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The first-principle modeling of a feedwater heater operating in a coal-fired power unit is presented, along with a theoretical
discussion concerning its structural simplifications, parameter estimation, and dynamical validation. The model is a part of
the component library of modeling environments, called the Virtual Power Plant (VPP). The main purpose of the VPP is
simulation of power generation installations intended for early warning diagnostic applications. The model was developed
in the Matlab/Simulink package. There are two common problems associated with the modeling of dynamic systems. If
an analytical model is chosen, it is very costly to determine all model parameters and that often prevents this approach
from being used. If a data model is chosen, one does not have a clear interpretation of the model parameters. The paper
uses the so-called grey-box approach, which combines first-principle and data-driven models. The model is represented
by nonlinear state-space equations with geometrical and physical parameters deduced from the available documentation of
a feedwater heater, as well as adjustable phenomenological parameters (i.e., heat transfer coefficients) that are estimated
from measurement data. The paper presents the background of the method, its implementation in the Matlab/Simulink
environment, the results of parameter estimation, and a discussion concerning the accuracy of the method.
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1. Introduction

In 2005, a large national research project DIADYN was
initiated by a consortium of Polish technical universi-
ties and research institutes, involving 40 research teams.
The main objective of the DIADYN project is to build
an “integrated dynamic system of risk assessment, diag-
nostics and control of structures and technological pro-
cesses”. Within the framework of the project, the Virtual
Power Plant (VPP) modeling environment has been devel-
oped (Barszcz, 2007) and has become an innovative ap-
proach for reconstructing the operational characteristics of
a power plant unit, based on model and recorded process
data. The VPP, described by Barszcz and Czop (2007),
provides an environment for integrating a range of mod-
els of power plant components, data management systems
and visualization methods into a standalone system.

The VPP became a part of the DIADYN project as
a practical laboratory facilitating validation of a diagnos-
tic methodology implemented as software algorithms or
available in the form of hardware, for instance, as con-
trollers with embedded fault detection and isolation al-
gorithms. The novelty of the proposed simulation en-

vironment lies in the scope in which model-based diag-
nostics (Bonivento, 2001), recently one of the fastest de-
veloping technologies in the power generation sector, is
supported.

The available results of numerous analytical and ex-
perimental studies are not sufficient to establish the feasi-
bility of using a model-based approach to predict behavior
and to diagnose large industrial installations, like power
plants (Bonivento et al., 2001; Bradatsch et al., 1993; Ko-
rbicz et al., 2004). Key problems encountered in practi-
cal implementation of such models are twofold. The first
group of problems regards developing a model where, in
most cases, even if the underlying physical equations are
known, the correct values of parameters, and thus cor-
rect model behavior, are difficult to identify. On the other
hand, for the “black-box” system identification approach,
a sufficient amount of data covering the entire operation
range is necessary but very difficult to collect. The second
group of problems is related to the lack of a flexible work
environment. The process of model development and con-
secutive diagnostic activities require efficient cooperation
of specialists from different fields: power plant staff to
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deliver data and technical documentation and diagnostics
experts to model the process and draw conclusions. Re-
sults generated by the model should be presented to power
plant experts and management in a comprehensible way;
in practice, however, a set of heterogeneous software tools
is used to perform these tasks, making the whole process
hard to manage and inefficient.

The VPP is an environment tailored to properly emu-
late the functionality of a power plant unit. It is character-
ized by (i) a flexible structure enabling multiple configu-
rations to be defined, (ii) an ability to import data acquired
at the object, (iii) the possibility to store models of each
component in different versions, (iv) for models of moder-
ate complexity, an ability to achieve performance close to
the real time, and (v) an ability to present results in either
an advanced or a simplified form, for experts and opera-
tional staff of power plants, respectively.

The paper is divided into seven sections. Section 2
contains a classification of grey-box modeling methods
and a survey of possible applications. Section 3 describes
a model of a feedwater heater and Section 4 provides de-
tailed methodology suitable for system identification of
this model. Section 5 deals with aspects of system identi-
fication of a heater model presenting the results of model
adjustment based on operational data from a power plant
and the case-based sensitivity analysis of the model. Sec-
tion 6 discusses the obtained results of system identifica-
tion. Lastly, Section 7 presents the summary of the paper.

Nomenclature

ṁ mass flux [kg·s−1]

Q̇ energy flux [J·s−1]

ρ density [kg·m3]

θ unknown parameter vector used in a general
representation of a first-principle model

A heat exchange area [m2]

H internal energy [J]

h enthalpy [J·kg−1]

k heat exchange coefficient [W·m−2·K−1]

p pressure [Pa]

T temperature [K]

u(t) control vector used in a general representation
of a first-principle model

V chamber volume [m3]

w(t), v(t) sequences of independent random variables

x(t) state vector used in a general representation of
a first-principle model

y(t) output vector used in a general representation of
a first-principle model

Abbreviations

PID Proportional-Integral-Derivative controller

SSE Sum Squared Error

VPP Virtual Power Plant

2. Classification of grey-box modeling
methods and a survey of applications

A classification and taxonomy of grey-box models was
proposed by Sohlberg and Jacobsen (2008) and relies on
an observation that, for many industrial processes, there
is first-principle or heuristic, but incomplete, knowledge
about the system. The work presented by Sohlberg and
Jacobsen (2008) focuses on the way of incorporating a pri-
ori knowledge into a grey-box model and lists four major
methodologies of grey-box modeling.

