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Chapter 1

INTRODUCTION

In the past three decades, progress in technology has been accompanied by the
development of diverse and complicated systems. Among them, are multidimen-
sional (n-D) systems characterized by rational functions, or matrices of several
independent variables which can represent di®erent space co-ordinates or mixed
time and space variables. This is a result of information propagation in more than
one independent direction which is the essential di®erence from the classical, or
one-dimensional (1-D) case, where information propagates only in one direction.
The interest in n-D systems (Bose, 1982, 1985, 2001; Gałkowski et al., 2003e;

Gałkowski and Wood, 2001; Kaczorek, 1985; Zerz, 2000) has been motivated pre-
dominantly by a wide variety of applications, arising in both theory and practical
applications. Examples of such applications are multidimensional signal and image
processing (Bracewell, 1995; Dudgeon and Merserau, 1984; Handkiwicz et al., 2000;
Mese and Vaidyanathan, 2002), n-D coding and decoding (Miri and Aplevich, 2000;
Shi and Zhang, 2002) and n-D ¯ltering techniques (Basu, 2002; Lu and Antoniou,
1992), which are frequently used in computer graphics and animation for object
rendering. Recently, repetitive processes have been the most investigated class
of n-D systems (Rogers et al., 2005; Rogers and Owens, 1992, 2001), which are
clearly two-dimensional (2-D) systems, with applications ranging from long-wall
coal cutting and metal rolling (see, for example, (Foda and Agathoklis, 1992; Gał-
kowski et al., 2003d; Rogers and Owens, 1992)) to iterative learning control (ILC)
schemes (Amann et al., 1998; Longman, 2000; Owens et al., 2000) and iterative
algorithms for solving nonlinear dynamic optimal control problems based on the
maximum principle (Roberts, 2000a,b, 2002).
While studying linear n-D systems and linear repetitive processes (LRPs),

many analysis and synthesis problems arise. Among them are fundamental qu-
estions related to stability and stabilisation, feedback control, robust control and
performance measure that should be provided with efficient methods of their so-
lution. Unfortunately, linear n-D systems and LRPs cannot be analyzed by direct
extension of existing methods from 1-D systems theory, because such an approach
ignores their inherent n-D structure and results in computationally hard problems.
This makes most n-D system analysis and synthesis tests not computationally ef-
fective and sometimes not feasible.
In view of computer-aided analysis and synthesis, the efficiency of a method

involves two main aspects: avoiding extensive storage use and keeping the com-
putational complexity as low as possible. The ¯rst requirement implies that the
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storage should be proportional to the amount of data de¯ning the system. Due to
the fact that large amounts of memory are available in modern computer worksta-
tions, the ¯rst requirement may be neglected. Concerning the second requirement,
we focus on some key concepts from the theory of complexity, highlighting their re-
levance to systems and control theory (Blondel and Tsitsiklis, 2000b; Fu and Luo,
1997; Vidyasagar, 1998). A large proportion of the control problems (especially
in 1-D systems theory) is algorithmically solvable with polynomial time computa-
bility, i.e. the running time of an algorithm on any problem instance of the size
n increases no faster than some polynomial function in n. This class of problems
is so-called P, and the problems which belong to such a class are considered ef-
¯ciently solvable. An example of such a problem in 1-D control theory, known
to be polynomial-time solvable, is the stability problem. It can be converted into
computing of system matrix eigenvalues and verifying whether their moduli are all
smaller than 1 (discrete system case) or that they are all in the open-left half-plane
(continuous system case). Since these operations are always performed in polyno-
mial time, the stability problem belongs to class P. It is important to note that an
alternative method is the Routh test, which can also be answered in polynomial
time. This clearly means that the described stability tests of a 1-D system can be
efficiently solved even for high-order systems, and hence it is suitable for inclusion
in a software package.

The problem is assigned to the NP (nondeterministic polynomial time) class
if it is veri¯able (but not necessarily solvable) in polynomial time, i.e. we can ve-
rify, in polynomial time, whether a proposed solution is correct. Other problems
are shown to be NP-hard (Blondel and Tsitsiklis, 2000b; Vidyasagar and Blondel,
2001), meaning that although these problems may be algorithmically solvable, no
polynomial time algorithm is possible, assuming the validity of a long-standing
conjecture in computer science (P 6= NP), which is widely believed to be true.
An example of the NP-hard problem in 1-D system theory is a question related to
output feedback stabilisation with constraints, namely determining whether there
exists a matrix K satisfying K low < K < Khigh and such that A + BKC is
stable (Vidyasagar, 1998), where matrices A, B, C, K low and Khigh are given.
However, many NP-hard problems can be routinely solved in practice, either exac-
tly or approximately using various methods, but generally they are only limited
to low-scale problems. This makes computer implementations possible. Some of
control problems are shown to be undecidable, that is, they are not amenable to
an algorithmic solution and frequently the approximate versions of these problems
are also computationally hard. An example of an undecidable problem in control
theory is the one related to the stability of linear time-varying systems (Blondel
and Tsitsiklis, 2000a).

It is a natural question to ask if analysis and synthesis problems in n-D sys-
tems theory can be considered e®ectively or satisfactorily solved. Unfortunately,
nowadays, most of such problems are assumed to be NP-hard or even undecidable.
This means that solving many of n-D system analysis and synthesis problems is
a nontrivial task. To see this, consider, for example, the stability problem. When
dealing with 2-D (n-D) systems, representations in terms of rational functions of
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several independent variables are frequently used as a foundation for a systems
analysis (Bose, 1977, 1982; HÄatÄonen and Ylinen, 2003; Youla and Gnavi, 1979)
and allow us to formulate stability tests. However, they turn out to be undeci-
dable because we have to check an in¯nite set of system poles, which obviously
cannot be done in ¯nite time. Indeed, zeros of a 2-D (n-D) system characteristic
polynomial (i.e. 2-D (n-D) system poles) are not isolated as in the 1-D case and,
in general, they cannot form a ¯nite set. Therefore, to date no e®ective tests
(with the complexity being a polynomial in decision variables) exist for deciding
if a polynomial of several independent variables has no zeroes in the closed bidisk
(n-disk). Furthermore, the problems with computation of n-D system poles are
accompanied by difficulties in applying the pole placement technique, since there is
no link between the pole placement and the dynamic response of the n-D system.
This immediately makes the controller synthesis a difficult task.
It is not a surprise that computational problems of the same kind occur when

dealing with LRPs and we take account of the fact that they reveal an inherent
2-D system structure. As an example, the stability test for discrete LRPs can be
considered. It is shown in (Rogers and Owens, 1992) that the standard test for
stability along the pass, involves the computation of the eigenvalues of a potentially
large matrix for all points on the unit circle in complex plane. This is clearly
impossible in practice and means that the stability problem of LRPs is undecidable.
In view of these computational difficulties, it is only possible to provide sufficient
stability conditions, i.e. conditions which involve only computations for a ¯nite
number of points. On the other hand, it is difficult to specify the points for
checking. However, in the case of LRP, information propagation in one of two
separate directions only occurs over a ¯nite duration and therefore the 1-D model
of underlying dynamics can be provided. One of the implications of this fact, is the
possibility of applying 1-D system analysis and synthesis methods. Nevertheless,
the resulting process matrices depend on the pass length, which often makes 1-D
system theory tests computationally ine®ective (Gramacki, 1999b).
Another set of problems with the n-D system theory are those that are cau-

sed by the complexity of the underlying ring structure, i.e. polynomials in two
and more indeterminates where the underlying ring does not have a division al-
gorithm (Bose, 1977; Gałkowski, 2001a). The existence of a division algorithm
for Euclidean ring forms constitutes a foundation for the algorithmic derivation of
many canonical forms and solution techniques in 1-D system theory.
To overcome some of these problems, much e®ort has been dedicated to es-

tablishing mathematical tools, outside these required in 1-D system theory, which
can be used to constitute computationally e®ective methods for n-D systems ana-
lysis and synthesis. Among recently developed methods are those based on beha-
vioural theory (Pillai et al., 2002; Wood et al., 2001) and GrÄoebner-basis (Basu,
2002; Curtin and Saba, 1999; Kalker et al., 1995).
The behavioural approach (Polderman and Willems, 1997; Willems, 1991) to

linear systems looks at system equations as just one possible way of representing a
‘behaviour’, that is a set of time trajectories of a vector of selected variables. This
point of view allows us to consider some hard problems in n-D system theory, e.g.
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n-D systems pole placement, but this requires wide-spread knowledge of abstract
algebra (Shankar and Willems, 2000; Wood et al., 2001). In addition to this, the
behavioural approach is still under development and today, this approach cannot
be widely applied in practice as many theoretical problems to overcome remain.

The interest in the GrÄoebner bases, which have been introduced by Buchber-
ger (Buchberger, 1985), has been motivated by developing algebraic methods and
software to support them. Nevertheless, GrÄoebner bases establish an automatic
proving method for many non-trivial theorems which have immediate applications
in n-D system theory (Lin, 2001; Lin et al., 2001). They need to ¯nd an appro-
priate multivariate polynomial set associated with the problem at hand that is a
hard task—worst-case complexity is doubly exponential in the number of varia-
bles (Bose, 1985). For this reason available software allows us to apply this method
only to very small problems (systems with ¯ve or six variables), and therefore it
is not very useful while solving engineering problems.

Recently, the most popular technique for formulating the stability test for
n-D systems is that based on constructing Lyapunov functionals (Bliman, 2002;
Hinamoto, 1997; Lu, 1994; Lu and Lee, 1985). Since an appropriate Lyapunov
functional candidate is provided, the corresponding stability condition can be
expressed in terms of bilinear matrix inequalities (BMIs) (Safonov et al., 1994;
VanAntwerp and Braatz, 2000; Vandenberghe and Balakrishnan, 1997) or linear
matrix inequalities (LMIs) (Boyd et al., 1994; Packard et al., 1991). These two
problem formulations di®er from each other. BMIs introduce a general framework
to formulate control problems, but they are known to be NP-hard (Toker and
ÄOzbay, 1995), and hence no polynomial-time algorithm exists to solve them. On
the other hand, not all problems can be formulated in terms of LMIs, but are
solved with great practical and theoretical efficiency using interior-point algori-
thms (Nesterov and Nemirovskii, 1994) which are polynomial-time algorithms. It
turns out that, in practice, that is even more e®ective. Therefore, LMI methods
seem to be especially attractive when dealing with n-D systems and LRPs. Ho-
wever, this approach only results in sufficient conditions for stability and requires
the problem to be formulated in terms of LMIs which is a difficult task. Although
some results on converting stability conditions of n-D systems and LRPs into an
LMI form have been published (Du and Xie, 2002; Gałkowski et al., 2002d; Lu,
2002), it is necessary to provide the results for various classes of n-D systems,
especially for these where uncertainties, disturbances and delays may appear.

