = 0 = (0; 1) (in P1) is clearly an
equilibrium point, and for each open neighborhood V ⊂
X of x∗ there exists an open neighborhood U ⊂ V of x∗
(take U = V ∩ P1) such that for some trajectory (Tk, γ)
at x ∈ U we have γ(t) ∈ V for all t ∈ Tk = [0,∞),
and γ(t) → x∗ for t → ∞. Hence, the origin is locally
weak asymptotically stable; however, it is not locally
asymptotically stable since at each x ∈ bdR2(P1) there
exists a trajectory which immediately jumps to P2 and
stays there.

Note that the origin becomes locally asymptotically
stable if the reset map is replaced by id : bdR2(P2) →
bdR2(P1). �

Due to the topology on X and the reset maps, local
stability is not always adequate for describing the behavior
of a hybrid system, as the next example illustrates.

Example 3. Let J = {1, 2, 3, 4}, and let (PJ ,S,RJ ) be
a hybrid system with P = {Pi}i∈J , where Pi is the i-th
quadrant in R

2, S = {ξi}, where ξi is the restriction of the
asymptotically stable system x 
→ (−x1 −x2, x1 −x2) to
Pi, and R = {Ri}, where

{x ∈ bdR2(P1) | x1 = 0} R1=id−→ {x ∈ bdR2(P2) | x1 = 0},
{x ∈ bdR2(P2) | x2 = 0} R2=id−→ {x ∈ bdR2(P3) | x2 = 0},
{x ∈ bdR2(P3) | x1 = 0} R3=id−→ {x ∈ bdR2(P4) | x1 = 0},
{x ∈ bdR2(P4) | x2 = 0} R4=id−→ {x ∈ bdR2(P1) | x2 = 0}.

Then the equilibrium x∗ = 0 = (0; i), i ∈ J , is
locally unstable, since we may take as V the intersection
of Pi with any open neighborhood of 0 in R

2. However,
globally the dynamical behavior of the hybrid system
exhibits a kind of asymptotically stable behavior, in that
if U is any open neighborhood of x∗ and (Tk, γ) is a
trajectory then for any t′ ∈ Tk there exists t′′ > t′ such
that γ(t′′) ∈ U .

We remark that the (global) asymptotic behavior
would not occur if just one of the reset maps were replaced
by its inverse, for this situation, see Example 6. �

We stress that if solutions are not unique one
distinguishes weak and strong local stability, as is the
case for differential inclusions. For hybrid systems the
introduction of reset maps makes the definition of stability
more subtle, as equilibrium points can lie on the boundary
of a polyhedral set. In this case, the examples identify two
types of non-equivalent stable behavior: the local version
where stability is confined to a single polyhedral set due
to the “directions” of reset maps, and the global version
where “directions” of reset maps do not play a role. The
latter corresponds to the standard definition of stability
(Goebel and Teel, 2006; Lygeros et al., 2003).

There are non-equilibrium points which possess
properties similar to that of x∗ in Example 3. For instance,
define a hybrid system (P ,S,R) based on the data from
Example 1 by P = K2, S = F , and R being a family
of four identity maps such that Q = R

2 can be identified
with the quotient space X/ ∼. We see that for any open
neighborhoodU ⊂ X of x ∈ O = {(0; j) | j = 1, 2, 3, 4}
every trajectory (Tk, γ) will frequently belong to U , i.e.,
for any t′ ∈ Tk there exists t′′ > t′ such that γ(t′′) ∈ U .

Note that if x ∈ O in the above is replaced by the
four points making upO, i.e., [(0; j)] ∈ X/ ∼ for any j ∈
{1, 2, 3, 4}, then we obtain a stronger stability property.
More precise, for any open neighborhood U ⊂ X of O,
any trajectory (Tk, γ) will eventually belong to U , i.e.,
there exists t′ ∈ Tk such that γ(t) ∈ U for t ≥ t′. Note
that the set O constitutes a single point in the quotient
X/ ∼, and it has the structure of an α-limit set as known
from the theory of ordinary differential equations.

The above illustration shows that a stability analysis
must also include non-equilibrium points. Moreover, it
indicates that such an analysis could be carried out in
the quotient. This will be taken up in the next section,
where we consider stability related to points which are not
necessary equilibrium points.

4.2. Trajectories in the quotient. Any trajectory
induces, in a natural way, a curve in the quotient space
X∗ = X/ ∼. Formally, we have what follows.

Proposition 3. Any trajectory (Tk, γ) induces a continu-
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ous curve γ̄ completing the diagram

Tk
pr1

��

γ
�� X

π

��

J
γ̄

�� X∗

, i.e., γ̄ ◦ pr1 = π ◦ γ,

with pr1 as the projection on the first factor, and J ⊂
[0,∞) its image. The curve γ̄ will be called a quotient
trajectory.

Two trajectories inducing the same quotient
trajectory can be very different. For instance, their
images may be contained in two different facets which
are identified by ∼. However, we have the following
“minimal” trajectory result with respect to number of
discrete transitions.

Proposition 4. Let ω denote a quotient trajectory. Then
there exists a minimal trajectory (Tl, α) inducing ω, that
is, if (Tk, γ) is any trajectory inducing ω then l ≤ k and
there is an injection ι : Tl → Tk such that α = γ ◦ ι.

Proof. Let (Tk, γ) be as above and define L =
{i ∈ k | intR(Ti) �= ∅}. Note that L is non-empty by
Definition 2. Let l be the cardinality of L, and ν : l → L
be the order preserving bijection. Note that l ≤ k.