The first methodology, constrained black-box iden-
tification, originates from the black-box identification
framework, where a priori knowledge is incorporated by
imposing constraints on the model parameters. The fol-
lowing is the justification of this approach: a simple con-
tinuous model can be transformed into a corresponding
discrete time model and known restrictions of the continu-
ous model, such as process stability and the step response,
can be used to define limits placed on the static gain and
the time constants, which are imposed on the parameters
of the discrete model.

The second methodology, semi-physical modeling,
makes use of case specific nonlinear transformations of
measured input/output process signals (Sohlberg and Ja-
cobsen, 2008), e.g., a nonlinear sensor characteristic. A
Wiener–Hammerstein model is representative of this class
of models (Ljung, 1999). Transformed signals are then
used to estimate unknown parameters of a linear black-
box model, for instance an ARMAX-type model.

The third methodology, namely, analytical modeling,
is based on a basic model originating from mathemat-
ical relations derived from the first-principle equations.
Analytical modeling deals with lumped and distributed
parameter systems. Lumped-parameter models are most
commonly considered in this approach. Nonetheless, spa-
tially distributed phenomena have a significant influence
on many chemical and thermodynamic processes, for in-
stance, on those involving mass or energy transport by
convection or diffusion.

Mathematical representation of a distributed-
parameter system involves Partial Differential Equations
(PDEs) (Sohlberg and Jacobsen, 2008). A specific
challenge in calibrating and validating PDEs is that
of distinguishing between model reduction errors and
model–data discrepancies (Sohlberg and Jacobsen, 2008;
Ljung, 1999). Calibration and validation of PDE models
commonly involves discretization of spatial variables
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leading to a model represented as a system of Ordinary
Differential Equations (ODEs) (Funkquist, 19997; Liu,
2005; Liu and Jacobsen, 2004). The approach was used
experimentally by Gewitz (2005) and Weyer et al. (2000)
in application to modeling a heat exchanger.

In this work, a heat exchanger was divided into two
sections, high and low temperature. The temperature in
each section was taken as a state variable along with the
following physical assumptions: (i) the amount of heat
transferred to the surrounding environment is negligible,
(ii) heat conduction in the flow direction in both plates
and fluids is absent, (iii) each section is characterized by
a uniform temperature distribution and constant specific
heat capacity (Gewitz, 2005).

Fluids at different initial temperatures are allowed to
pass, as a counter-flow, through parallel chambers con-
taining metal plates. In the process, the heat is conducted
between the fluid “sections”. A similar approach has been
applied to a linearized, distributed model of a heat ex-
changer and presented by Bonivento et al. (2001).

The fourth of the methodologies listed at the begin-
ning of this section, hybrid modeling, separates the model
into a white/transparent box part, a first-principle equation
model, and a black-box part represented by a data-fitted
neuro-fuzzy (or similar) model. Thanks to using a hy-
brid model, the predictions tend towards results obtainable
from the first-principle model when new operating con-
ditions are encountered and, additionally, the data-based
models are used in already encountered and known oper-
ating conditions (Penha and Hines, 2002).

There are two major methodologies: the “serial ap-
proach” and the “parallel approach” (Penha and Hines,
2002). The former uses a data-based model to construct
missing inputs or parameter estimates of the first-principle
model, while the latter uses a nonlinear data-driven dy-
namical structure (e.g., neural nets, fuzzy sets, evolution-
ary computing) to model nonlinearities, disturbances or
other processes not accounted for in the first-principle
model. In the serial hybrid modeling approach, nonlin-
ear system identification methods are used to estimate pa-
rameters of first-principle models, which are then used
to model the system. Estimated parameters may be un-
known, unmeasurable, changing with time or otherwise
uncertain.

In the parallel hybrid modeling approach, a nonlinear
system identification method is used to predict the residu-
als not explained by the first-principle model (Penha and
Hines, 2002). Predicted residuals are added to the output
of the first-principle model during its operation, resulting
in a total prediction much closer to the response of the ac-
tual system. As shown by Penha and Hines (2002), both
the physical model and the parallel hybrid modeling ar-
chitecture are capable of modeling a heat exchanger. The
physical model did not perform well at all in the steady
state conditions, therefore standard neural network archi-

tectures (multi-layer perceptrons) were used to improve
its performance. For comparison purposes, the authors
developed a hybrid series model and compared its perfor-
mance with the parallel hybrid model described by Penha
and Hines (2002). An overview of the grey-box model cat-
egories discussed herein is presented (Bohlin, 2006; Kor-
bicz et al., 1993; Pearson and Pottmann, 2000; Sohlberg
and Jacobsen, 2008).