One of the most challenging problems in control theory of 1-D and n-D systems
are those related to analysis and designing systems in the presence of uncertain-
ties. It is a critical issue because physical parameter values are only approximately
known or vary in time (Ackerman, 1997; Zhou et al., 1996). Another cause of un-
certainty is the imperfect knowledge of some system components, or the alteration
of their behaviour due to changes in operating conditions. Finally, we have to
consider the ¯nite precision of computational issues, which can be, for example
introduced by a ¯nite wordlength of the Analog to Digital (A/D) converters and
the Digital to Analog (D/A) converters. For these reasons, there is a need to ¯nd
a method that makes it possible to determine whether or not a system is robustly
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stable. Unfortunately, the problem of providing such a method that can deal with
uncertainties of all sorts, is still unsolved. Moreover, most robust problems are
proven to be NP-hard (Blondel and Tsitsiklis, 1997, 2000b). In addition to this,
the most common situation encountered when dealing with robust problems is
the fact that the controller parameterization depends explicitly on the state-space
matrices of the system, which are unknown. This immediately leads to a problem
formulation in terms of BMIs, which has no e®ective solution. However, there are
several ways to approximate solutions to robust problems using efficient polyno-
mial time algorithms. The most frequently used approach is based on computing
upper bounds on parameter values for which the system remains stable. Further,
this can be formulated with convex optimization over LMIs (Boyd et al., 1994;
El Ghaoui and Niculescu, 1999; Packard et al., 1991). In what follows, this appro-
ach can be used even in the area of n-D systems (Du and Xie, 1999b; Gałkowski
et al., 2003b) and their classes i.e. repetitive processes (Gałkowski et al., 2003a,
2002a,b). Nevertheless, the works related to the area LRPs or n-D systems provide
only some preliminary results which are suitable for a speci¯c class of systems or
processes.

Another set of problems, even for 1-D systems, are those related to integra-
tion of stability and performance design objectives, but only for some specialized
de¯nitions of performance and stability measures. In general, performance optima-
lity does not guarantee robust stability. Hence, performance should be optimized
with a robust stability constraint. To this end, optimization of the H2 and H∞
norms representing a performance measure has been proposed recently. Since most
H2 and H∞ control problems are shown to be NP-hard and have no analytical
solution, we are therefore interested in ¯nding a suboptimal solution which is po-
ssible in practice. This strategy involves some numerical search techniques such
as convex optimization, which is frequently adopted for solving problems in 1-D
system theory (Gahinet and Apkarian, 1994; Scherer and Weiland, 2002; Skelton
et al., 1998). Recently, some attempts have been made towards the development
of convex optimization methods involving LMIs to H2 and H∞ design for 2-D
systems (Du and Xie, 2002; Tuan et al., 2002) but to date, no work has been
reported on a solution to this design problem with performance requirements for
LRPs. Hence, there is a need to provide these results.

It is well known that the increasing expectations of system dynamic perfor-
mances is accompanied by a selection of adequate models of a system. In the
real world, many systems and process dynamics are a®ected by delays which can-
not be neglected and make the control such the systems complicated (Richard,
2003). Examples of systems with delays in biology, chemistry, economics, mecha-
nics, physics, population dynamics, as well as in engineering sciences are included
in (Boukas and Liu, 2003; Dugard and Verriest, 1998; Mahmoud, 2000; Malek-
Zavarei and Jamshidi, 1987; Niculescu, 2001) and references therein.

For this reason, in the last few years, great research e®orts have been spent
on the development of analysis and synthesis techniques which, extending results
from the ¯eld of delay-free systems, may apply to time-delay systems. However,
it turns out that many analysis and design tests and procedures are not suitable
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for computer implementation due to their high computational complexity. For
example, the design of stabilising controllers for time-delay systems may be, in
general, NP-hard (Toker and ÄOzbay, 1996). This has motivated us to seek com-
putationally e®ective methods for their analysis and synthesis even if they only
result in approximate solutions.
The point of interest in 1-D time-delay systems is that they can be modelled

using 2-D dimensional theory (Loiseau and Breth¶e, 1997). Since 1-D time delay
systems are indeed in¯nite-dimensional systems (Hale and Lunel, 1993), then it is
highly attractive to use 2-D (n-D) tools, which are clearly ¯nite-dimensional, to
analyse them (Agathoklis and Foda, 1989; Kamen, 1980).
On the other hand, most of the existing works on time-delay systems are

concerned with control problems of 1-D systems, but relatively little has been re-
ported on 2-D linear systems with delays. The study of such systems with delay
has been motivated by the fact that time delays, which correspond to transpor-
tation or computation times, are encountered e.g. during the processing of visual
images which are intrinsically two-dimensional.
In view of the above facts, there is a need to provide a method suitable for

treating many problems of analysis and synthesis of 2-D(n-D) system classes in a
uni¯ed manner. Additionally, the method to be provided must result in a computer
numerical package, which makes not only analysis and synthesis considered systems
to be automated processes, but a reasonable computational cost of computations
(i.e. polynomial-time) has to be maintained, even for large-scale problems.
In the context of an increasing demand for software that will facilitate the

tedious tasks of data input for automatic system design and analysis, numerous
software packages have been created. Indeed, since packages like Control Sys-
tem Toolbox for Matlab (The Mathworks Inc., 2002) and Control System
Professional Suite integrated withMathematica (Bakshee, 2003) exist, both
classical and modern methods are available for automated analysis and control de-
sign. Moreover, recently developed numerical techniques can be applied to a large
number of previously unsolved problems (or hard to solve) in system control the-
ory. It should also be pointed out that, even though an analytical solution exists, a
numerical search method for the same problem might have a lower computational
complexity than the analytical solution.
Unfortunately, these packages are only available for 1-D systems and up now

there is no commercial software related to n-D systems. Although there exists
a Matlab-based package (Gałkowski et al., 2000) to aid control related analy-
sis/design of LRPs, its use is mainly restricted to 1-D representation and simu-
lation capabilities. However, it provides routines for constructing the discrete
approximation of a di®erential LRP, which is an nontrivial task in the case of
LRPs and 2-D systems in general. The main reason for the lack of software tools
for n-D systems is that the inherent complex structure of such systems resulted
in an absence of satisfactory mathematical and numerical tools for solving related
analysis and synthesis problems.
It has been indicated that among numerical search techniques, convex and

quasiconvex optimization methods (Boyd and Vandenberghe, 2004) which involve



16

LMIs (Boyd et al., 1994; Dullerud and Paganini, 2000; El Ghaoui and Niculescu,
1999) are one of the most promising and e®ective tools for the analysis and synthe-
sis of 1-D and n-D systems. Hence, to apply LMI methods as the algorithmic core
for a wide variety of problems which have arisen in n-D control theory, appropriate
problem formulations in terms of LMIs are required.
Faced with the above facts, it turns out that convex optimization methods

which involve LMIs lead to computer implementable analysis and synthesis tests,
and can generally o®er an escape from some potential difficulties which have ari-
sen in n-D system theory. However, there are still many analysis and synthesis
problems for n-D systems and LRPs, which have no LMI formulations. This is
especially valid for n-D system classes for uncertainty, disturbances and delays
occurrence cases. For these reasons this work is focused on extending recently
developed LMIs methods to solve problems which have arisen in the analysis and
synthesis of such n-D system classes.

The main objective of this work is to convert non-trivial problems in the
analysis and synthesis of LRPs and n-D systems into an LMI framework
for solving them e±ciently with recently developed software packages. In
particular, the problem is to apply LMI methods to n-D system classes
subject to parameter uncertainties, disturbances and delays. The resulting
LMI conditions are implemented as Matlab m-¯les.

The following thesis can be formulated:

Many analysis and synthesis problems of di®erential and discrete LRPs
and generally n-D systems, including very di±cult and practically moti-
vated problems where uncertainties, disturbances and delays may appear,
can be solved e®ectively with LMI methods.

To con¯rm this thesis, the following problems have been addressed:

Theoretical aspects:

• provision and development of a computer implementable formulations,
which involve LMIs, for the following problems:

– stability and stabilisation of LRPs subjected to parameter uncertainty,

– controller synthesis with performance requirements (in the form of H∞
and H2 norms) for LRPs,

– guaranteed cost control of LRPs,

– stability and stabilisation of state delayed 2-D systems,

– robust stability and robust stabilisation of state delayed 2-D systems,

• formulating optimization procedures which can be used to attenuate the
e®ects of uncertainty and disturbances.
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Implementation aspect:

• Implementation of a Matlab-based package which numerically solves con-
sidered class of problems.

Application aspects:

• application of LMI methods to study stability and convergence properties of
iterative algorithms such as iterative learning control procedures,

• applications of LMI methods to analyze parallel computing processes.

The following outlines the structure of this dissertation and shortly highlights its
contributions.

Chapter 2: This Chapter reviews the state-space representations of the 2-D (n-
D) systems and LRPs that are considered. The models with parameter
uncertainty and state delays are also presented. Furthermore, computatio-
nal problems associated with the analysis and synthesis of n-D systems and
their classes (e.g. LRPs) are indicated. In particular, it is shown that existing
approaches to the analysis and synthesis of LRPs and 2-D(n-D) systems are
limited only to a certain type of problem and they may not be suitable for
other classes of problems, especially for those where uncertainties, distur-
bances and delays may appear. Finally, an example is given to illustrate the
applicability of 2-D state-space representation to describe realistic problems
arising in computer science.

Chapter 3: The aim here is to present some fundamental facts about linear ma-
trix inequality methods which are the main tools used in this dissertation.
Computational aspects of using LMI methods and software to solve them
are also considered. This chapter also presents some mathematical tools to
manipulate matrix inequalities and their applications, to obtain a LMI form
for a given non-LMI formulation.

Chapter 4: This Chapter is devoted to providing a concept of computer-aided
robust design for uncertain LRPs. It is shown that LMI methods extend the
use of computer software to deal with engineering decision problems with
uncertainties. The algorithms to design robust and efficient controllers are
also provided. Some computational experiments are presented to illustrate
the e®ectiveness of the proposed algorithms.

Chapter 5: This chapter focuses on providing LMI conditions for analysis and
synthesis purposes with performance requirements. This is accompanied
with H2 and H∞ control theory. Moreover, the guaranteed cost control pro-
blem is considered. The resulting conditions are formulated as optimization
problems involving LMIs, which allows us to increase the system perfor-
mance. It is also shown that most of the problems cannot be solved efficien-
tly with classical methods (if a solution exists) or even that there was not
an analytical solution.
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Chapter 6: Here 2-D state delayed systems are considered. The stability and
stabilisation results are established. To facilitate the computation process,
LMIs methods are employed. An optimization technique to improve nume-
rical results is described.

The dissertation concludes with an overview of major results and the contribu-
tion of this work. Several directions for future research are identi¯ed.