The trajectory (Tl, α) is now defined by

Tl =
{⊔

i∈l Si | Si = Tν(i) ⊂ Tk
}

(3a)

and

α(t; i) = γ(t, ν(i)). (3b)

Now, if we let ι = id × ν, we obtain, by construction, a
commutative diagram

Tl

pr1

��

α

��

ι

��
��

��
��

�

Tk
pr1

��

γ
�� X

π

��

J ω
�� X∗.

Thus α also induces ω, hence completing the proof. �
The proof above is constructive in the sense that,

given any trajectory inducing ω, Eqn. (3) constructs, out
of this trajectory, a minimal trajectory inducing ω.

4.2.1. Quotient stability. We are in a position to define
concepts which relate stability to non-equilibrium points.
A point x ∈ X will be called quotient stable (resp. weakly
quotient stable) if it is stable in the quotient, i.e., if for each
open neighborhood V ⊂ X∗ of π(x) = [x] there exists an
open neighborhood U ⊂ V of π(x) such that for each

z ∈ U and for each (resp. some) quotient trajectory γ̄ at
z we have γ̄(t) ∈ V for all t ∈ Tk. A point which is not
weakly quotient stable is called quotient unstable.

A point x ∈ X is called asymptotically quotient
stable (resp. weakly asymptotically quotient stable) if it is
quotient stable (resp. weakly quotient stable) and γ̄(t) →
π(x) for t→ ∞.

Example 2 shows that a locally (weakly)
asymptotically stable equilibrium point can be quotient
unstable. On the other hand, Example 3 shows that an
asymptotically quotient stable equilibrium point can be
locally unstable. Therefore, the two notions of stability
do, in general, not imply each other. However, from the
definition of the equivalence relation ∼, we immediately
obtain the following proposition.

Proposition 5. Let x∗ ∈ intRn(P ), for some P ∈ X , be
an equilibrium. Then x∗ is locally asymptotically stable
iff it is asymptotically quotient stable.

Moreover, if in Example 3 we replace one of the
reset maps, say Ri, with its inverse, the point π(x∗)
remains quotient stable. The point π(x∗) will not
be asymptotically quotient stable since each quotient
trajectory is induced by a trajectory and no trajectory has
asymptotically stable behavior (each trajectory terminates
on the domain of Ri, see also Example 6). This also
illustrates that the change of a reset map can leave the
topology of the quotient space unaltered, but at the same
time alter the behavior of the quotient trajectories.

The following result gives a necessary and sufficient
condition for an equilibrium point to be asymptotically
quotient stable.

Proposition 6. Let x∗ ∈ X be an equilibrium. Then x∗ is
(weakly) asymptotically quotient stable iff for each open
neighborhood V ⊂ X of the ∼-equivalence class [x∗]
there exists an open neighborhood U ⊂ V of [x∗] such
that for each x ∈ U and for each (resp. some) trajectory
(Tk, γ) at x we have γ(t) ∈ V for all t ∈ Tk.

Proof. We prove the “if” direction while the “only if”
direction can be proven by similar arguments. Let V ′ be
an open neighborhood of π(x∗), and write V = π−1(V ′).
Let U ⊂ V be an open neighborhood of [x∗] such that for
any x ∈ U and any (resp. some) trajectory (Tk, γ) at x,
γ(t) ∈ V for all t ∈ Tk and limt→∞ γ(t) = x.

Let U ′ ⊂ V ′ be an open neighborhood of π(x∗) such
that π−1(U ′) ⊂ U . Then for any z ∈ U ′ and any (resp.
some) quotient trajectory γ̄ at z, γ̄(t) ∈ V ′ for all t ∈
[0,∞). Otherwise, there would be a trajectory (Tk, γ) at
x ∈ π−1(z) ⊂ U , inducing γ̄, and leaving V . Moreover,
limt→∞ γ̄(t) = π(x∗) since, if not there would exist an
open neighborhood O of [x∗] such that γ(t) �∈ O for all
t ∈ Tk , where (Tk, γ) is a trajectory at x ∈ π−1(z) ⊂ U ,
inducing γ̄. This proves the “if” direction. �
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A more throughout analysis of quotient stability will
be taken up in future works. Such an analysis will most
likely be based on techniques similar to those of Blanchini
and Miani (2008).

5. Local analysis of hybrid systems

Inspired by the theory of (differentiable) manifolds, we
introduce the notion of a chart. This concept will
enable a local analysis of hybrid systems and aid in the
classification of “well behaved” hybrid systems such as
regular and omnidirectional hybrid systems introduced in
Section 5.1.

Definition 3. (Chart) Let (PJ ,S,R) be a hybrid system
of dimension n, and (U,Q, ψ) a triple where U ⊂ X =⊔
j∈J Pj has a non-empty interior, and {U ∩ Pj}j∈J is

a family of polyhedral sets, Q ⊂ R
n is a polyhedral set,

and ψ : U → Q is a continuous surjection. The triple
(U,Q, ψ) will be called a chart on (PJ ,S,R) if

(i) for any x, y ∈ U , ψ(x) = ψ(y) if and only if x ∼ y;

(ii) for anyP ∈ P with P∩U �= ∅, the restriction ψ|U∩P
is injective and the restriction of a linear map R

n →
R
n;

(iii) if x ∈ U , then [x] ⊂ U , where [x] denotes the
∼-lence class containing x.

A quasi chart is a chart fulfilling conditions (i) and (ii).
In general, the linear extension of ψ|U∩P from

condition (ii) above is one among many linear extensions
of ψ|U∩P . However, if intRn(U ∩ P ) �= ∅, then the linear
extension is unique and injective.

To reduce technicalities in the exposition, we have
chosen to formulate condition (ii) with a linear extension
of ψ|U∩P ; nevertheless, the linear extension can be
substituted by an affine extension, and all the results
presented in this paper are still valid.