3. First-principle model of a feedwater
heater

Investigation of the dynamics of a power plant requires
detailed models comprising sub-models representing par-
ticular components of a plant. These models are based
on first-principle equations (e.g., mass, momentum, and
energy balance) that involve phenomenological correla-
tions, like heat transfer coefficients. Such models are com-
monly utilized to gain an understanding of physical pro-
cesses, in process efficiency optimization and in diagnos-
tics aimed at detection of abnormalities, like gradual or
abrupt changes in a process. These models are knowledge
models, whereby process dynamics can be understood.

The complexity of these models may be different de-
pending on the modeling purpose, starting from compact,
lumped-parameter models capturing only the first-cut dy-
namics, through moderately complex ones, up to com-
plex, large-scale, distributed-parameter models (Hangos
and Cameron, 2001). In this context, a feedwater heater,
as one of the components of a power plant, requires at
least a moderately complex model to capture its funda-
mental thermodynamic processes.

The model applies three categories of parameters:
geometrical, physical and phenomenological. Geometri-
cal parameters are deduced from the construction or op-
erational documentation. Nevertheless, models with de-
duced parameters are always biased, to some extent, by
imprecision caused by the fact that a lumped-geometry
model is used instead of a distributed-geometry one. The
level of inaccuracy that is acceptable depends on the mod-
eling purpose, available geometrical data and user prefer-
ences.

Physical parameters can also be defined based on
available documentation and, similarly to geometrical pa-
rameters, are also prone to the same error type during
aggregation of a distributed-parameter representation into
a lumped-parameter representation, e.g., a spatially dis-
tributed mass of a heater construction.

The third category, phenomenological parameters,
describe physical processes, such as transfer or loss of en-
ergy, and are typically functions of other sub-parameters,
such as the type of heat conduction surface, type of fluid,
its density and velocity of the fluid flow. Under the as-
sumption that all the other model parameters, i.e., geomet-
rical and physical, are known, the system identification
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methodology, allows phenomenological parameters to be
adjusted based on operational data.

This section describes a moderately complex model
of a feedwater heater, in which four phenomenological pa-
rameters, i.e., steam-feedwater, steam-metal, condensate-
feedwater, and condensate-metal heat transfer coeffi-
cients, are tunable. The model of a feedwater heater pro-
posed herein provides a satisfactory compromise between
the numerical performance and modeling accuracy. The
model involves a simplified model of a steam path, in
which the desuperheating zone is neglected, based on the
assumption that the steam turns into the condensing phase
immediately after coming into the heater cavity. There-
fore, the model consists of two control volumes, i.e., a
combined desuperheating and condensing volume, and a
subcooling volume (Fig. 1).

The following are the assumptions underlying the
steam flow path model (Flynn, 2000). Negligible are: (i)
the exchange of the heat between the cavity and the ex-
ternal environment, (ii) the accumulation of the heat in
the water and (iii) the exchanges of the energy and the
mass, caused by the surface phenomena at the interface
between the condensing and the subcooling areas. Addi-
tionally, it is assumed that all the areas where the exchange
of the heat takes place are variable and depend on the
desuperheating-condensing and subcooling volumes, and
(iv) the pressure in the cavity is constant and uniformly
distributed and equal to the steam pressure at the inlet.
Moreover, the enthalpy is averaged over each of the areas
based on the boundary conditions of each heater chamber.

The following are the assumptions underlying the
model of the feedwater flow path (Flynn, 2000). The
feedwater is in a liquid state and in a subcooling condi-
tion. The pressure of the fluid in the tube-bundle equals
the pressure of the feedwater at the inlet. The physical
properties of the tube-bundle metal are uniform, and the
longitudinal heat conduction in both the pipe metal and
the fluid is negligible.

The model of the heater uses equations of conserva-
tion of the mass of the drain water, conservation of the
mass of the water and the steam, as well as conservation
of the energy of the subcooled water, in order to describe
the behavior of the fluid inside the cavity of the heater.
Particular control volumes are defined by the i-th input
and i-th output parameters at the boundaries n and n + 1,
respectively. For instance, the control volume V12 is char-
acterized by the input temperature T1 and the output tem-
perature T2. The heat energy flow through the n-th bound-
ary of the j-th control volume is given as the product of
the fluid enthalpy and the mass flux,

Q̇n = hn·ṁn. (1)

The transfer of heat energy from the i-th to the i-th
control volume of the steam flow path and the j-th to the
j-th control volume of the feedwater flow path is given

using logarithmic means of the temperature difference for
counterflow conditions,

Q̇ii−jj = kii−jj · Aii−jj · (Ti − Tj)n − (Ti − Tj)n+1

ln( (Ti−Tj)n

(Ti−Tj)n+1
)

,

(2)
where the heat exchange area is a nonlinear function of the
heater height (volume of the heater cavity). The transfer
of the heat energy from the i-th to the i-th control volume
of the steam flow path and the mass of the metal of the
heater shell is given by the following expression:

Q̇ii−m = kii−m · Aii−m · (Ti − Tm)n − (Ti − Tm)n+1

ln( (Ti−Tm)n

(Ti−Tm)n+1
)

.