Chapter 2

2-D(n-D) LINEAR SYSTEMS AND LRPS

The linear state-space models for considered classes of 2-D (n-D) systems have
been the subject of research for over three decades due to their advantage of
providing a simple and intuitive way to analysis and synthesis for n-D systems (Du
and Xie, 2002; Gałkowski, 2001a; Kung et al., 1977). Although, 2-D state-space
models seem to be similar to 1-D state-space models, some essential di®erences
exist between them. One of the major di®erences between 1-D and 2-D (n-D)
state-space models is that in the 2-D (n-D) case these models deal only with the
local state in contrast to the global state which preserves all past information as in
1-D case. Therefore, some principal system concepts like stability or controllability
must be formulated for both local and global states.
The state-space representations of 2-D (n-D) systems and their classes are

described in detail in this chapter. Based on these representations, some basic
properties such as stability, robustness and performance bounds are de¯ned and
described. Furthermore, it will be shown that checking these n-D systems proper-
ties are not generally amenable to an e®ective algorithmic solution owing to the
fact that they are generally characterized as being NP-hard or undecidable pro-
blems. Finally, some examples are used to illustrate applications and properties
of presented models.

2.1. State-space models of 2-D linear systems

During the last few decades, considerable attention has been devoted to 2-D sys-
tems due to their practical importance (Kaczorek, 1985). In particular, since the
linear state-space models were introduced in the 1970’s the 2-D systems have been
studied intensively.
There are several state-space models for 2-D systems introduced by Roesser

(Roesser, 1975), Fornasini and Marchesini (Fornasini and Marchesini, 1978), At-
tasi (Attasi, 1973) and Kurek (Kurek, 1985) which have been generalized to the
n-D models later on. These models have been commonly used to describe 2-D
(n-D) systems, and to investigate their several properties.
Here, we will only concentrate on the most common state-space models i.e.

Roesser model (RM) and Fornasini-Marchesini model (FMM). Originally, RM had
been proposed to analyse and control linear iterative circuits, but it can be used
in encoding, decoding and image processing, see (Bose, 1982; Bracewell, 1995; Lu
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and Antoniou, 1992). One of the key features of this model is that the state vector
is partitioned into horizontal and vertical components, say xh and xv, respecti-
vely. An alternative formalism to RM is FMM, which is extensively used in signal
processing (Du et al., 2000) and control (Du and Xie, 2002; Xie et al., 2002). It
should be noted that FMM is also used to describe delay-di®erential models, see
for example (Tian and Zhang, 2004; Zhang and Deng, 2001). Both models are
easily generalized to the general n-D (n > 2) case and also to the continuous or
hybrid case (Kaczorek, 1994). Moreover, it turns out that RM and FMM are not
fully independent of each other therefore one model can be embedded in the second
one.
On the other hand, a 2-D framework has proven to be an e®ective tool in

the study of LRPs (Rogers and Owens, 1992) due to their inherent 2-D system
structure. This allows us to use 2-D state-space models i.e. RM and FMM for
modelling both the di®erential and discrete LRPs.
The unquestioned popularity of the state-space methods in 1-D and n-D sys-

tem theory stems from the fact that they are well understood and efficient and
stable numerical linear algebra routines exist, such as the singular value decom-
position (SVD) required when manipulating state-space models. In what follows,
state-space methods are less sensitive to the size of perturbation in entry data (Hi-
gham et al., 2004). This is why the numerical packages prefer state-space repre-
sentations of linear systems by means of matrices and vectors rather than rational
matrix functions or polynomials. Furthermore, much 2-D (n-D) system analysis
can be done within Lyapunov’s framework, which is most naturally performed
in the state space. Additionally, it turns out that the Lyapunov matrix can be
found by solving a linear system of equations (LSE), algebraic Riccati equations
(ARE) (Doyle et al., 1989) and LMIs (Boyd et al., 1994; Skelton et al., 1998) for
which polynomial-time algorithms exist. Thus, the state-space methods have a
computational advantage over the transfer function approach and they are used
throughout this dissertation.

2.1.1. Roesser state-space model

The Roesser state-space model (RM) (Kung et al., 1977; Roesser, 1975) is de¯ned
by the following equations

[
xh(i+ 1, j)
xv(i, j + 1)

]
=

[
A11 A12

A21 A22

] [
xh(i, j)
xv(i, j)

]
+

[
B1

B2

]
u(i, j)

y(i, j) =
[

C1 C2

] [ xh(i, j)
xv(i, j)

]
+Du(i, j)

(2.1)

In this model i and j are the positive integer valued horizontal and vertical coef-
¯cients, xh ∈ Rnh is the vector of horizontally transmitted information, xv ∈ Rnv

is the vector of vertically transmitted information, u ∈ Rl is the vector of control
inputs and y ∈ Rm is the output vector.
This state-space formalism (2.1) has been introduced for a linear iterative

circuit, which is considered as a spatial system. An iterative circuit is the combi-
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nation of individual cells, each of which is identical, in a regular pattern (Malakorn,
2003), and where each cell performs a linear transformation, as it is depicted in
Fig. 2.1. This type of circuit is used widely in automata and logical circuit theory.
From a practical viewpoint, the iterative circuit may be used in encoding, deco-
ding and image processing (Roesser, 1975). In this case, the boundary conditions

u(i,j)
x (i,j)

v

x (i,j+1)
v

x (i,j)
h x(i+1,j)

h

y(i,j)

cell
(i,j)

Fig. 2.1 . A two-dimensional iterative circuit.

are given by

Xh(0) ={xh(0, j) ∀j : j ≥ 0}
Xv(0) ={xv(i, 0) ∀i : i ≥ 0} (2.2)

It should be pointed out, that relationships between polynomial matrix theory and
state-space description are very strong in the 2-D(n-D) linear case. As a result of
application two variable Z transform in case of RM (2.1), the following transfer
function is obtained

G2
RM(z1, z2) =

[
C1 C2

]([ I − z1A11 −z1A12

−z2A21 I − z2A22

])−1 [
B1

B2

]
+D (2.3)

and the characteristic polynomial is given by

C2RM = det
([

I − z1A11 −z1A12

−z2A21 I − z2A22

])
(2.4)

2.1.2. Fornasini-Marchesini state-space model

Another commonly used state-space model for 2-D systems is the so-called Fornasini-
Marchesini model (FMM) (Fornasini and Marchesini, 1978). The basic model of
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this type (called the second FMM in literature) has the following form

x(i+1, j+1) =A1x(i+1, j)+A2x(i, j+1)+B1u(i+1, j)+B2u(i, j+1)

y(i, j) =Cx(i, j)+Du(i, j)
(2.5)

where, x(i, j) ∈ Rn is the local state vector, u(i, j) ∈ Rl and y(i, j) ∈ Rm are
the control input vector and the output vector respectively with i, j ∈ N. The
boundary conditions are de¯ned by

Xh(0) ={x(0, j) ∀j : j ≥ 0}
Xv(0) ={x(i, 0) ∀i : i ≥ 0} (2.6)

This model has been motivated by the algebraic point of view of Nerode equiva-
lence where 2-D input-output map had been factorized (Fornasini and Marchesini,
1976, 1978; Kung et al., 1977). In contrast to RM, the state vector is not split into
horizontal and vertical components. Moreover, Fornasini and Marchesini were the
¯rst to realize that the major di®erence between 1-D and 2-D systems is that we
can introduce a global and a local state in 2-D (n-D) case. The global state pre-
serves all past information and it is of in¯nite dimension in general (the diagonal
line Lk depicted in Fig. 2.2) while the local state gives us the size of recursion.
What is more, the global state, denoted here by Xk, is de¯ned as collection of all
local states along Lk = {(i, j) : i+ j = k}, hence

Xk = {x(i, j) : i+ j = k}
In case of FMM of the form (2.5), the transfer function is

x(i+1,j+1)

x(i,j+1)

x(i+1,j)

i

j Lk+1
Lk

Fig. 2.2 . An illustration to FMM and global state.

G2
FM(z1, z2) = C (I − z1A2 − z2A1)

−1
(z1B2 + z2B1) +D (2.7)

and the characteristic polynomial is de¯ned as

C2FM = det (I − z1A2 − z2A1) (2.8)
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2.1.3. State-space models of n-D systems

The models de¯ned in (2.1) and (2.5) can be generalized in an easy way to any
n > 2. Hence, the n-D system can be described in state space by the Roesser type
model of the form


x1(i1+1, . . . , in)

...
xn(in, . . . , in+1)


=




A11 . . . A1n

...
. . .
...

An1 . . . Ann






x1(i1, . . . , in)

...
xn(i1, . . . , in)


+




B1

...
B2


u(i1, . . . , in)

y(i1, . . . , in) =
[

C1 . . . Cn

]


x1(i1, . . . , in)

...
xn(in, . . . , in)


+Du(i1, . . . , in)

(2.9)

where xr(i1, . . . , in), r = 1, 2, . . . , n are the local state sub-vectors, u(i1, . . . , in)
and y(i1, . . . , in) are the input vector and the output vector respectively with
i1, . . . , in ∈ N. The characteristic polynomial is associated with (2.9) is then

CnRM (z1, . . . , zn) = det







I − z1A11 . . . z1A1n

...
. . .

...
znAn1 . . . I − znAnn





 (2.10)

On the other hand, the Fornasini-Marchesini state-space model for n-D systems is

x(i1+1, i2+1, . . . , in+1)=A1x(i1, i2+1, . . . , in+1)

+A2x(i1+1, i2, i3+1, . . . , in+1)

+ . . .+Anx(i1 + 1, i2 + 1, . . . , in−1 + 1, in)

+B1u(i1, i2 + 1, . . . , in + 1)

+ . . .+Bnu(i1 + 1, i2 + 1, . . . , in−1 + 1, in)

y(i1, i2, . . . , in) =Cx(i1, i2, . . . , in) +Du(i1, i2, . . . , in−1, in)

(2.11)

where x(i1, i2, . . . , in) is the local state vector, u(i1, i2, . . . , in) is the input vector
and y(i1, i2, . . . , in) is the output vector with i1, . . . , in ∈ N. The characteristic
polynomial is given by

CnFM (z1, . . . , zn) = det

(
I −

n∑

i=1

ziAi

)
(2.12)

2.1.4. Relation between models

It is worth mentioning that RM and FMM are not fully independent of each other.
To see this, consider the FMM equations (2.5) and de¯ne a new state ξ(i, j) as

ξ(i, j) = x(i, j + 1)−A1x(i, j) (2.13)
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then

ξ(i+ 1, j) =x(i+ 1, j + 1)−A1(i+ 1, j) +Bu(i, j)

=A0x(i, j) +A2 [ξ(i, j) +A1x(i, j)] +Bu(i, j)

=A2ξ(i, j) + [A0 +A2A1]x(i, j) +Bu(i, j)

Hence
[
ξ(i+ 1, j)
x(i, j + 1)

]
=

[
A2 A0 +A2A1

I A1

] [
ξ(i, j)
x(i, j)

]
+

[
B

0

]
u(i, j)

y(i, j) =
[
0 C

] [ ξ(i, j)
x(i, j)

]
+Du(i, j)

which is identical to the RM form described by (2.1). On the other hand, by
identifying in (2.1) the vector

x(i, j) =

[
xh(i, j)
xv(i, j)

]

and the matrices A1, A2, B1 and B2 with

A1 =

[
A11 A12

0 0

]
, A2 =

[
0 0

A21 A22

]
, B1 =

[
B1

0

]
, B2 =

[
0

B2

]

and use simple operations as in (Fornasini and Marchesini, 1978) to obtain the
FMM form (2.5).
Throughout this dissertation, the results are presented for one model (RM or

FMM) only with the understanding that they could be applied to another model
after the above mentioned transformations.