The basic properties of charts will now be presented.

Proposition 7. Let (U,Q, ψ) denote a quasi chart on a
hybrid system (P ,S,R) of dimension n. Then Q has di-
mension n.

Proof. On the outset, let us remark that, since U has a
non-empty interior in X , there exists at least one P ∈ P
such that intRn(P∩U) �= ∅. LetP denote such an element
of P , and choose x ∈ intRn(P ∩ U). Hence, there exists
an open neighborhood Ux ⊂ R

n of x such that Ux ⊂
(P ∩ U). Since ψ|U∩P is continuous and injective, we
may apply Brouwer’s theorem on invariance of domain to
the map ψ : Ux → R

n, and conclude that ψ(Ux) is open
in R

n. This concludes the proof since ψ(Ux) ⊂ Q. �

Proposition 8. Let (U,Q, ψ) denote a quasi chart on
a hybrid system (P ,S,R) of dimension n. Then ψ is a
quotient map.

Proof. By continuity, ψ−1(V ) ⊂ U is open whenever
V ⊂ Q is open. Hence, we need to prove that V is open
whenever ψ−1(V ) is open.

Let z ∈ V and x ∈ ψ−1(z). Therefore, x ∈ P
for some P ∈ P . Since ψ−1(V ) is open in U , we have
by definition that ψ−1(V ) ∩ P ∩ U is open in P ∩ U .
Hence, there exists an open neighborhood Bx ⊂ R

n

of x such that (Bx ∩ P ∩ U) ⊂ (ψ−1(V ) ∩ U ∩ P ).
Now, let Ψ : R

n → R
n denote any continuous injective

extension of ψ|U∩P , e.g., a linear injective extension. By
the invariance of domain (or the open mapping theorem in
the linear case), we conclude that Ψ(Bx) is open in R

n.
In particular,Q ∩ Ψ(Bx) is an open neighborhood of z in
Q, which is contained in V since

Q ∩ Ψ(Bx) = Ψ(U ∩ P ) ∩ Ψ(Bx) = Ψ(U ∩ P ∩Bx),

and

Ψ(U ∩ P ∩Bx) ⊂ Ψ(ψ−1(V ) ∩ U ∩ P ) ⊂ V.

Hence, z is interior to V proving that V is open since z
was arbitrary. �

Lemma 2. Let (U,Q, ψ) denote a quasi chart on a hybrid
system (P ,S,R) andU∗ = U/ ∼ the quotient space. The
map ψ induces a map g completing the diagram

U

π

��

ψ
�� ψ(U)

U∗
g

��
, i.e., g ◦ π = ψ,

with π as the canonical map. Furthermore, g is a homeo-
morphism.

Proof. By condition (i) of Definition 3, we have U∗ =
{ψ−1(v) | v ∈ ψ(U)}. Hence, g is a homeomorphism by
Munkres (1975, Corollary 22.3). �

Standing hypothesis. The following will be in force
throughout the rest of this paper. For any hybrid system
(P ,S,R) the family P is assumed to consist of polytopes
only.

Requiring that P consist of polytopes only is a
consequence of the implicit use of Lemma A1 (via
Lemma A5) in the proof of Theorem 1 below. However,
we do conjecture that this requirement can be dropped
without effecting the conclusion of the theorem (and
therefore that the hypotheses can be removed altogether).

The next result shows that locally a chart can be used
to make a hybrid system resemble a switched system.

Theorem 1. Let (U,Q, ψ) be a chart on a hybrid system
(PJ ,S,R), and

J(U) = {j ∈ J | intRn(Pj ∩ U) �= ∅, Pj ∈ P}. (4)
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Let Qj = ψ(U ∩ Pj), Kn = {Qj | j ∈ J(U)} and
K = {F | F 	 Qj , Qj ∈ Kn}. Let ψj = ψ|U∩Pj ,
fj = dψjξj ◦ψ−1

j : Qj → R
n and F = {fj | j ∈ J(U)}.

Then (Q,K,F) is a switched system.

Before beginning the proof, we remark that the
differential dψj is indeed well defined since j ∈ J(U)
and ψj has a unique (linear) extension.

Proof. (Proof of Theorem 1) By Definition 3, we
immediately conclude that Qj is a polytope; hence, K
(and Kn) is a family of polytopes (of dimension n). To
prove the theorem, we need to show that K is a partition
of Q (see Section 2.1.1).

We prove that K is a complex. Let F1, F2 ∈ K .
Since Fi ∈ K , i = 1, 2, there is Qi ∈ Kn such that
Fi 	 Qi. By Lemma A5, Q1∩Q2 is a face ofQ1 andQ2.
By Lemma A4, F1 ∩F2 	 Q1 ∩Q2. So F1 ∩F2 is a face
of both Q1 and Q2, thus also of F1 and F2. This proves
property (ii). Therefore,K is a complex since property (i)
is trivial.

We will show that Q =
⋃
j∈J(U) Qj ; hence, Q =

|K|, which will complete the proof. For any point x ∈
Q and any open neighborhood V of x in Q, ψ−1(V ) is
open in U . Hence, there is j ∈ J such that Pj ∩ ψ−1(V )
has a non-empty interior, thus j ∈ J(U) and x ∈ Qj .
Therefore, Q ⊂

⋃
j∈J(U) Qj , which completes the proof

since clearly
⋃
j∈J(U) Qj ⊂

⋃
j∈J Qj = Q. �

The construction in Theorem 1 gives rise to the
following definition.

Definition 4. Let (U,Q, ψ) be a chart on a hybrid
system (PJ ,S,R). The switched system (Q,K,F)
defined in Theorem 1 will be called a switched system
(with state-dependent switching) generated by the chart
(U,Q, ψ).