(3)
The assumption of the uniformity of the enthalpy dis-

tribution in each control volume of the heater is expressed
by the equation of internal energy in a particular control
volume

Hjj = mjj · (hn − hn+1). (4)

Particular heat exchange areas of the combined
desuperheating-condensing and draining volumes are ob-
tained from the following formulas:{

A12 = fA(V12),
A23 = Atot − fA(V12).

(5)

The level of the condensate inside the heater is cal-
culated from

x =
V23 − V230

Acon
, (6)

where Acon is the area of a condensate surface in a heater
cavity and V230 is the nominal (reference) height of the
condensate volume.

3.1. Steam flow path. Equations (8) and (10), de-
scribing conservation of the energy in the desuperheating-
condensing and draining volumes, are formulated sepa-
rately for the volumes V12 and V23, respectively. Equa-
tions (7) and (9), describing conservation of the mass in
the desuperheating-condensing and draining volumes, are
formulated separately for the mass of steam m12 and mass
of water (condensate) m23, respectively. The system of
equations of the steam flow path is as follows:

dm12

dt
= ṁ1 − ṁ2, (7)

dH12

dt
= Q̇1 − Q̇2 − Q̇12−56 − Q̇12−m, (8)

dm23

dt
= ṁ2 − ṁ3, (9)

dm23

dt
= Q̇2 − Q̇3 − Q̇23−45 − Q̇23−m. (10)

The term Q̇3 represents the outgoing energy rate of
the condensate from the actual heater to the upstream
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Fig. 1. Schematic representation of the model of a four-volume heater.

heater corrected by the term of the incoming energy rate
of the condensate from the downstream heater,

Q̇3 = Q̇3 − Q̇downstream

= Q̇3 − hdownstream · ṁdownstream, (11)

where ṁ3 is the outgoing mass rate of the condensate
from the actual heater to the upstream heater corrected by
the term of the ingoing mass rate of the condensate from
the downstream heater,

ṁ3 = ṁ3 − ṁdownstream. (12)

The volume V12 and the pressure p12 of the conden-
sate inside the steam cavity were selected as the state vari-
ables and are related to the mass and the internal energy
via the following matrix of partial derivatives:

⎡
⎢⎣

dm12

dt
dH12

dt

⎤
⎥⎦ =

⎡
⎢⎢⎣

∂m12

∂V12

∂m12

∂p12

∂H12

∂V12

∂H12

∂p12

⎤
⎥⎥⎦ ·

⎡
⎢⎣

dV12

dt
dp12

dt

⎤
⎥⎦

=

[
e11 e12

e21 e22

]
·

⎡
⎢⎣

dV12

dt
dp12

dt

⎤
⎥⎦ (13)

Equations (7) and (8) take, upon substitution, the fol-
lowing form:

e11 · dV12

dt
+ e12 · dp12

dt
= ṁ1 − ṁ2,

e21 · dV12

dt
+ e22 · dp12

dt
= Q̇1 − Q̇2 − Q̇12−56

− Q̇23−45,

(14)

where the individual elements of the partial derivative ma-
trix are given by the following expressions:

e11 =
∂m12

∂V12
=

∂(m12 · V12)
∂V12

= ρ12 +
∂ρ12

∂V12
· V12,

e12 =
∂m12

∂p12
=

∂ρ12

∂p12
· V12 +

∂V12

∂p12
· ρ12,

e21 =
∂H12

∂V12
=

∂(ρ12V12h12)
∂V12

= ρ12h12 +
∂ρ12

∂V12
· h12V12 +

∂h12

∂V12
· ρ12V12,

e22 =
∂H12

∂p12
=

∂(ρ12V12h12)
∂p12

=
∂ρ12

∂p12
· V12h12 +

∂V12

∂p12
· ρ12h12

+
∂h12

∂p12
· ρ12V12 − V12.

(15)

The assumption that

∂ρ12

∂V12
≡ 0,

∂V12

∂p12
≡ 0

yields

e11 =
∂m12

∂V12
= ρ12,

e12 =
∂m12

∂p12
=

∂ρ12

∂p12
= V12,

e21 =
∂H12

∂V12
= ρ12h12 − p12,

e22 =
∂H12

∂p12
= V12

(
h12

∂ρ12

∂p12
+ ρ12

∂h12

∂p12

)
− V12

(16)

and, additionally,

V12 = Vtotal − V23, dV12 = −dV23. (17)
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The mass of the water in the condensate cavity is de-
termined from the assumption written as follows:

If
dm12

dt
= ṁ1 − ṁ2 and

dm23

dt
= ṁ2 − ṁ3,

then
dm23

dt
= ṁ1 − ṁ3 − dm12

dt
.

(18)
Variables obtained from (18) are substituted to (14),

ṁ3 − ṁ2 = e11
dV12

dt
+ e12

dp12

dt
,

ṁ3h3 − ṁ2h2 − Q̇12−m − Q̇23−m

= e21
dV12

dt
+ e22

dp12

dt
. (19)

The unknowns are determined as follows:

dp12 =
1

e22 − e12h2

[
m3(h3 − h2) − (e21

− e11h2)
dV12

dt
− Q̇12−m − Q̇23−m

]

ṁ2 =
1

e22 − e12h2
(e12e21 − e11e22)

dV12

dt

+
[
e12(Q̇12−m − Q̇23−m) − (e12h3 − e22)ṁ3

]
.