2.2. Linear repetitive processes

Linear repetitive processes (LRPs) are one of the most important classes of 2-
D linear systems of both practical and algorithmic interest (Amann et al., 1998;
Roberts, 2000a; Rogers et al., 2005; Rogers and Owens, 1992). The essential unique
characteristic of such a process is a series of sweeps, termed passes, through a set
of dynamics de¯ned over a ¯xed ¯nite duration known as the pass length. On each
pass an output, termed the pass pro¯le, is produced which acts as a forcing function
on, and hence contributes to, the dynamics of the next pass pro¯le. This, in turn,
leads to the unique control problem for these processes in that the output sequence
of pass pro¯les generated can contain oscillations that increase in amplitude in the
pass to pass direction.
To introduce a formal de¯nition, let α < ∞ denote the pass length (which

is assumed to be constant). Then the pass pro¯le yk(p), 0 ≤ p ≤ α (p is the
independent spatial or temporal variable) generated on the pass k acts a forcing
function on, and hence contributes to, the dynamics of the new pass pro¯le yk+1(p),
0 ≤ p ≤ α, k ≥ 0.



2. 2-D(n-D) linear systems and LRPs 25

The schematic illustration of the dynamics evolution is depicted in Fig. 2.3.
This ¯gure also corresponds to the simplest possible case of LRP dynamics where
only the previous pass pro¯le contributes to the current one. In this case we deal
with unit memory LRPs and within this dissertation, reference will be made only
to this subclass of LRPs.

p
a (= )const

k

k+1

k

p p+1
.  .  .

Fig. 2.3 . Schematic illustration of the dynamics of a LRP.

The intrinsic feature of repetitive processes is that their dynamics evolve in
two separate directions, i.e.

• from pass to pass direction (k-direction),
• along a given pass of ¯nite duration (p-direction).

Hence, they clearly have 2-D system structure systems and therefore it is natural
to exploit structural links between 2-D linear systems and LRPs. It is worth noting
that in the case of LRP, information propagation in one of two separate directions
only occurs over a ¯nite duration. This fact is the key di®erence with other classes
of 2-D linear systems (see Fig. 2.4 for illustration). According to the fact that
LRP dynamics can evolve as discrete or continuous function of the independent
variable (which has temporal or spatial characteristic), two subclasses of LRPs can
be considered

• discrete LRPs, where evolution of the dynamics in both directions is discrete,
• di®erential LRPs where, in contrast to discrete LRPs, the dynamics along the
pass evolves as a continuous function of the independent variable (dynamics
from pass to pass is still discrete).

The state-space model of a di®erential LRP has the following, commonly
known (Rogers and Owens, 1992), form over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) =Axk+1(t) +B0yk(t) +Buk+1(t)

yk+1(t) =Cxk+1(t) +D0yk(t) +Duk+1(t)
(2.14)

Here on pass k, xk(t) ∈ Rn is the state vector, yk(t) ∈ Rm is the pass pro¯le
vector, uk(t) ∈ Rl is the vector of control inputs.
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i

j

p

k

a

A 2-D system An LRP

Fig. 2.4 . Information propagation for 2-D systems and LRPs.

To complete the process description, it is necessary to specify the ‘initial
conditions’ - termed the boundary conditions here, i.e. the state initial vector on
each pass xk+1(0) and the initial pass pro¯le (i.e. on the pass number 0) y0(t).
The simplest possible form of them are

xk+1(0) = dk+1, k ≥ 0,
y0(t) = f(t), 0 ≤ t ≤ α

(2.15)

where f(t) ∈ Rm is a vector whose entries are known functions of t over [0, α] and
dk+1 ∈ Rn is a vector with constant entries.
In case of discrete LRP, the state-space model has the following form over

0 ≤ p ≤ α, k ≥ 0

xk+1(p+ 1) =Axk+1(p) +B0yk(p) +Buk+1(p)

yk+1(p) =Cxk+1(p) +D0yk(p) +Duk+1(p)
(2.16)

Again it is necessary to specify the boundary conditions, which are given by

xk+1(0) = dk+1, k ≥ 0,
y0(p) = f(p), p = 0, 1, . . . , α− 1 (2.17)

In some cases (e.g. in the cases of mining or optimal control applications, see (Ro-
berts, 2000a,b; Rogers and Owens, 1992)) the following form of (2.17) are used

xk+1(0) = dk+1(0) +
α−1∑

j=0

Kjyk(j), k = 0, 1, . . . (2.18)

where Kj is a constant matrix of appropriate dimension. These boundary con-
ditions are called dynamic boundary conditions (Gałkowski et al., 2001b; Rogers
et al., 2002, 2005). Note that in case of di®erential LRP, j is sample point along
the previous pass.
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2.2.1. Linear repetitive processes in terms of Roesser model

It was mentioned that LRPs are a class of 2-D systems thus they share certain
structural similarities with 2-D linear systems. Therefore, 2-D state-space mo-
dels i.e. RM (2.1) and FMM (2.5) can be used for modelling both discrete and
di®erential LRPs. To use the RM, a simple ‘forward transformation’ of the pass
pro¯le vector followed by a change of variable in the pass number are employed.
In particular, introduce

r =k + 1,

yk(p) =vk+1(p) = vr(p),
(2.19)

then the state-space model (2.16) takes state equation structure in the RM
[
xr(p+ 1)
vr+1(p)

]
=

[
A B0

C D0

] [
xr(p)
vr(p)

]
+

[
B

D

]
ur(p) (2.20)

Hence in terms of RM, the pass pro¯le vector yk(p) plays the role of the vertical
state vector and the pass state vector xk+1(p) plays the role of horizontal state
vector. In what follows, the pass pro¯le vector is simultaneously the output vector,
denoted here by zr(p) and hence we can write

zr(p) = vr(p) =
[
0 I

] [ xr(p)
vr(p)

]
(2.21)

2.2.2. Linear repetitive processes in terms of Fornasini-Marchesini model

On the other hand, the state-space models of LRPs (2.16) and (2.14) can be
embedded into the FMM (2.5). To proceed, de¯ne the following matrices from the
state-space model (2.16)

Â1 =

[
A B0

0 0

]
, Â2 =

[
0 0

C D0

]
, B̂1 =

[
B

0

]
, B̂2 =

[
0

D

]
(2.22)

and the augmented state vector

x̂(p+ 1, k + 1) =

[
xk(p+ 1)
yk(p)

]

Furthermore, introduce the input vector

û(p+ 1, k) = û(p, k + 1) = uk(p)

then the equation (2.16) can be rewritten in the following form

x̂(p+1, k+1) = Â1x̂(p, k+1)+Â2x̂(p+1, k)+B̂1û(p, k+1)+B̂2û(p+1, k) (2.23)

which is clearly the FMM.
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2.2.3. 1-D equivalent model

It is shown (Gramacki, 1999b; Rogers et al., 2005; Rogers and Owens, 1992) that
some of the properties of LRPs (e.g. asymptotic stability) can be characterized
with other forms of discrete LRPs (also for di®erential LRPs, after discretization
process) using a 1-D equivalent state-space model of the underlying dynamics.
Basic steps (for details, see (Gałkowski et al., 2002c; Gramacki, 1999b)) in deri-
vation of a such model involve the change of variables (2.19) and de¯nition of the
so-called global state, input and pass pro¯le vectors (α denotes the pass length)

Y r =




νr(0)
νr(1)
...

νr(α− 2)
νr(α− 1)



, Xr =




xr(1)
xr(2)
...

xr(α− 1)
xr(α)



, U r =




ur(0)
ur(1)
...

ur(α− 2)
ur(α− 1)




Then the 1-D equivalent state-space model for processes described by (2.16) and
(2.17) is de¯ned by

Y (r + 1) =Φ̃Y (r) +∆U(r) +Θxr(0)

X(r) =Γ̃Y (r) +ΣU(r) +Ψxr(0)
(2.24)

where the matrices Φ̃,∆,Θ, Γ̃, Σ, Ψ are given in (Gałkowski et al., 2002c; Gra-
macki, 1999b). It is important to note that use of the presented model allows
us to apply 1-D linear system stability tests (in a few very special cases), which
can be answered in polynomial time. On the other hand, observing that the ma-
trices dimensions are: Φ̃ ∈ Rmα×mα, ∆ ∈ Rmα×lα, Θ ∈ Rmα×n, Γ̃ ∈ Rnα×mα

Σ ∈ Rnα×lα, Ψ ∈ Rnα×n and they clearly depend on pass length. This fact makes
stability tests computationally difficult, especially for large pass length (α > 20).
A key feature of the model (2.24) is that along the pass dynamics has been

‘hidden’ within the global state, input and pass pro¯le vectors which de¯ne the
equivalent 1-D state-space model. Hence, in 1-D linear system terms, the ¯rst
equation in (2.24) plays the role of the state vector and the second one is the
output equation.
The 1-D model of the form (2.24) is easily extended to the dynamic boundary

conditions (2.18) by simply inserting (2.18) into (2.24) to yield

Y (r + 1) =ΦY (r) +∆U(r) +Θdr(0)

X(r) =ΓY (r) +ΣU(r) +Ψdr(0)
(2.25)

where
Φ = Φ̃+ΘK, Γ = Γ̃+ΨK

and
K = [K0 K1 · · ·Kα−1]

In this case the dimensions of Φ and Γ are equal to the dimensions of Φ̃ and Γ̃
respectively, and the matrix K ∈ Rn×mα.
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2.3. State-space models of 2-D state-delayed systems

To this time, most existing works on time-delay systems deal only with 1-D sys-
tems (Boukas and Liu, 2003; Dugard and Verriest, 1998; Mahmoud, 2000; Malek-
Zavarei and Jamshidi, 1987; Niculescu, 2001). It is well known that many, or even
most physical systems have natural n-D characteristics. It is only for convenience
and simplicity, and often to avoid computational complexities, that such features
have been neglected.
Due to the fact that time delays correspond to transportation time or compu-

tation time, encountered for instance during the processing of a visual image which
is intrinsically 2-D (Bracewell, 1995), it becomes appropriate to study 2-D time-
delay systems. For this purpose, the state-space representation of 2-D systems
with delays in the state are introduced.