A switched system generated by a chart is obtained
by “gluing” together (images of) subsets from a hybrid
system. A local representation of a hybrid system is
particularly nice in that it always produces a polytope.
Therefore, more complex structures will be absent in a
chart. More precisely, there are hybrid systems containing
open sets which can not be represented in any chart. We
illustrate this in the next example.

Example 4. Let (PJ ,S,R) with J = {1, 2, 3} be a
hybrid system of dimension 1, where S is left unspecified,
P = {Pi = [0, 1]}i∈J , and R = {R1 : F1 → F2, R2 :
F2 → F3, R3 : F3 → F1} with Fi, i ∈ J, being a facet
of Pi. Hence X∗ has a “Y” shape. Therefore, if p ∈ Fi,
no open neighborhood of [p] in X can be contained in a
chart. �

As seen above, hybrid systems can contain structures
which cannot be represented in a chart. For a global
analysis this property is highly undesirable. Therefore,

a class of hybrid systems is introduced, whose structure is
well behaved in the sense that for any point there exists
a chart which gives a correct local representation of some
open neighborhood of that point. To this end, we define
the notion of a regular hybrid system.

Definition 5. (Regular hybrid system) A hybrid system
(PJ ,S,R) is regular if there is a family of charts
{(Ua, Qa, ψa)| a ∈ A} such that

(i) π(Va), with Va = ψ−1
a (int(Qa)), is open in X∗ for

all a ∈ A;

(ii) X =
⋃
a∈A Va.

A chart fulfilling (i) above will be called regular, and if
x ∈ Va then (Ua, Qa, ψa) will be called a regular chart at
x.

The next example illustrates the concept of a regular
hybrid system.

Example 5. Let (PJ ,S,R) with J = {1, 2} be a hybrid
system of dimension 2, where S is left unspecified, P =
{Pi = I2}i∈J with I = [0, 1], and R = {Ri = id :
F i1 → F i2}i∈J with F 1

i = I × {0} ≺ Pi, i ∈ J , and
F 2
i = I × {1} ≺ Pi, i ∈ J . Hence X∗ is a “cylinder”.

The hybrid system (P ,S,R) becomes regular by
introducing the following two charts: (U1, Q1, ψ1) and
(U2, Q2, ψ2), where

U1 = I × [0, 0.75]× {1} ∪ I × [0, 0.75]× {2},
U2 = I × [0.25, 1]× {1} ∪ I × [0.25, 1]× {2},
Q1 = I × [−0.75, 0.75],
Q2 = I × [0.25, 1.75],

and

ψ1(x, y; 1) = (x, y), ψ1(x, y, 2) = (x,−y),
ψ2(x, y; 1) = (x, y), ψ2(x, y; 2) = (x, 2 − y).

�
A regular hybrid system of dimension n induces the

structure of a topological n-manifold (Lang, 1999) on X∗

via the family of charts {(π(Va), ga)}a∈A, with ga being
the map induced by ψa as in Lemma 2. In particular, for
a regular hybrid system, (X∗, {(π(Va), ga)}a∈A) is a PL
space as defined by Hudson (1969), and if the vector fields
fi all are linear we obtain a PL system as in the works of
Sontag (1981) as well as Rantzer and Johansson (2000).
Note that the hybrid system in Example 4 is not regular
since X∗ is not a topological manifold.

5.1. Omnidirectional hybrid systems. Up to now, we
have been concerned with how to obtain a precise local
representation of the structure (or geometry) of a hybrid
system, and ended with the concept of a regular hybrid
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system. A natural question is now whether or not locally
the dynamics of a hybrid system can be represented by
those of a switched system generated by charts. As we
have seen above, this may fail for general hybrid systems
since there can be an open neighborhood that has no local
representation.

The next proposition states that each trajectory of a
hybrid system which is contained in a chart is related to a
trajectory of a switched system generated by this chart.

Proposition 9. Let (U,Q, ψ) be a chart on a hybrid
system (PJ ,S,RL) and (Q,K,F) be a switched sys-
tem generated by (U,Q, ψ). If (Tk, γ) is a trajectory of
(PJ ,S,R) such that γ(t; i) ∈ U for all (t; i) ∈ Tk, then

η(t) = ψ(γ(t; i)) (5)

is a solution of the Cauchy problem η̇ ∈ F (η), η(t0) =
ψ(γ(t0; 1)), where F : Q→ 2R

n

is given by

F (x) = {v ∈ R
n| v = fj(x)
if x ∈ Qj for j ∈ J(U), fj ∈ F} (6)

with J(U) as in (4).

Before beginning the proof, let us remark that the
proposition would be false if in the definition of a
trajectory (Definition 2) the requirement intR(Ti) �= ∅ had
been excluded. Indeed, if intR(Ti) = ∅ for all i ∈ k, then
the induced trajectory (5) would have a singleton set as
the domain, but any solution to η̇ ∈ F (η) is by definition
required to have a domain with a non-empty interior.

Proof. (Proof of Proposition 9) Let {ti}i∈k0 be the
switching sequence corresponding to Tk. For each i ∈ k
there exists j ∈ J(U) such that γ̇(t; i) = ξj(γ(t; i)) for
all t ∈ [ti−1, ti].

The vector fields fj ∈ F and ξj ∈ S are ψj-related.
Thus, γ and the solution η of the Cauchy problem
η̇(t) = fj(η(t)), η(ti−1) = ψ(γ(ti−1; i)) commute in
the following sense: ψ(γ(t; i)) = η(t) for t ∈ [ti−1, ti].