(20)
A heat transfer from the heater cavity to the metal of the
heater shell is formulated with the use of the energy con-
servation law,

dHm

dt
= Q̇12−m + Q̇23−m, (21)

where
Hm = mm · cpm · Tm. (22)

3.2. Feedwater flow path. Equations

dH45

dt
= Q̇4 − Q̇5 + Q̇23−45, (23)

dH56

dt
= Q̇5 − Q̇6 + Q̇12−56, (24)

are formulated based on the conservation of the en-
ergy in the feedwater volumes corresponding to the
desuperheating-condensing and draining with the assump-
tion of uniformity of the feedwater density distribution.

3.3. Modeling object. A high-pressure heater, denoted
by XW1 in Fig. 2, was used as a reference system, char-
acterized by the operational and constructional data pre-
sented in Table 1. The values of the phenomenological
model parameters, depending on the estimation case, are
given in Sections 5.3–5.4 in Tables 5–6. The remaining
values were taken from the operational documentation.
The list of input-output variables and calculated variables
is presented in Tables 2 and 3, respectively.

4. Method for adjusting parameters of the
first-principle model

The heater model is represented as a set of non-linear
state-space equations formulated in the continuous-time
domain. The objective of the estimation is to minimize the
error function between the measured signals and model
responses by means of an iterative numerical technique
(Ljung, 1999). The function describing the error has to be
positive and decreasing. The procedure of model tuning
consists of two in-a-loop phases: (i) simulation of a model
by solving differential equations numerically in Simulink
(Mathworks, 2007), and (ii) numerical minimization in
the parameter space with respect to an error-related cri-
terion function using the Matlab Optimization Toolbox
(Mathworks, 2007). After each simulation of the model
for fixed-length input signals, the simulated output data
are sampled and the criterion is re-evaluated to calculate a
new set of model parameters. Interested readers may find
more information concerning available toolboxes that sup-
port identification of first-principle models in the works of
Ljung (1999) and Bohlin (2006).

The following structure of nonlinear state-space
equations provides a general representation of the heater
model:

d
dt

x(t) = f(t, x(t), u(t), w(t); θ),

y(t) = h(t, x(t), u(t), v(t); θ),
x(0) = x0,

(25)

where the vector f(·) is a nonlinear, time-varying function
of the state vector x(t) and the control vector u(t), while
vector h(·) is a nonlinear measurement function, w(t) and
v(t) are sequences of independent random variables and
θ denotes a vector of unknown parameters. The predictor
resulting from the model (25) takes the form

ŷ(t|θ) = g(t, Zt−1; θ), (26)

while the prediction error equation has the form

ε(t, θ) = y(t) − g(t, Zt−1; θ). (27)

The sum of squared errors is used as an error crite-
rion. This problem is known in numerical analysis as the
“nonlinear least-squares problem” (Ljung, 1999). The ob-
jective of the estimation is to minimize the error function
VN (θ) by means of an iterative numerical technique. The
error function VN (θ) has the form

VN (θ, ZN ) =
1
N

N∑
t=1

1
2
ε2(t, θ). (28)

Three methods of minimizing the error function (28)
are available for nonlinear grey-box modeling. These
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Table 1. Parameters of the high-pressure heater XW1 used in simulation.
Type of parameter Parameter Symbol Unit Value

Geometrical

Heat exchange area—steam A12 [m2] fA(V12)
Heat exchange area—condensate A23 [m2] Atot − fA(V12)
Overall heat exchange area Atot [m2] 600
Steam and condensate volume V12 + V23 [m3] 2.9
Feedwater volume V45 + V56 [m3] 4
Heater height x [m] 10

Physical
Mass of the metal of a heater mm [kg] 35500
Specific heat of a metal cpm [J/kg · K] 500 · 10−3

Phenomenological
parameters

Heat transfer coefficient steam to feedwater k12−56 [kW · m−2 · K−1] Table 5+6
Heat transfer coefficient condensate to feed-
water

k23−45 [kW · m−2 · K−1] Table 5+6

Heat transfer coefficient steam to metal k12−m [kW · m−2 · K−1] Table 5
Heat transfer coefficient condensate to
metal

k23−m [kW · m−2 · K−1] Table 5

PID settings
Proportional P [−] 0.8
Integration I [s] 53
Derivative D [s−1] 0

Table 2. List of input and output variables of the two-volume heater model.
Input signals Output signals

Signal name Unit Signal name Unit

Steam flow rate ṁ1 [kg/s] Condensate flow rate ṁ3 [kg/s]

Steam temperature T1 [C◦] Condensate temperature T3 [C◦]
Steam pressure p1 [MPa] Condensate pressure p3 [MPa]

Feedwater flow rate ṁ3 [kg/s] Feedwater flow rate ṁ6 = ṁ3 [kg/s]

Feedwater temperature T3 [C◦] Feedwater temperature T6 [C◦]
Feedwater pressure p3 [MPa] Feedwater pressure p6 = p3 [MPa]

Reference (set-point) condensate level xconref [m] Condensate level xcon [m]