2.3.1. Roesser model with state delays

The RM of 2-D discrete linear system with single, possibly di®erent delays along
two directions (horizontal and vertical) is represented by
[
xh(i+1, j)
xv(i, j+1)

]
=

[
A11 A12

A21 A22

] [
xh(i, j)
xv(i, j)

]
+

[
A11d A12d

A21d A22d

][
xh(i−d1, j)
xv(i, j−d2)

]

y(i, j) =
[

C1 C2

] [ xh(i, j)
xv(i, j)

]
+Du(i, j)

(2.26)

where xh(i, j) ∈ Rn1 is the horizontal state, xv(i, j) ∈ Rn2 is the vertical state.
The positive integers d1 and d2 represent unknown but constant delays along both
directions and satisfy

0 ≤ d1 ≤ d1 <∞
0 ≤ d2 ≤ d2 <∞

where d1 and d2 are constant. In this case, the boundary conditions are given by

Xh(d1) ={xh(i, j) ∀j ≥ 0; i = −d1,−d1 + 1, . . . , 0}
Xv(d2) ={xv(i, j) ∀i ≥ 0; j = −d2,−d2 + 1, . . . , 0}

(2.27)

2.3.2. Fornasini-Marchesini model with state delays

On the other hand, the FMM with state delays has the following form

x(i+ 1, j + 1) =A1x(i+ 1, j) +A2x(i, j + 1) +A1dx(i+ 1, j − d1)
+A2dx(i− d2, j + 1) +B1u(i+ 1, j) +B2u(i, j + 1)

y(i, j) =Cx(i, j) +Du(i, j)

(2.28)

where x(i, j) ∈ Rn is the local state vector, u(i, j) ∈ Rl is the input vector, y(i, j) ∈
Rm is the output vector and d1, d2 are constant positive scalars representing delays
along the vertical direction and horizontal direction respectively.
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The boundary conditions are given by

Xh(d2) ={x(i, j) ∀j ≥ 0; i = −d2,−d2 + 1, . . . , 0}
Xv(d1) ={x(i, j) ∀i ≥ 0; j = −d1,−d1 + 1, . . . , 0}

(2.29)

2.4. Analysis and synthesis problems in n-D system theory

In this section we are presenting how a multidimensional system structure af-
fects the computational complexity of analysis and synthesis problems for LRPs
and generally n-D systems. It should be pointed out that since the frequency
domain methods are used some computational difficulties appear which make exi-
sting analysis and synthesis tests difficult or impossible to perform on a computer.
Furthermore, when it is not feasible to compute an exact solution to a problem,
we are interested in ¯nding an approximate solution as this is better than no solu-
tion at all. Therefore the alternative or sometimes only existing solutions to some
theoretical problems are provided for considered system classes, which allow us to
apply numerically reliable design algorithms.
To make computation efficient, the following approach is employed. First, the

state-space representation of n-D systems and LRPs, that have been described in
previous sections, are used. Next, Lyapunov theory is exploited and the solution to
stability and related problems for 2-D(n-D) systems are reduced to the existence
positive de¯ned matrix (the Lyapunov matrix). Finally, equipped by this, the
analysis and synthesis tests are formulated. These tests seem to be computatio-
nally attractive when polynomial-time algorithms for solving Lyapunov equations
(inequalities) exist. However, this approach only results in sufficient conditions for
stability and usually fails, since we deal with uncertain systems or performance ob-
jectives. Therefore it is necessary to ¯nd another method which gives us a unifying
point of view for most analysis and synthesis problems in n-D system theory.
It sounds attractive to apply LMI methods that have been recognized as a

computationally e®ective tool for solving 1-D system control problems, to solve
analysis and synthesis problems in n-D system theory formulated with the state-
space representations. This, in turn, makes it possible to create a specialized
software tool for automatic n-D system design and analysis.
We will start with the stability problem which is a principal requirement for

both LRPs and n-D systems. Next, control objectives and speci¯cations in rela-
tion to a stability concept will be considered and control problems will be formu-
lated as a combination of these speci¯cations and the closed-loop representation.
Here, we will formulate the control problem in the following form: Given a set of
speci¯cations and an open-loop system, ¯nd a controller, if it exists, so that the
closed-loop ful¯lls the given speci¯cations. This form can be further used to derive
LMI formulation for a speci¯c control problem and for efficient computations.

2.4.1. Stability problem

Concept of an asymptotic stability requires that the n-D system represented by
the state-space model (2.9) or (2.11) without an external input (i.e. u(i, j) = 0)
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returns to an equilibrium for any values of boundary conditions (2.2) or (2.6).
It is well known that necessary and sufficient conditions for asymptotic sta-

bility of n-D systems can be characterized in terms of a characteristic polynomial
of the system matrix.

Lemma 1. (Jury, 1978) The n-D system is asymptotically stable if and only if
the characteristic polynomial given by (2.10) or by (2.12) has no zeros inside the
closed unit n-disc, that is, CnRM (z1, . . . , zn) 6= 0 (or CnFM (z1, . . . , zn) 6= 0) for all
(z1, . . . , zn) ∈ U

n
, where

U
n
= {(z1, . . . , zn) : |zi| ≤ 1 , i = 1, . . . , n}

However, it turns out that this stability test is not computationally efficient
and generally the solution is not guaranteed. The main problem here is that zeros
of 2-D (n-D) system characteristic polynomial (i.e. system poles) are not isolated
as in 1-D case and they cannot be a ¯nite set. Hence, the stability test is not
computationally feasible because in¯nitely many points have to be checked.

Example 2.1. To see this, consider a 2-D system with the following characteristic
polynomial

ρ(z1, z2) = 2− z1 − z2 (2.30)

It is straightforward to see that all points (z1, z2) that satisfy ρ(z1, z2) = 0 are po-
les of the system (these points can be: . . . , (−1, 3), (0, 2), (1, 1), (2, 0), (3,−1), . . .).
That is, there is the in¯nite number of system poles which are zeros of (2.30) and
they form the line (depicted in Fig. 2.5).

z
1

z
2

z =2-z
2 1

-1 1

1

-2

Fig. 2.5 . 2-D system poles.

To make stability tests computationally feasible, it is desirable to provide
an approximate solution that results in a signi¯cant reduction in computational
complexity, but the reduction of computational complexity can only be achieved
by introducing some degree of conservativeness i.e. the resulting stability test is
only a sufficient one. One of the ways to obtain such stability conditions is by
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applying Lyapunov theory within state-space models. This approach uses the
following candidate of the Lyapunov function

V (i1, . . . , in) = xT (i1, . . . , in)Px(i1, . . . , in)

for some P Â 0. Equipped with this, we now have the following Lemma which
gives the condition for asymptotic stability of n-D system.

Lemma 2. (Gałkowski et al., 2003b) Suppose u(i1, . . . , in) = 0 for i1, ..., in satis-
fying i1 + · · ·+ in ≥ 0. If

V0 =
∑

i1+···+in=0

V (i1, . . . , in) <∞,

VK =
∑

i1+···+in=K

V (i1, . . . , in) <∞,

and

VK+1 ≤ VK (2.31)

then the n-D system represented by the RM (2.9), or by the FMM (2.11) is said
to be Lyapunov stable. Moreover, it is asymptotically stable if (2.31) is satis¯ed
for any K∈N and equality holds in (2.31) only when x(i1, . . . , in) = 0.

Above Lemma is a basis for all developments presented in this thesis. It allows
us to formulate a sufficient stability condition in terms of LMI.

Lemma 3. (Gałkowski et al., 2003b) An unforced (i.e. u(i, j) = 0) n-D system
represented by the RM (2.9) is asymptotically stable if there exist P Â 0, Qi Â 0,
i = 1, 2, . . . , n− 1, satisfying




AT
1

AT
2
...

AT
n


P
[
A1 A2 · · ·An

]
−




P−
n−1∑
i=1

Qi 0 · · · 0

0 Q1 · · · 0

...
...
. . . 0

0 0 0 Qn−1



≺ 0 (2.32)

where the matrices A1, A2, . . . ,An are identi¯ed in (2.9) as

A1=




A11 · · · A1n

0 · · · 0
...
. . .
...

0 · · · 0


 , . . . ,Ai=




0 · · · 0
...
. . .
...

0 · · · 0
Ai1 · · · Ain

0 · · · 0
...
. . .
...

0 · · · 0




, . . . ,A1=




0 · · · 0

...
. . .
...

0 · · · 0

An1 · · · Ann






2. 2-D(n-D) linear systems and LRPs 33

The most important fact associated with Lemma 3 is that an n-D system
stability condition can be recast into an LMI feasibility problem i.e. ¯nite di-
mensional convex optimization problems involving LMI constraints. Indeed, this
stability condition requires only to ¯nd the ¯nite number of scalar variables. More
precisely, since each matrix variable in (2.32) has q(q+1)

2 decision variables, then the

resulting number of decision variables to be found when solving (2.32) is n q(q+1)
2

(q denotes the number of rows (or columns) of the matrix Ai).
Although this result can be further used to solve other analysis and synthesis

problems of 2-D (n-D) system, to date a smaller number of such problems have
been solved in the area of LRPs and n-D systems with delays. In particular, the
lack of results is noticeable for di®erential LRPs. Therefore the main purpose
is to provide both e®ective and applicable stability tests for these processes and
systems.

2.4.1.1. Stability of linear repetitive processes

The stability theory of LRPs (Rogers et al., 2005; Rogers and Owens, 1992) is
based on an abstract model in a Banach space setting which includes considered
LRPs as special cases. This theory consists of two distinct stability concepts i.e.

• asymptotic stability, that guarantees the existence of a limit pro¯le which is
described by a 1-D linear system state space model,

• stability along the pass, that guarantees the existence of a limit pro¯le and
ensures that the resulting limit pro¯le is stable along the pass dynamics.

In most cases, asymptotic stability is investigated through the use of 1-D system
theory applied to the equivalent 1-D model (see Section 2.2.3). However, it turns
out that asymptotic stability cannot guarantee that the resulting pass pro¯le has
’acceptable’ characteristic and this can be illustrated by the following examples
for both di®erential and discrete cases.

Example 2.2. Consider the following di®erential LRP (Benton, 2000), where β
is a real scalar,

ẋk+1(t) =− xk+1(t) + uk+1(t) + (1 + β) yk(t)
yk+1(t) =xk+1(t)

xk+1(0) =0, 0 ≤ t ≤ α, k ≥ 0.

In this case, the process is asymptotically stable with limit pro¯le over 0 ≤ t ≤ α

ẏ∞(t) =β y∞(t) + u∞(t)

y∞(0) =0
(2.33)

Also if uk+1(t) = 1 and y0(t) ≡ 0, 0 ≤ t ≤ α, k ≥ 0, then it can be easily shown
that the ¯rst pass pro¯le is given by

y1(t) = 1− e−t, 0 ≤ t ≤ α. (2.34)
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But solving the limit pro¯le di®erential equation (2.33) gives

y∞(t) = β−1(eβt − 1), 0 ≤ t ≤ α.

So although the ¯rst pass pro¯le (2.34) is clearly an acceptable dynamic characte-
ristic response to the unit step command u1(t) = 1, the resulting limit pro¯le has
unacceptable dynamic characteristics. In particular, for β > 0, the dynamics of
the limit pro¯le increase exponentially and can be said to be ‘unstable along the
pass’ in the obvious intuitive sense.

Example 2.3. Consider the discrete LRP of the form (2.16) described by

xk+1(p+ 1) =− 0.5xk+1(p) + (0.5 + β)yk(p) + uk+1(p)
yk+1(p) =xk+1(p)

and assume that xk+1(0) = 0. This process is asymptotically stable but the resulting
limit pro¯le over 0 ≤ p ≤ α

y∞(p+ 1) = βy∞(p) + u∞

is unstable in 1-D sense if |β| ≥ 1.