This completes the proof since ψ(γ(ti; i)) =
ψ(γ(ti; i+ 1)) by point (iii) in Definition 2. �

There are hybrid systems for which there exists a
solution of η̇ ∈ F (η), but there is no trajectory (Tk, γ)
such that η and γ are related by (5). This is the context of
the next example.

Example 6. Let C = [−r, r]2 for some r > 0.
Consider the hybrid system from Example 3 with each
Pi replaced by P ′

i = Pi ∩ C, and the reset map R1

replaced by R−1
1 , i.e., R = {R−1

1 , R2, R3, R4}. We
use the chart (C′, C, ψ), where C′ =

⊔
P ′
i and ψ|P ′

i =
id. Any trajectory of the hybrid system is defined on a
bounded time domain; it terminates on the boundary of
P1. However, the solutions of η̇ ∈ F (η) are defined on
[0,∞) and exhibit an asymptotically stable behavior (in
C). �

Now, if, in Example 6, R = {Ri, R−1
i | i = 1, . . . , 4}

had been used instead, then for any η there is a γ such that
(5) holds. This leads to the following definition.

Definition 6. (Omnidirectional hybrid system) A hybrid
system (PJ ,S,R) is omnidirectional if R = R0.

For omnidirectional hybrid systems we have the
following converse to Proposition 9.

Proposition 10. Let (U,Q, ψ) be a chart on a omnidi-
rectional hybrid system (PJ ,S,RL) and (Q,K,F) be a
switched system generated by (U,Q, ψ). Then for any so-
lution η of η̇ ∈ F (η) with F defined by (6) there is a
trajectory (Tk, γ) of (PJ ,S,RL) such that (5) holds.

Proof. Let η satisfy η̇(t) ∈ F (η(t)) a.e. on [0, T ], with
0 < T <∞, and define j(t) ∈ J for almost all t ∈ [0, T ]
by

j(t) = j iff η̇(t) = dψjξj ◦ ψ−1
j (η(t)),

with the notation as in Theorem 1. Let {ti}i∈k0 , with
k ∈ N ∪ {∞}, be an increasing sequence of points in
[0, T ], where j(t) is undefined. Hence, t0 = 0, tk = T ,
and j(t) is constant on Ii = (ti−1, ti) for i ∈ k. We
assume, without loss of generality, that j(·) is not constant
on each open neighborhood of each ti. Moreover, let ji =
ji(t) denote the obvious extension of (the constant) j(t)
to cl(Ii).

Now, for each i ∈ k, define the map γi on Ii by
γi(t) = ψ−1

j(t) ◦ η(t) and extend it to a continuous map on
cl(Ii). Hence γi is differentiable on Ii with the derivative

γ̇i(t) = ξj(t)(γi(t)). (7)

The trajectory (Tk, γ) is now defined by Tk =⊔
i∈k cl(Ii) and γ(t; i) = (γi(t); ji). Indeed, since 0 < T ,

we must have int(Ti) �= ∅ for at least one i ∈ k; hence,
Tk is a time domain. Moreover, γ : Tk →

⊔
j∈J Pj is

continuous by construction, and, to complete the proof,
points (i)–(iii) of Definition 2 need to be verified. To this
end, point (iii) is a consequence of (7), and points (i) and
(iii) follow from Definition 3 as ji �= ji+1 for each i ∈ k∗.

�
For omnidirectional hybrid systems there is a local

correspondence between trajectories of the system and
trajectories generated by charts. For this observation
to have any significance in stability analysis, we need
to verify that the behavior of these two systems agrees.
Indeed, the next theorem provides necessary and sufficient
conditions for an equilibrium point of an omnidirectional
hybrid system (P ,S,R) to be asymptotically quotient
stable in terms of conditions imposed on a switched
system generated by a chart on (P ,S,R).

For the next theorem, recall the notion of G-stability
as described below Proposition 1 in Section 3.
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Theorem 2. Let (PJ ,S,R) be a regular omnidirectional
hybrid system. Then the equilibrium x∗ ∈ X is (weakly)
asymptotically quotient stable iff ψ(x∗) is a (weakly)
asymptotically F -stable equilibrium, where (U,Q, ψ) is
a regular chart at x∗, and F is defined by (6).

Proof. We prove the “only if” direction. Since
(PJ ,S,R) is regular, a regular chart (U,Q, ψ) at x exists.
Let O be an open neighborhood of ψ(x∗) in int(Q), and
let W = ψ−1(O). Since the equilibrium x∗ is (weakly)
asymptotically quotient stable, we use Proposition 6 to
conclude that there is an open neighborhood W ′ ⊂ W
of [x∗] such that for each x ∈ W ′ and for each (resp.
some) trajectory (Tk, γ) at x we have γ(t, i) ∈ W for all
(t, i) ∈ Tk and γ(t, i) → x∗ as t→ ∞.

Let O′ ⊂ O be an open neighborhood of ψ(x∗) such
that ψ−1(O′) ⊂ W ′. By Proposition 10, we conclude
that for any (respectively some) solution η of η̇ ∈ F (η) at
y ∈ O′ we have η(t) ∈ O for all t ≥ 0, and η(t) → ψ(x∗)
as t→ ∞.

The proof of the converse is analogous, with
Proposition 9 used instead of Proposition 10. �

The aim of our work was to restrict the definition
of hybrid systems in such a way that development of
tangible methods for stability is feasible. In conclusion,
we have defined a locally switched system, which is a
relatively restrictive hybrid system, but allows analyzing
using standard methods of dynamical systems and, in
particular, differential inclusions. That is, Theorem 2
together with Proposition 2 may be used to conduct a
stability analysis as described in Section 3. Nevertheless,
some care should be taken when using Proposition 2 as it
deals with relaxed solutions.