Downstream condensate flow rate ṁdownstream [kg/s]

Downstream condensate temperature Tdownstream [C◦]
Downstream condensate pressure pdownstream [MPa]

Table 3. List of calculated (auxiliary) variables of the four-volume heater model.
Variable Symbol Unit

Steam volume V12 [m3]

Condensate volume V23 [m3]

Feedwater volume corresponding to steam volume V56 [m3]

Feedwater volume corresponding to condensate volume V45 [m3]

Condensate level x0 [m]

are (i) direct search, (ii) first-order, and (iii) second-order
methods. Direct search methods use only the value of the
function to find the minimum. The first-order method uses
the information provided by the first derivatives (gradi-
ent) of the error function, while the second-order method
uses both information regarding the first and the second
order derivatives (gradient and Hessian form) of the error
function.

5. Model validation and discussion of results

This section presents the tuning process of the
continuous-time heater model formulated in Section
3 in Simulink, along with the use of the Simulink Param-

eter Estimation toolbox to adjust its phenomenological
parameters.

The final application goal of the developed identifica-
tion methodology is the virtual power plant model, includ-
ing all the necessary flow paths required to simulate the
basic functionality of a power unit, i.e., a boiler, a turbine,
a net load, and a feedwater regeneration system. For the
purpose of generic investigations, a model isolated from
the system is required. However, flow measurements are
only available for larger parts of the system. For example,
the feedwater flow rate is captured only after the turbine
and before the boiler. This implies a need for reconstruct-
ing missing signals from others with the use of a static
flow coefficient.
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Fig. 2. Functional scheme of a power block (EX: steam extraction port, XW: high pressure heater, XN: low pressure heater, CO:
condenser, PZ: main pump).

5.1. Description of a feedwater installation. The
heater, denoted by XW1 in Fig. 2, is a part of a feedwater
regeneration system in which feed pumps pass the con-
densed steam (feedwater) from a condenser through heater
banks, supplied by the steam extracted from the high, in-
termediate and low-pressure sections of a steam turbine.
The condensate is pumped to the deaerator, through the
bank of low-pressure heaters XN1, XN2, XN3, XN4 and
XN5, and further from the deaerator to the steam gen-
erator (boiler) through the bank of high-pressure heaters
XW1, XW2 and XW3.

The drainage system of the feedwater heater consists
of a drain removal path from each heater. The normal
drain flow path is cascaded to the next lower stage heater,
and the alternate path is diverted to the condenser. The
heaters XN1 and XN2 assembled in the condensers are in
continuous operation with the condensers CO1 and CO2.
When the turbine is loaded at a given rate, steam is al-
lowed to enter the bank of high-pressure heaters through
extraction outlets and pipelines denoted by III, II and I
to the heaters XW3, XW2 and XW1, respectively. Reg-
ulatory control loops of the condensate level control are
coupled to the power unit controller. The control system
consists of the PID controller, which enables the conden-
sate level variation to be compensated and maintains its
constant level in the subcooling zone. In order to increase
the maximum power of the turbine and to maintain the
required margin of controllable power of the turbine un-
der high load conditions, the steam pressure control valves

were installed in the steam pipeline between the extrac-
tion ports EX I and EX II to the heaters XW 2 and XW3
(Fig. 2). The valves enable the temperature of the feedwa-
ter to be controlled by regulating the pressure of the steam
entering the heater.

The following signals are available: the condensate
level, steam pressure inside the heater cavity, feedwater
flow rate, the temperature of the feedwater and conden-
sate. The condensate level signal was not used in adjusting
heater parameters since its value is almost constant and
dynamics are much faster than the thermal process. The
steam pressure signal was used in order to reconstruct the
dynamics of the steam flow rate into the heater cavity from
the turbine extraction port. If the internal pressure inside
the four-volume heater model, p12 = p23, is greater than
or equal to or the inlet pressure p1, then the inlet steam
flow rate approaches zero, complying with the formula

ṁ1 =
{

α · (p12 − p1)γ if p12 < p1,
0 if p12 ≥ p1,

(29)

where α is the discharge coefficient and γ is a coefficient
dependent on the character of the flow. The inlet and outlet
flows of the feedwater are equal due to the assumption of
constant density. Finally, the signals of the temperature of
feedwater and condensate were used as reference data for
optimization algorithms.

The performance of the parameter adjustment proce-
dure is evaluated by visual inspection of a plot (Figs. 5,
7 and 9, bottom panels) or by analyzing the value of the
Pearson correlation coefficient.
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Fig. 3. Power rate variability over operating time of a power
unit.

5.2. Input-output signals. The load of a power unit is
subjected to daily/weekly fluctuations from low to high
(Fig. 3). As a consequence, the data are concentrated
around two operating points, namely 155 MW and 215
MW, while the full operating range is not sufficiently cov-
ered. The data have a multi-modal distribution as a mix-
ture of Gaussian distributions corresponding to those op-
erating points (Fig. 4).

Fig. 4. Multi-modal distribution of an output signal of a heater
model (temperature of the condensate).