The reason why asymptotic stability does not guarantee a limit pro¯le which
is ’stable along the pass’ is the ¯nite pass length. Therefore the strongest concept
stability along the pass must be used.

Lemma 4. (Rogers and Owens, 1992) A di®erential LRP (2.14) is stable along
the pass if and only if the following conditions are satis¯ed:

• ρ(D0) < 1

• Re(ρ(A)) < 0

• all eigenvalues of G(s) = C(sI −A)−1B0 with s = iω have modulus strictly
less than unity ∀ real frequencies ω ≥ 0

where A, B0, C, D0 are matrices from the state-space model of LRP (2.14).

An equivalent set of conditions for stability along the pass can be provided
for a discrete LRP too.

Lemma 5. (Rogers and Owens, 1992) A discrete LRP (2.16) is stable along the
pass if and only if the following conditions are satis¯ed:

• ρ(D0) < 1

• ρ(A) < 1

• all eigenvalues of G(z) = C(zI − A)−1B0 ∀|z| = 1 have modulus strictly
less than unity
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It is clear to see that the third condition is required to make computations
for all points on the unit circle. This implies that stability of LRPs problem is
an undecidable problem. It is then obvious that there is no possibility of solving
such a problem in practice. One of the approaches is to perform computations for
¯nite a set |z| = 1 that makes a stability test only a sufficient one. However, it is
difficult to determine the number of points for which the computations have to be
performed.
Moreover, stability of 1-D equivalent model (2.24) is easily analyzed using the

eigenvalues of the matrix Φ̃. Unfortunately, this approach cannot be applied in
practise when a large number of points on the pass appear because it dramatically
increases the computational complexity of the stability tests. Even if it is possible,
or there are no such problems, the 1-D model cannot be used in e®ective robustness
and performance analysis because it adds undue complications to the uncertainty
and disturbances structure.
To avoid some of these complications, existing structural links between 2-D

systems and LRPs (see, Sections 2.2.1 and 2.2.2) will be used to develop stability
results for these processes. The fact that information propagation in one of the
separate directions occurs over a ¯nite duration, means that existing 2-D system
theory can be applied after some modi¯cations.
To proceed, de¯ne the shift operators z1, z2 in the along the pass (p) and

pass-to-pass (k) directions respectively as

xk(p) :=z1xk(p+ 1),

yk(p) :=z2yk+1(p)

Then the 2-D characteristic polynomial for discrete processes described by (2.16)
is de¯ned as

ρ(z1, z2) = det

([
I − z1A −z1B0

−z2C I − z2D0

])

On the other hand, by using the s/z transforms instead of z1/z2 one, the charac-
teristic polynomial for processes described by (2.14) is obtained

ρ(s, z) := det

([
sI −A −B0

−zC I − zD0

])

Based on these characteristic polynomials, the stability of both discrete and di®e-
rential LRP can be investigated.

Lemma 6. (Gałkowski et al., 2003c) A LRP is stable along the pass if, and only
if,

a)
ρ(s, z) 6= 0, ∀ (s, z) : Re(s) ≥ 0, |z| ≤ 1

in case of di®erential LRP described by (2.14)

b)
ρ(z1, z2) 6= 0, ∀ (z1, z2) : |z1| ≤ 1, |z2| ≤ 1

in case of discrete LRP described by (2.16)
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Again, since stability tests are based on computing zeros of 2-D characteristic
polynomial then there is no e®ective method to check them, because in particular,
the set of all zeros cannot be ¯nite.
To employ very powerful algorithms for convex optimization based on LMIs,

the results developed for 2-D systems are adopted, therefore the following Lyapu-
nov function candidate is used

V (k, p) = V1(k, p) + V2(k, p) = xTk+1(p)P 1xk+1(p) + y
T
k (p)P 2yk(p) (2.35)

where P 1 Â 0 and P 2 Â 0. It should be pointed out that the above functions
are combination of two independent indeterminates due to the 2-D nature of the
repetitive processes considered in this dissertation.
In contrary to discrete LRPs, there is no a result for di®erential case. Indeed

there is a need to develop them. It can be done with the following Lyapunov
function candidate

V (k, t) = V1(k, t) + V2(k, t) = xTk+1(t)P 1xk+1(t) + y
T
k (t)P 2yk(t) (2.36)

2.4.1.2. Stability of 2-D state delayed systems

The most natural method to analyse a 2-D system with delays is the transformation
of such a system into an equivalent non-delayed system and inspect the augmented
matrix. For example, the system represented by (2.28) can be transformed into
the following




x(i+1, j+1)
x(i−d2+1, j+1)
x(i−d2, j+1)

...
x(i−1, j+1)
x(i, j+1)

x(i+1, i−d1)
x(i+1, j−d1+1)

...
x(i+1, j)




=




A1 A1d 0 · · · 0 0A2d 0 · · ·A2

0 0 I · · · 0 0 0 0 · · · 0
0 0 0

. . . 0
... 0 0 · · · 0

...
...
...
. . . I 0 0 0 · · · 0

0 0 0 · · · 0 I 0 0 · · · 0
I 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 0 I 0 · · · 0
0 0 0 · · · 0 0 0 I · · · 0
...
... · · ·

...
...
...
...
...
. . .
...

0 0 0 0 0 0 0 0 · · · I







x(i, j+1)
x(i−d2, j+1)

x(i−d2+1, j+1)
...

x(i− 2, j + 1)
x(i− 1, j + 1)
x(i+1, j−d1)

x(i+1, j−d1+1)
...

x(i+1, j)




However, immediately some difficulties appear due to the following facts:

• the state delays can be large in both directions, which results in a possibly
very large dimension of the augmented matrix,

• if the state delays are not exactly known; the dimension of the augmented
matrix is unknown.

Hence, it is very difficult or even impossible in some cases to provide a computa-
tionally e®ective stability test for 2-D state delayed systems in this way. This is
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the reason why the other methods have to be employed to verify that property, e.g.
LMI-based method, which has become a main tool in the analysis and synthesis
of 1-D systems (Boukas and Liu, 2003).
Moreover, it is important to note that two types of stability problems for

delayed systems exist:

• delay-independent stability (Dugard and Verriest, 1998),
• delay-dependent stability (Lee and Kwon, 2002; Moon et al., 2001).

In the ¯rst case, a stability does not depend on delay, which means that systems
are stable for any delay but this stability condition is sometimes restrictive. To
overcome this drawback, a delay-dependent stability condition has to be provided.
It turns out that it is relatively simple to provide a delay-independent stability con-
dition (for some preliminary results for 2-D linear systems with delays, see (Paszke
et al., 2003, 2004; Trinh and Fernando, 2000)) but there are problems with formu-
lating delay-dependent stability conditions.

2.4.2. Stabilisation problem

The problem of stabilisation of LRPs and linear 2-D (n-D) systems has received
considerable attention in the literature over the last few years (Benton, 2000; Cook,
2000; Du and Xie, 1999a; Lin, 2001; Lin et al., 2001; Rogers and Owens, 1992).
The goal of stabilisation is to ¯nd a controller connected to the original system so
that a stability of the connected system (called closed-loop system - see Fig. 2.6)
is guaranteed.
One unique feature of LRPs is that it is possible to de¯ne physically meaning-

ful control laws for them. For example, in the ILC application, one such family of
control laws is composed of state feedback control action on the current pass com-
bined with information ‘feedforward’ from the previous pass (or trial in the ILC
context) which, of course, has already been generated and is therefore available
for use. In the general case of LRPs it is clearly highly desirable to have an ana-
lysis setting where such control laws can be designed for stability and guaranteed
performance. In this dissertation two types of a controller (connections a plant

n-D system

controller

(LRP) u

x

n-D system

controller

(LRP)y u

(a) state feedback controller (b) output feedback controller

Fig. 2.6 . Control setups.

with a controller) are considered, i.e.
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(a) static feedback controller (see, Fig. 2.6(a)). In this case, we assume that the
state of the system is perfectly available from the state feedback. Hence the
following control law can be applied

u(i1, . . . , in) =
[

K1 · · · Kn

]


x1(i1, . . . , in)

...
xn(in, . . . , in)


 (2.37)

(b) dynamic output feedback controller (see, Fig. 2.6(b)). This controller is used
when no complete state vector is available then one option is to use an
observer to reconstruct it. Therefore the following controller is used



xc1(i1+1, . . . , in)

...
xcn(i1, . . . , in+1)


=




Ac11 . . . Ac1n

...
. . .

...
Acn1

. . . Acnn






xc1(i1, . . . , in)

...
xcn(in, . . . , in)




+




Bc1

...
Bc2


y(i1, . . . , in)

u(i1, . . . , in) =
[
Cc1 · · · Ccn

]


xc1(i1, . . . , in)

...
xcn(in, . . . , in)




+Dcy(i1, . . . , in)

(2.38)

Note that a static output controller, although possible, has a limited use for
n-D systems due to much stronger limitations than for the 1-D case, and the
dynamic structure is more frequently investigated.

Now the stabilising control problem can be formulated: Given the open-loop LRP
(or n-D system) ¯nd a controller (2.37) or (2.38) (if it exists) such that the closed-
loop system is stable along the pass (asymptotically stable).
The most common situation when we deal with the stabilisation problem

is that the condition for controller existence is clearly bilinear in the Lyapunov
matrix and the controller matrices, which are variables to be found. Therefore,
this problem is generally stated as the BMI problem and hence it probably belongs
to the class of NP-hard problems.

2.4.3. Robust control problem

Robustness has recently become one of the most important issues in control sys-
tems research (Ackerman, 1997; Dullerud and Paganini, 2000; Zhou et al., 1996).
This is the result of taking into consideration uncertainties in the modelling pro-
cess. When the data is uncertain, there is a need to describe the structure of
perturbation which a®ects system matrices.
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In common with 1-D linear systems theory, we consider three models of uncer-
tainty structure which are introduced below. Note that all uncertainties satisfying
presented conditions are said to be admissible.

(a) norm-bounded model of uncertainty. This model of uncertainty corresponds
to a system which matrices uncertainty are modelled as an additive per-
turbation to the nominal system matrices. Therefore a system is said to
be subjected to norm-bounded parameter uncertainty if matrices of such a
system can be written in the form

M = M0 +∆M = M0 +HFE (2.39)

where H and E are some known constant matrices with compatible dimen-
sions andM 0 de¯nes the nominal system. F is an unknown, constant matrix
which satis¯es

FTF ¹ I (2.40)

Note, that the above model of uncertainty has been widely adopted in de-
scribing parametric uncertainty of 1-D uncertain systems (see (Khargonekar
et al., 1990) and the references therein).