6. Conclusion

We have introduced various notions of stability for a
hybrid system on a polyhedral set with state-dependent
switching. In particular, the concept of stability has
been extended to non-equilibrium points via a quotient
system. It has been shown that for such systems an
equilibrium is asymptotically stable if and only if it is
asymptotically stable in the quotient system. Moreover,
necessary and sufficient conditions have been provided for
an equilibrium point of a regular omnidirectional hybrid
system to be asymptotically stable. These conditions
have been formulated in terms of a switched system (with
state-dependent switching) generated by a chart on the
system. As methods for stability analysis of switched
systems are already available, this work establishes
tangible means for stability analysis of hybrid systems.
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Appendix

A1. Notation and terminology. If S ⊂ R
n, then

aff(S) denotes the affine hull (or span) of S and by the
dimension, dim(S), of S we mean the affine dimension
of aff(S), i.e., dim(S) = afdim(aff(S)) = dim(aff(S) �
aff(S)), where, in generic notation,A�B = {a− b | a ∈
A, b ∈ B} with A and B being affine subspaces.

LetN ∈ R
n, α ∈ R and 〈·, ·〉 denote an inner product

in R
n. We write H(N,α) = {x ∈ R

n | 〈x,N〉 = α},
H+(N,α) = {x ∈ R

n | 〈x,N〉 ≥ α} and H−(N,α) =
{x ∈ R

n | 〈x,N〉 ≤ α}. We occasionally suppress the
notation and simply write H , H+, and H−.

A2. Polyhedral sets and polytopes A polyhedral set P
in R

n is the intersection of a family of closed half spaces.
A polytope is a bounded polyhedral set. Whenever a
polyhedral set P in R

n is considered a topological space,
it will be understood that P carries the relative topology
from R

n. A subset F of a polyhedral set P is a face if
either F = ∅ or F = P , or there exists a supporting
hyperplane H of P such that F = P ∩ H . Note that
a face is again a polyhedral set. A face F of dimension
n− 1 is called a facet, and a face of dimension 0 is called
a vertex. We write F 	 P to indicate that F is a face of P
and F ≺ P if and only if F 	 P and F �= P . Note that
the relation 	 is a partial order relation on the set K(P )
of all faces of P .

For a nonempty U ⊂ P with P being a polyhedral
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set, we say F 	 P is the smallest face containing U
if U ⊂ F , and there is no other face G of P such that
U ⊂ G and G ≺ F . Such a face always exists. Indeed,
let V = {L ∈ K(P )| U ⊂ L}, with K(P ) as above,
which is finite since K(P ) is finite, and non-empty since
P ∈ V . Now, F =

⋂
L∈V L is a face of any L ∈ V ,

since the intersection of a finite number of faces is a face.
Furthermore, U ⊂ F . We claim that F is the smallest
face of P containing U . Suppose that there is G ≺ F
with U ⊂ G, then G ∈ V ; hence, F 	 G, which is a
contradiction.

Let P and P ′ be polyhedral sets. A map f : P → P ′

is said to be polyhedral if it is a continuous injection and if
for any F 	 P there is F ′ 	 P ′ with dim(F ) = dim(F ′)
such that f(F ) ⊂ F ′. Note that if P is a polytope then f :
P → f(P ) is a homeomorphism. We remark that to the
authors’ best knowledge the concept of a polyhedral map,
as presented here, is new. Nonetheless, related definitions
can be found in the works of Hudson (1969) and Sontag
(1981).

The following lemma, which is crucial for many
proofs in the main body of the text, lists some
basic properties of polyhedral maps. Note that, as a
consequence of the use of Lemma A2, the lemma is
proven for polytopes only.

Lemma A1. Let P and P ′ be polytopes and f : P → P ′

be polyhedral.

(i) If F 	 P , then f(F ) 	 P ′ and dim(F ) =
dim(f(F )).

(ii) If dim(P ) = dim(P ′), then f(P ) = P ′.
(iii) f−1 : f(P ) → P is polyhedral.

Proof. We prove point (i) by induction on the dimension
k of F . For k = 0, i.e., F is a vertex, point (i) clearly
holds. Suppose now that f(L) 	 P ′ for any face L of P
with dim(L) = k. Let F 	 P and dim(F ) = k+1. Since
f is polyhedral, there isF ′ 	 P ′ such that f(F ) ⊂ F ′ and
dim(F ′) = k + 1. We show that f(F ) = F ′, which then
proves point (i).

By induction hypothesis, f(L) ≺ P ; hence, f(L) ≺
F ′, for any L ≺ F . Now, let Li, i = 1, . . . , l be all
facets of F , L′

i = f(Li), and F ′ =
⋂m
j=1H

+
j , where

{H+
j | 1 ≤ j ≤ m} is an irredundant family of half-spaces

with supporting hyperplanes Hj . Hence, m ≥ l, L′
i =

Hi ∩ F ′, i = 1, . . . , l, after a possible re-indexing, and
bd(f(F )) = f(bd(F )) =

⋃l
i=1 f(Li) =

⋃l
i=1 L

′
i, where

the first equality follows by Lemma A2.
The hyperplane Hi, i = 1, . . . , l, is a supporting

hyperplane of f(F ), since f(F ) ⊂ F ′ ⊂ H+
i , and

L′
i = Hi ∩ f(F ) as L′

i ⊂ Hi ∩ f(F ) ⊂ Hi ∩ F ′ = L′
i.