5.3. Settings of the optimization and simulation algo-
rithms. The simulation and optimization settings used
in the parameter adjustment process are presented in
Table 4. The Newton–Gauss method implemented as
the lsqnonlin(·) routine in the Optimization Toolbox
(Mathworks, 2007) was used to minimize the function de-
scribing the error in the measurement signals and model
responses.

The simulation model is run in continuous time. Af-
ter each run of the model for fixed-length input signals

(901 samples), the simulated output data are sampled
(Ts = 60 s) and the criterion function is evaluated to de-
termine a new set of model parameters. The number of
runs is limited by the parameter MaxIter, see Table 4.

5.4. Adjustment of model parameters based on oper-
ational data. The simulation model considered in this
section consists of a heater model including an equiva-
lent model of a PID controller opening the drainage valve.
The settings of the controller were read directly from the
operational documentation. Geometrical and physical pa-
rameters of the heater model (Table 1) were also extracted
from the operational documentation and are assumed to be
known. The four phenomenological parameters, namely,
k12−m, k23−m, k12−56 and k23−45 (Fig. 5), which, by def-
inition, remain constant over a wider range of operating
conditions, are identified. The range of operating condi-
tions corresponds to that of the power ratio of the turboset,
i.e., between 140 and 225 MW. The procedure of numer-
ically adjusting these parameters was executed to find the
values that ensured the best fit of the heater model to the
data. The model was run and tested on a PC with an In-
tel Core i7 CPU 3 GHz and 6 GB RAM under Microsoft
Windows 7 Edition. Matlab v. 7.8 (R2009a) was used.
Results are presented in Table 5 and, additionally, the fit
of the model to data is presented graphically in Fig. 5,
the bottom panel). The model reproduces the trend in the
condensate and the feedwater temperatures with good ac-
curacy.

The quality of the fit of the model is assessed by
a measure based on the Pearson correlation coefficient.
Convergence trajectory plots show a stable trend towards
constant values of the parameters, which correspond to
convergence towards the minimum of the criterion func-
tion, within less than 6 iterations (Fig. 5, top panel, and
Fig. 6).

The convergence is further confirmed by clear trends
in sequences of the first-order difference of parameter val-
ues, additionally illustrating the speed in which the algo-
rithm converges to the solution. First-order difference se-
quences approach zero, indicating convergence in a few
iterations (Fig. 5, middle panel). The final values of heat
exchange coefficients are not affected by the initial condi-
tions (Table 5).

5.5. Adjustment of reduced model parameters based
on operational data. The application goal is to use the
feedwater model as a part of the on-line monitoring sys-
tem of a power unit. In this application, the model traces
operational data and adjusts the model parameters assum-
ing quasi steady-state operation of the units. This assump-
tion allows the process of accumulation of thermal energy
in the housing metal to be neglected. The thermal inertia
of the heat transfer between the steam in the heater cav-
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Table 4. Simulation and optimization settings.
Simulation Optimization (minimization)

Option Value Option Value

Solver ode23tb (stiff/TR-BDF2) Gradient type basic
Max step size Auto Algorithm lsqnonlin
Min step size Auto Cost type SSE

Zero crossing control Disable all DiffMaxChange 0.1
Relative tolerance Auto DiffMinChange 1E-08
Absolute tolerance Auto Large scale true

MaxIter 28
RobustCost False

TolCon 1E-6
TolFun 1E-6

Table 5. List of calculated (auxiliary) variables of the four-volume heater model.
Case A Case B Case C Case D

Initial value k23−45 3 1 4 5
Initial value k12−56 3 1 4 0.2
Initial value k23−m 3 1 0.3 5
Initial value k12−m 3 1 0.3 2

Estimated value k23−45 3.488 3.457 3.456 3.455
Estimated value k12−56 1.658 1.658 1.656 1.657
Estimated value k23−m 0.2345 0.2456 0.2719 0.2731
Estimated value k12−m 0.6347 0.6227 0.2228 0.7495
Model fit (feedwater) 0.84 0.83 0.82 0.82

Model fit (condensate) 0.85 0.85 0.86 0.87
Computation time [min] 120 128 108 125

ity and the metal of the housing is of the order of several
minutes and is negligible when compared with the thermal
inertia of the heat transfer between the steam and the feed-
water, being of the order of the simulation time. Follow-
ing this assumption, the model can be reduced, neglecting
heat accumulation in the housing metal of the feedwater
heater. The number of adjustable parameters is two in-
stead of four, i.e., k23−56 and k23−45. On the other hand,
the measurements of the temperature of the housing metal
are difficult to obtain in power plants. They are not cap-
tured by data acquisition systems as they are not critical
for safety or control process purposes. The results k23−56

and k23−45 are presented in Table 6 and, additionally, the
fit of the model to data is presented graphically in Fig. 7
(bottom panel). The model reproduces the trend in the
condensate and the feedwater temperatures with accept-
able accuracy.

Convergence trajectory plots show a stable trend to-
wards constant values of the parameters, which corre-
spond to convergence towards the minimum of the cri-
terion function, within less than 6 iterations (Fig. 7, top
panel and Fig. 8).