(b) polytopic model of uncertainty. This model of uncertainty corresponds to a
system which matrices range in the polytope of matrices. This means that
each system matrixM is only known to lie in a given ¯x polytope of matrices
described by

M ∈ Co (M1,M2, . . . ,Mh) (2.41)

where Co denotes the convex hull. Then, for positive i = 1, 2, . . . , h,M can
be written as

M :=

{
X :X =

h∑

i=1

αiM i, αi ≥ 0,
h∑

i=1

αi = 1

}

As a simple example, the polytope formed from 4 vertices: M 1,M2,M3

and M4 is depicted in Fig. 2.7. It has to be emphasized that polytopic

M
1M

2

M
3

M
4

Fig. 2.7 . A polytope.

model of uncertainty is only used when we deal with di®erential equations
in the state-space model (2.14). This is motivated by the fact that in the
discrete case, the set all stable matrices may not be a convex set.
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Example 2.4. Let us consider a polytope formed from 2 vertices and assume
that they are

A1 =

[
0.5 2
0 0.5

]
, A2 =

[
0.5 0
2 0.5

]

Based on well known fact that stability in the discrete case is guaranteed if
and only if all eigenvalues of a system matrix lie in the interior of the unit
circle, it can be seen that the matrices A1 and A2 are stable (λmax(A1) = 0.5
and λmax(A2) = 0.5). However, a convex combination yields

A = 0.5A1 + 0.5A2 =

[
0.5 1
1 0.5

]

and λmax(A) = 1.5. This means that A is unstable.

(c) a±ne model of uncertainty. This model of uncertainty corresponds to a system
which matrices are modelled as a collection of ¯xed affine functions of some
varying parameters p1, . . . , pk i.e. each matrix can be written in the form

M(p) =M0 + p1M1 + . . .+ pkMk (2.42)

whereM i ∀i = 0, 1, . . . , k are given. Parameter uncertainty is described with
range of parameter values. It means that each parameter pi ranges between
two known extremal values pi (minimum) and pi (maximum), therefore it
can be written as

pi ≤ pi ≤ pi

Furthermore, the set of uncertain parameters is

∆ ,
{
p=(p1, p2, . . . , pk) : pi ≤ pi ≤ pi, i=1, . . . , k

}

and the set of corners of uncertainty region ∆0 is de¯ned as

∆0 ,
{
p=(p1, p2, . . . , pk) : p ∈ {pi, pi}, i=1, . . . , k

}

As an example of a set of uncertain parameters, consider 3 parameters:
p1, p2, p3 whose values range in the parameter box formed by their extremal
values in 3-D parameter space - see Fig. 2.8.

Imposing one of the uncertainty model on the state-space model of a di®erential
LRP (2.14) (an uncertain discrete model can be written in this form too) the
following uncertain state-space model is obtained

ẋk+1(t) =Axk+1(t) +B0yk(t) +Buk+1(t)

yk+1(t) =Cxk+1(t) +D0yk(t) +Duk+1(t)
(2.43)

where the process matrices A, B0, B, C, D0, D are uncertain and they are de-
scribed by one of the model de¯ned above.
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p2

p3

p2

p3

p2
p3

p1

p1

p1

Fig. 2.8 . 3-D parameter space.

Now the robust control problem can be formulated: Given an uncertain open-
loop LRP (or n-D system) ¯nd a controller equation (2.37) or (2.38) (if it exists)
such that the closed-loop system is stable along the pass (is asymptotically stable)
for each admissible system representation.
It turns out that, in the presence of uncertainty, many classical methods of

analysis and synthesis may be limited. This is especially valid for robust control
problems in n-D system theory which, similarly to 1-D case, belongs to the class
of NP-hard problems because considered problems are nonlinear and nonconvex.
This, in turn, is a result of the dependency of the controller matrices on the
state-space matrices of the system, which are unknown. Additionally, since any
pole assignment method is used, then it is difficult to certify if the poles remain
in the prescribed region. Therefore, providing sufficiency conditions, based on
approximation techniques, are often about the best we can do. Recently, some
preliminary results on applying LMI methods to deal with uncertain systems and
processes have been presented (Du and Xie, 1999b; Gałkowski et al., 2003b) but
they need to be developed, especially for LRPs.

2.4.4. Control problem with performance requirement

It often turns out that the model which is stable cannot be used in practice. Hence,
the ability e.g. to guarantee the upper bounds on signal is more important than
the ability to guarantee stability property. For this reason, performance measures
and disturbance rejection or attenuation (when stability is ensured) have become
important issues in recent years, also for n-D systems and LRPs. It is important
to note that disturbance rejection for LRPs and n-D systems have received far less
attention than for standard 1-D systems due to a lack of numerically trackable
control design methods. This is mainly caused by difficulties in applying pole
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placement techniques according to the fact that there is no link between the pole
placement and dynamic response of the n-D system. Finally, it is difficult to
provide an analytical solution for such problems or even know if an analytical
solution exists, a numerical search method for the same problem might have a
lower computational complexity than the analytical solution.
It is therefore desirable to have computationally e®ective methods which make

it possible to apply popular techniques like the H∞ norm (Helton and Merino,
1998; Stoorvogel, 1992; Zhou et al., 1996), the H2 norm (Saberi et al., 1995), and
guaranteed cost control for LRPs and 2-D (n-D) systems (Guan et al., 2001). In
particular, the lack of these result is noticeable in the area of di®erential LRP,
there is therefore a need to provide and develop them.
In this dissertation, the e®ect of disturbances is modelled as an exogenous

input w added to the plant model (see Fig. 2.9). Taking this into consideration

n-D system

controller

(LRP)

z

y

w

u

Fig. 2.9 . The setup for performance.

the additional input results in state-space model (e.g. state-space model of a
di®erential LRP)

ẋk+1(t) =Axk+1(t)+Buk+1(t)+B0yk(t)+B1wk+1(t)

yk+1(t) =Cxk+1(t)+Duk+1(t) +D0yk(t)+D1wk+1(t)

Then, in order to quantify the e®ect of w on output z i.e. pass pro¯le in the case
of LRPs, the H2 and H∞ norms (de¯ned in Chapter 5) are chosen.
Now the control problem with performance requirements can be formulated:

Given an open-loop LRP (n-D system) and performance requirements ¯nd a con-
troller (2.37) or (2.38) (if it exists) such that the closed-loop system is stable along
the pass (asymptotically stable) and satisfy performance requirements.
It is clear that this design problem requires performance requirements has to

be taken into account, in addition to stability. That is, the main difficulty here
is to provide an e®ective method which can accommodate these objectives into
a single design procedure. It turns out that, in the case of 1-D systems, LMI
formulation can overcome this difficulty and make the numerical computation
process e®ective. Therefore, due to the lack of results in the area of LRPs, there
is a need to ¯nd the LMI formulation for the stabilising control problem with
performance requirements.
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2.5. Applications 2-D systems approach

Many physical processes and systems can be described by embedding them in a
2-D(n-D) framework for further analysis and synthesis (Geng et al., 1990; Kurek
and Zaremba, 1993). In addition to this, many, or even most physical systems
have natural 2-D (n-D) characteristics but for simplicity, and often to avoid com-
putational complexities, such features have been neglected.
Due to these facts, three engineering examples, from the area of computer

sciences, are provided to show use of the 2-D state-space representation and n-D
system theory.

2.5.1. Iterative learning control

Iterative learning control (ILC) is a relatively well-known technique for improving
the tracking response in systems that repeat a given task or operation over and
over again. This technique is motivated by human learning and it is mainly used
to learn arti¯cial intelligence systems (e.g. neutral networks) and machines (e.g.
robots) and has attracted considerable research interest in recent years (Amann,
1996; Chen and Wen, 1999; Moore, 1983; Owens et al., 2000).
One of the most interesting results of research on ILC is that the learning

process can be cast into 2-D framework due to information propagation in two
independent directions i.e. time and iterative directions. This, in turn, leads us to
apply 2-D stability theory as a useful method for analysis of learning convergence
and stability.
To see this, recall that the basic idea of ILC is to use the information from a

previous execution of the task in order to improve performance from trial to trial,
in the sense that the tracking error is sequentially reduced.

2.5.1.1. Discrete case

To formalize the notion of ILC, let a learning iteration (or a trial), denoted here
by the subscript k, be a single execution of the system

xk(p+ 1) =Axk(p) +Buk(p)

yk(p) =Cxk(p)
(2.44)

which has input uk(p), output yk(p), and desired output trajectory yd(p) and
where p ∈ 1, 2, . . . , N . In this case, the boundary conditions are

xk(0) =x0, k = 0, 1, . . .

u0(p) =0, p = 0, 1, . . . , N
(2.45)

With this notation the following ILC problem is formulated as: ¯nd, using a
learning technique, an appropriate control sequence uk(p), p ∈ [0, N −1] such that
tracking error covers to zero along the iterative learning direction (k-direction). In
other words, the problem is to derive the optimal input by evaluating the tracking
error given by

ek(p) = yd(p)− yk(p) (2.46)
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This is accomplished by adjusting the input from the current trial i.e. uk(p) to a
new input uk+1(p) for the next trial. Therefore, a general iterative control rule
can be de¯ned in the following form

uk+1(p) = uk(p) + ∆uk(p) (2.47)

where ∆uk(p) denotes modi¯cation of the control input. Now, it follows from
(2.44), (2.46) and (2.47) that

ek+1(p)− ek(p) = −CAηk(p)−CB∆uk(p− 1)

where
ηk(p) = xk+1(p− 1)− xk(p− 1)

Further, from (2.47) and (2.44) can be found

ηk(p+ 1) = Aηk(p) +B∆uk(p− 1)

Then, de¯ning the control law

∆uk(p) =K1ηk(p+ 1) +K2ek(p+ 1)

the RM for ILC is obtained
[
ηk(p+ 1)
ek+1(p)

]
=

[
A−BK1 −BK2

−CA+CBK1 I −CBK2

] [
ηk(p)
ek(p)

]

and the boundary condition are given by

ηk(0) =xk+1(0)− xk(0) = x0 − x0 = 0, k = 0, 1, . . .

e0(p) =yd(p)− y0(p) = yd(p)−CATx0, p = 0, 1, . . . , N
(2.48)

2.5.1.2. Continuous case

Let us consider the following system

ẋk(t) =Axk(t) +Buk(t)

yk(t) =Cxk(t)
(2.49)

where uk(t) is input, yk(t) is output, and desired output trajectory is yd(t). Fur-
ther, it is assumed that 0 < t ≤ T where T denotes the known time horizon. The
boundary conditions are given by

xk(0) =x0, k = 0, 1, . . .

u0(t) =f(t), 0 < t ≤ T
(2.50)

The aim is to derive the optimal input by evaluating the tracking error

ek(t) = yd(t)− yk(t) (2.51)
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Similarly to the discrete system case, it is accomplished by adjusting the input from
the current trial i.e. uk(t) to a new input uk+1(t) for the next trial. Therefore, a
general iterative control rule can be de¯ned in the following form

uk+1(t) = uk(t) + ∆uk(t) (2.52)

where ∆uk(t) denotes modi¯cation of the control input. Now, based on (2.49),
(2.51) and (2.52) it is seen that

ek+1(t)− ek(t) = −CAηk(t)−CB

∫ t

0

∆uk(τ)dτ

where

ηk(t) =

∫ t

0

[xk+1(t)− xk(t)]

Further, from (2.52) and (2.49) can be found

dηk(t)

dt
= Aηk(t) +B

∫ t

0

∆uk(τ)dτ

Hence, under assumption that yd(t) is di®erentiable, the following control law can
be de¯ned