Therefore, we conclude that

F ′ =
m⋂

j=1

H+
j ⊂

l⋂

j=1

H+
j = f(F ). (A1)

Hence, f(F ) = F ′, proving point (i).
From point (i), we conclude that f(P ) is a face of P ′

with dim(f(P )) = dim(P ). This proves point (ii).
First, f(P ) is a polyhedral set by point (i). Secondly,

f−1 : f(P ) → P is a continuous injection since f : P →
f(P ) is a homeomorphism. Finally, let F ′ 	 f(P ); then
there is a F 	 P with dim(F ) = dim(F ′) such that
f(F ) = F ′ (the equality follows from the proof of point
(i)). Hence, f−1(F ′) = F , which proves the lemma. �

The proof of point (i) in Lemma A1 yields the
following corollary.

Corollary A1. Let P and P ′ be polytopes and f : P →
P ′ be polyhedral. If F and F ′ are as in the definition of a
polyhedral map, then f(F ) = F ′.

The following lemma constitutes the essential
argument in the proof of Lemma A1. We remark that
the proof could have been shortened by the use of simple
arguments from homology theory.

Lemma A2. Let Dn ⊂ R
n be homeomorphic to a close

disk and Sn−1 ≡ bd(Dn). Let f : Dn → Dn ⊂ R
n

be a homeomorphism such that f(Sn−1) ⊆ Sn−1. Then
f(Sn−1) = Sn−1.

Proof. Following Bredon (1993, Corollary IV.19.6),
we conclude that R

n \ f−1(Sn−1) consists of two (n >
1) or three (n = 1) components. Let U1, U2 and U3

be these components, with U3 possibly empty, and let
Vi = Ui ∩ int(Dn), i = 1, 2, 3. Then f(V1 ∪ V2 ∪
V3) = int(Dn), since if z ∈ int(Dn) then f−1(z) ∈
int(Dn) \ f−1(Sn−1) = V1 ∪ V2 ∪ V3. Moreover, since
V1 ∪ V2 ∪ V3 = f−1(int(Dn)) we conclude by continuity
that precisely one Vi, say V1, is non-empty. Thus, V1 =
int(Dn) \ f−1(Sn−1). But int(Dn) ∩ f−1(Sn−1) = ∅,
because if not, let U ⊂ int(Dn) be an open neighborhood
of a point in the intersection, say x, and {xn} ⊂ U2 be
a sequence converging to x. Then xn ∈ U for n large
enough, which yields the contradiction V2 �= ∅. Hence,
V1 = int(Dn), which completes the proof since f is
surjective. �

The following three results have the appearance of
being standard results from polytope theory. However, the
authors have not been able to find a reference for these
results, so they are included with proofs.

Lemma A3. IfH1 andH2 are hyperplanes, thenH1∩H2

is a face of H+
1 ∩H+

2 .

Proof. If H1 ∩ H2 = ∅, then the lemma follows.
We assume that H1 ∩ H2 �= ∅ and show that there
is a supporting hyperplane C of H+

1 ∩ H+
2 such that

H+
1 ∩ H+

2 ⊆ C+ and H1 ∩ H2 = C ∩ H+
1 ∩ H+

2 .
Let Hi ≡ Hi(Ni, αi) for some Ni ∈ R

n and ai ∈ R,
i = 1, 2. Suppose first that 0 ∈ H1 ∩ H2, i.e., α1 =
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α2 = 0, and let C ≡ {x ∈ R
n| 〈x,N1 + N2〉 = 0}.

It is clear that H+
1 ∩ H+

2 ⊆ C+ and H1 ∩ H2 ⊆ C.
This shows that H1 ∩ H2 ⊆ C ∩ (H+

1 ∩ H+
2 ). We

show that C ∩ (H+
1 ∩ H+

2 ) ⊆ H1 ∩ H2. Suppose that
x ∈ C ∩ (H+

1 ∩H+
2 ). Since 〈x,Ni〉 ≥ 0 for i = 1, 2 and

〈N1, x〉 = −〈N2, x〉, we have 〈x,Ni〉 = 0 for i = 1, 2.
Thus, H1 ∩ H2 = C ∩ (H+

1 ∩ H+
2 ). For an arbitrary

αi, i = 1, 2, let w ∈ H1 ∩H2 and define Gi ≡ Hi − w,
i = 1, 2. Since 0 ∈ G1 ∩G2, there exists a hyperplane C
such thatG+

1 ∩G+
2 ⊆ C+ andG1∩G2 = C∩(G+

1 ∩G+
2 ).

Therefore, Cw ≡ C + w is a supporting hyperplane of
H+

1 ∩H+
2 such that H1 ∩H2 = Cw ∩ (H+

1 ∩H+
2 ). This

proves the lemma. �

The next lemma classifies a face of a polyhedral set,
which is the intersection of two polyhedral sets, in terms
of intersections of the faces of the two polyhedral sets.

Lemma A4. Let P,Q be polyhedral sets. Then G is a
face of the polyhedral set P ∩ Q if and only if there are
F 	 P and L 	 Q such that G = F ∩ L.

Proof. Suppose first that F 	 P and L 	 Q. If F ∩ L =
∅, then G = ∅ is an improper face of P ∩ Q. If F = P
and L = Q, then G = P ∩ Q is again an improper face
of P ∩Q. Suppose F = P , L ≺ Q and F ∩ L �= ∅. Let
H be a supporting hyperplane of Q with Q ⊆ H+ and
H ∩ Q = L. We have H ∩ Q ∩ P = L ∩ P = G and
P ∩Q ⊆ H+. Thus, G is a face of P ∩Q.