5.6. Adjustment of reduced model parameters based
on simulation data. The goal of the simulation study
described in this section was to reconstruct the values of

Table 6. Results for the heater XW1.

Case A Case B Case C

Initial value k23−45 2 4 0.2
Initial value k12−56 2 0.2 5

Estimated value k23−45 3.4516 3.4509 3.4484
Estimated value k12−56 1.6568 1.6560 1.6568
Model fit (feedwater) 0.83 0.81 0.81

Model fit (condensate) 0.88 0.88 0.88
Computation time [min] 35 48 55

model parameters and compare them with known true val-
ues. The model configuration was the same as that dis-
cussed in Section 5.4. Simulations, for which operational
data corrupted by measurement noise were the model in-
put, were performed for two heat transfer coefficients,
k23−56 and k23−45, based on data generated from these
simulations. Zero-mean Gaussian noise with unit stan-
dard deviation was added to the simulated output signals,
namely, to the condensate and the feedwater temperature
signals, to emulate measurement disturbances. The initial
values and calculated relative errors between known and
reconstructed heat exchange coefficients are presented in
Table 7 and, additionally, the fit of the model to data is
presented graphically in Fig. 9 (bottom panel). The model
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Fig. 5. Graphical representation of the results reported in Ta-
ble 5 for Case D (FW: feedwater, CO: condensate).

Fig. 6. Trajectory of parameter convergence as a function of the
error (Case D, Table 5): points on the line correspond to
iterations.

reproduces the trend in the condensate and the feedwater
temperatures with excellent accuracy.

This test proved that the proposed system iden-
tification procedure was sufficiently robust to estimate
model/process parameters even if their values were ini-
tially given as far as 100% from the actual (known) values.
The fit quality indicator based on the correlation measure
is very good, showing that the model achieves an accuracy
level of 99%.

Fig. 7. Graphical representation of the results reported in Ta-
ble 6 for Case C (FW: feedwater, CO: condensate).

Fig. 8. Trajectory of parameter convergence as a function of the
error (Case C, Table 6): points on the line correspond to
iterations.

6. Conclusions and discussion of the results

6.1. Performance of numerical optimization schemes.
Adjusting a model to data is, in most cases, a non-convex
optimization problem and the criterion function may have
several local minima. It is therefore most natural to use
physical insight to provide initial values to ensure robust-
ness and fast convergence of the optimization process,
as well as to reduce the dimensionality of the parame-
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Table 7. Results for the heater XW1.

Case A Case B Case C

Initial value k23−45 2 4 0.2
Initial value k12−56 2 0.2 5

Estimated value k23−45 3.4516 3.4509 3.4484
Estimated value k12−56 1.6568 1.6560 1.6568
Model fit (feedwater) 0.998 0.997 0.993

Model fit (condensate) 0.999 0.998 0.992
Computation time [min] 30 36 38

Fig. 9. Graphical representation of the results reported in Ta-
ble 7 for Case B (FW: feedwater, CO: condensate).

ter space by selecting only those parameter values which
are difficult to derive. Using physics-based initial condi-
tions has a significant advantage over blind (random) ini-
tialization of the optimization routine and, furthermore,
physical meaning of the parameters allows additional con-
straints to be set on the error function and/or model pa-
rameters, narrowing the domain in which the optimum is
being searched for. In many cases, it is not possible to ob-
tain initial values of the heat transfer coefficient since the
design calculation sheets, typically developed by the man-
ufacturer, are unavailable. Therefore, an inverse algebraic
method for solving a linearized version of the equations
of the model is used to obtain approximation of the initial
conditions. It is also possible to perform rapid and crude
calculations based on the static energy balance using an
oversimplified model of the heater with only a single heat
transfer coefficient and averaged properties of the steam-
water mixture inside its cavity.

6.2. Accuracy of the model. The system identifica-
tion scenario was used to adjust four heat transfer co-
efficients yielding correlation between the measured and
the predicted temperature signals. Moreover, the simpli-
fied system identification scenario was used to adjust only
the two heat transfer coefficients, while the two remaining
ones, responsible for describing the heat transfer between
a steam-water mixture and the shell of the heater, were set
to zero. The correlation between measured and predicted
temperature signals is presented in Tables 5–7. Further-
more, visual inspection of graphs also confirms that the
obtained correlations are good.

7. Summary

The paper proposes and defines a first-principle model of
a feedwater heater and shows the results of model valida-
tion obtained for selected operational and purely numer-
ical datasets. The model offers physical insight and suf-
ficient numerical performance to be applicable in under-
standing underlying physical phenomena, designing con-
trol systems and optimizing processes. The novelty of this
work is the method of utilizing operational data to adjust
phenomenological parameters of the model of a feedwa-
ter heater derived from physical laws. The model, as pre-
sented herein, is a natural extension of the static energy
balance valid under steady-state operating conditions to a
dynamic form valid under transient operating conditions.
Thanks to formulating the model as a generalization of a
static energy balance, heat transfer coefficients obtained in
the static case are adequate as initial values for model ad-
justment (optimization) algorithms. Moreover, simulation
results generated by the model under operating conditions
correspond to static prediction performed with the use of
an energy balance of the power unit.
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