If F ≺ P and L ≺ Q, then there are supporting
hyperplanesW of P andH ofQ such thatF∩L ⊆W∩H
and P ∩ Q ⊆ W+ ∩ H+. By Lemma A3, there is a
hyperplane C such that C ∩ (W+ ∩H+) = W ∩H and
W+ ∩H+ ⊆ C+. Since P ∩Q ⊆W+ ∩H+ ⊆ C+ and
the following equality holds:

C ∩ P ∩Q = C ∩ (W+ ∩H+ ∩ P ∩Q)
= W ∩H ∩ P ∩Q = F ∩ L,

it follows that C is a supporting hyperplane for P ∩Q and
C ∩ P ∩Q = F ∩ L, thus F ∩ L is a face of P ∩Q.

We prove the converse. If G = ∅, then the lemma is
proven by taking, e.g., F = ∅, L = Q. The lemma is also
obvious if either P or Q is equal R

n. It remains to prove
if G is a proper face of P ∩Q.

Let P =
⋂k
j=1H

+
j and Q =

⋂m
j=k+1H

+
j . Without

loss of generality we assume that the family {H+
j | j =

1, . . .m} is irredundant, otherwise we remove redundant
half-spaces from it. It follows that P ∩ Q =

⋂m
j=1H

+
j .

Suppose first that G is a facet of P ∩ Q, then G =
Hj ∩ (P ∩ Q) for some j ∈ {1, . . . ,m}. Suppose
j ∈ {1, . . . , k}. Then F ≡ Hj ∩ P is a facet of P
and G = F ∩ Q. Likewise, if j ∈ {k + 1, . . . ,m} then
G = F ∩P , where F is a facet ofQ. By Grünbaum (2003,
Theorem 2.6.5, p. 27), every proper face of a polyhedral
set is an intersection of its facets. Hence, the face G of

P ∩Q is the intersection of facets Ei (i = 1, . . . , l) of P
and E′

i (i = 1, . . . , l′) of Q,

G =

(
l⋂

i=1

Ei

)

∩

⎛

⎝
l′⋂

i=1

E′
i

⎞

⎠

=

(
l⋂

i=1

(Hi ∩ P ) ∩Q
)

∩

⎛

⎝
l′⋂

i=1

(H ′
i ∩Q) ∩ P

⎞

⎠

=

(
l⋂

i=1

Hi ∩ P
)

∩

⎛

⎝
l′⋂

i=1

H ′
i ∩Q

⎞

⎠ = F ∩ L,

where F ≡
⋂l
i=1Hi∩P is the intersection of facets of P .

Thus, it is a face of P . In the same way, L ≡
⋂l′
i=1H

′
i∩Q

is a face of Q. �

The following lemma constitutes an essential
argument in the proof of Theorem 1. We note that the
proof makes implicit use of Lemma A1.

Lemma A5. Let Kn be as in Theorem 1, and Q1, Q2 ∈
Kn. Then Q1 ∩Q2 is a face of Q1 and Q2.

Proof. We prove that Q1 ∩ Q2 	 Q1. For any x ∈
Q1 ∩ Q2, there are y1 ∈ U1 ≡ U ∩ P1, y2 ∈ U2 ≡
U ∩ P2 and R ∈ R1 such that x = ψ(y1) = ψ(y2) and
R(y1) = y2. Furthermore, from Definition 5, if y1 ∈ U1

and there is R ∈ R1 such that y2 ≡ R(y1) ∈ P2, then by
point (iii), y2 ∈ U2 and, by point (i), ψ(y1) = ψ(y2). Let
R2

1 = {R ∈ R| ∃y ∈ U1 such that R(y) ∈ U2}. From
the above, it follows thatQ1∩Q2 =

⋃
R∈R2

1
ψ(dom(R)∩

U1). By Lemma 1, the set R2
1 is finite. Furthermore, by

Lemma A4, F ≡ dom(R)∩U1 is a face of U1. Therefore,
we can write Q1 ∩Q2 =

⋃k
i=1 ψ(Fi), where Fi ≺ U1.

We will show that

∃j ∈ k such that Fi ⊆ Fj ∀i ∈ k. (A2)

Thereby, Q1 ∩ Q2 = ψ(Fj), but ψ(Fj) is a face of
Q1, since Fj ≺ Q1 and ψ|U∩P1 is a restriction of a
linear map. Moreover, by point (iii) of Definition 5,
R(dom(R) ∩ U1) = im(R) ∩ U2; hence, R(Fj) is a face
of U2 and thus ψ(Fj) is a face of Q2.

We prove (A2) by contradiction, i.e., we assume that
for any j ∈ k, there is i ∈ k such that Fi \ Fj �= ∅.
In particular, for any j ∈ k, the set Aj ≡

⋃
i∈k\{j} Fi \

Fj is non-empty, and we can pick xj ∈ Aj . Let αi ∈
]0, 1[, i ∈ k with

∑k
i=1 αi = 1, and consider a point

x ≡
∑k

i=1 αixi ∈ conv(
⋃k
i=1 Fi) ⊆ ψ−1(Q1 ∩ Q2) ∩

U1. We show that x /∈
⋃k
i=1 Fi, which contradicts with

Q1 ∩Q2 =
⋃k
i=1 ψ(Fi).

Fix j ∈ k, and let Hj be a supporting hyperplane
of U1 with Fj = Hj ∩ U1 and U1 ⊆ H+

j . If y ∈
Aj ⊂ int(H+

j ), then for any α ∈ [0, 1[, and any z ∈
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H+
j , αy + (1 − α)z ∈ int(H+

j ). In particular, taking
α = αj , y = xj and z = 1

1−αj

∑
i∈k\{j} αixi shows

that x ∈ int(H+
j ). Since this is true for any j ∈ k,

x ∈
⋂
j∈k int(H+

j ), therefore x /∈
⋃k
j=1 Fj . �
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