∆uk(t) = K1
dηk(t)

dt
+K2

dek(t)

dt

and the continuous-discrete form of RM for ILC is obtained
[

dηk(t)
dt

ek+1(t)

]
=

[
A−BK1 −BK2

−CA+CBK1 I −CBK2

] [
ηk(t)
ek(t)

]
(2.53)

where the boundary conditions are given by

ηk(0) =0, k = 0, 1, . . .

e0(t) =yd(t)−CeAtx0 −
∫ t

0

CeA(t−τ)Bu0(τ)dτ

2.5.2. 2-D framework for distributed and parallel computing

Due to a dramatic increase in system complexity and growth of data volume, the
problem of efficient computing becomes of crucial importance. One of the options
to overcome this problem is to use parallel or distributed computation methods.
This, in turn, often requires the use of a networked system. Unfortunately, the
e®ect of network congestion (Srikant, 2004), which naturally arises in data ne-
tworks such as Internet or ATM and communication delays, can make the result
of computations di®er from the ideal solution, or make the computation process
unstable.
While such situations occur, available data (samples) can be substituted in

place of the delayed, or even lost samples, to maintain real time requirements and
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process stability. Faced with these facts the following problem arises: under what
conditions is the stability of the parallel or distributed process guaranteed?
It has been shown in (Bauer et al., 2001) that this problem can be analysed in

a 2-D framework. To proceed, it is assumed that the computation process required
to evaluate the following di®erence equation

y(n1, n2) =
∑

(i,j)∈M0

aijy(n1 − i, n2 − j) +
∑

(i,j)∈Mi

bijx(n1 − i, n2 − j) (2.54)

where n1, n2 are the positive integer valued coefficients, aij , bij ∈ R, x(n1, n2) and
y(n1, n2) are input and output signals respectively. Further, Mi and M0 de¯ne
input and output masks.
Suppose now that the equation (2.54) is computed in parallel on C processors.

Then, in order to ensure computability, inputs within inputs masks and previously
computed outputs within outputs masks must be available to each processor in
time (processors cannot wait for sample to arrive).
Adapting results and notation from (Bauer et al., 2001) we consider the case

when C = 4. It is assumed that each processor computes the output for a certain
subregion Si, i = 1, . . . , 4 and they are

S1 = {(n1, n2) : 0 ≤ n2 ≤ 10, n1 = 0, 4, 8, . . .}
S2 = {(n1, n2) : 0 ≤ n2 ≤ 10, n1 = 1, 5, 9, . . .}
S3 = {(n1, n2) : 0 ≤ n2 ≤ 10, n1 = 2, 6, 10, . . .}
S4 = {(n1, n2) : 0 ≤ n2 ≤ 10, n1 = 3, 7, 11, . . .}

In what follows, the processor assignment function f is (f assigns one out of 4
processors to every output sample in the quarterplane)

f(n1, n2) =





1 for (n1, n2) ∈ S1
2 for (n1, n2) ∈ S2
3 for (n1, n2) ∈ S3
4 for (n1, n2) ∈ S4

The processors compute the solutions of the following di®erence equation

y(n1, n2) =a01y(n1, n2 − 1) + a10y(n1 − 1, n2)
+ a11y(n1 − 1, n2 − 1) + b00x(n1, n2)

by mapping the function of the form (this function symbolizes the time instant at
which the sample y(n1, n2) is computed on the processor f(n1, n2))

I(n1, n2) =





n2 + 11n1 for (n1, n2) ∈ S1
n2 + 2 + 11(n1 − 1) for (n1, n2) ∈ S2
n2 + 4 + 11(n1 − 2) for (n1, n2) ∈ S3
n2 + 6 + 11(n1 − 3) for (n1, n2) ∈ S4

As a result we obtain a process for computing the 2-D system response as shown
in Fig. 2.10. It is straightforward to see that large delays reduce the amount of
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Fig. 2.10 . Order of computation using 4 processors.

parallelism because some samples are not available (see Fig. 2.11). To ensure real
time implementation of the equation (2.54), available outputs can be substituted
for the missing output samples. Note however, that these substitutions can make

unavailable
sample y(n ,n )1 2

available
sample y(n ,n )1 2

currently
computed sample

n1

n2

Fig. 2.11 . Relationship of available output samples between two consecutive mask
positions

our process unstable. To analyse the process behaviour, 2-D system theory can be
applied since results on the stability of 2-D systems are available. In order to use
such an approach, rewrite (2.54) in terms of RM (2.1) as
[
xh(n1+1, n2)
xv(n1, n2+1)

]
=A(n1, n2)x(n1, n2)=

[
A11(n1, n2) A12(n1, n2)
A21(n1, n2) A22(n1, n2)

][
xh(n1, n2)
xv(n1, n2)

]

(2.55)
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where x(n1, n2) ∈ RH×V is the state vector in a 2-D system of order H in n1 and
V in n2. A(n1, n2) is uncertain system matrix which is taken from a set A which
involves all matrices A(n1, n2) that correspond to all possible incomplete output
masks. Therefore, it seems to be appropriate to make use of developing results on
robustness to stability investigation of the system (2.55).

2.5.3. Analysis of iterative algorithms in 2-D system framework

It is well known that most engineering problems are solved on computers with a
numerical algorithm. The solution is obtained in an iterative manner where the
numerical algorithm is designed to update the solution in each iteration.
One of the important problems solved in this way is the nonlinear optimal

control problem based on maximum principle. It is a standard fact that the appli-
cation of maximum principle, results in a set of nonlinear dynamic equations with
mixed boundary conditions.
Roberts (Roberts, 2000a,b) has recognized that the solution search can be

cast into 2-D framework where

• one dimension is a time horizon of the dynamic system under investigation,

• and another one is the progress of the iterations.

This allows us to use linear a 2-D state-space model and in turn 2-D system
theory to analyse local stability and convergence properties of a speci¯c algorithm
designed to achieve the problem solution.

2.5.3.1. Discrete case

Let us consider the real optimal discrete problem (following Roberts (Roberts,
2000b))

min
u(i)

{
N−1∑

i=0

L∗(x(i), u(i), i)

}

subject to

{
x(i+ 1) = f∗(x(i), u(i), i)

x(0) = x0

where x(i) ∈ Rn and u(i) ∈ Rl are the system state and the control vectors
respectively, L∗ : Rn × Rm → R is the real performance function, f∗ : Rn ×
Rm → Rn represents the real system state equations, and x0 is a de¯ned initial
condition vector. Applications of the maximum principle requires the solution of
the following two point boundary value problem

x̂(i+ 1) =f(x̂(i), p̂(i), i), x̂(0) = x0; i ∈ [0, N − 1]
p̂(i+ 1) =g(x̂(i), p̂(i), i), p̂(N) = 0; i ∈ [0, N − 1]
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where p(i) ∈ Rn is the costate vector and the symbol ̂ denotes the optimum
value. In this case the optimum control is

û(i) = h(x̂(i), p̂(i), i)

The solution of a problem of the above form is obtained in an iterative manner by
applying methods such as quasilinearisation or a gradient method in a function
space. The general form of such an algorithm can be written in the form

Step 1: Select or compute a nominal solution

Y T
0 (i) =



u0(i)
x0(i)
p0(i)




and set the iteration counter k = 0

Step 2: Compute an estimate of the optimal control by solving

Xk(i+ 1) =

[
x̂k(i+ 1)
p̂k(i+ 1)

]
= F (Xk(i), Yk(i)), Xk = d0k

ûk(i) =h(Xk(i)), i ∈ [0, N − 1]

Step 3: Update the estimated solution

Yk+1(i) = G(Xk(i), Yk(i))

Step 4: Increment k = k + 1 and repeat steps 1-3 above until convergence is
achieved.

The above algorithm is clearly in the form of a nonlinear discrete repetitive process
where d0k

is the initial condition which changes from iteration to iteration and
Yk(i), i ∈ [0, N ] acts as a driving input from iteration to iteration. However,
analysis of the algorithm can be difficult due to the lack of result on nonlinear
repetitive processes. Since we are interested in local convergence properties of the
algorithm, appropriate manipulations enable us to write the algorithm in the form
of discrete LRPs (2.16)

Xi(k + 1) =A0Xi(k) +B0Yi(k)

Yi+1(k) =CXi(k) +D1Yi(k)

with
Xi(0) = di

where the pass length α = N and di is the vector of initial conditions. In this
case, Xi(k) and Yi(k) are de¯ned as follows

Xi(k) =

[
x̂i(k)
p̂i(k)

]
, Yi(k) =




ui(k)
xi(k)

pi(k + 1)



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and the matrices A0, B0, C and D1 are

A0 =

[
A+BR

−1
BTA−TQ BR

−1
BTA−T

−A−1Q A−T

]
,

B0=

[
B∗−BR

−1
R∗ A∗−A−BR

−1
BTA−T(Q−Q∗) BR

−1
(A∗A−1B−B∗)

0 A−T(Q−Q∗) I−(A∗A−1)T

]
,

C =



kuR

−1
BTA−TQ −kuR

−1
BTA−T

kxI 0

−kpA−TQ kpA
−T


 ,

D1 =




I − kuR
−1

R∗ kuR
−1

BTA−T (Q−Q∗) kuR
−1
(A∗A−1B−B∗)T

0 (1− kx)I 0

0 kpA
−T (Q−Q∗) i− kp

(
A∗A−1

)T




The matrices R, Q, A, B represent the current solution and R∗, Q∗ represent
the optimal solution. The parameters ku, kx and kp are scalar gain parameters.

2.5.3.2. Continuous case

Now consider the problem of determining the solution of the real optimal con-
trol (Roberts, 2000a)

min
u(t)

{
φ∗(x(T )) +

∫ T

0

L∗(x(t), u(t))dt

}

subject to





ẋ(t) = f∗(x(t), u(t))

x(0) = x0

ψ∗(x(T )) = 0

(2.56)

de¯ned over ¯nite time horizon t ∈ [0, T ], where u(t) ∈ Rn and x(t) ∈ Rn are
continuous control and state vectors respectively, φ∗ : Rn → R is real terminal
measure, L∗ : Rn×Rm → R is real performance measure function, f ∗ : Rn×Rm →
Rn represents real system state equations, and ψ∗ : Rm → Rq is the real terminal
constraint vector.
By carrying out required manipulations presented in (Roberts, 2000a), it is

shown that the solution of (2.56) can be found iteratively by solving

d

dt
X(i)(t) =A0X

(i)(t) +B0Y
(i)(t)

Y (i+1)(t) =CX(i)(t) +D1Y
(i)(t)

(2.57)

where

X(i)(t) =

[
x̂(i)(t)
p̂(i)(t)

]
, Y (i)(t) =



u(i)(t)
x(i)(t)
p(i)(t)



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and

A0=

[
A BR

−1
BT

−Q −A−T

]
,C=



0 −kuR

−1
BT

kxI 0

0 kpI


 ,

B0 =

[
B∗ −BR

−1
R∗ A∗ −A BR

−1
(B −B∗)

T

0 Q−Q∗ (A−A∗)T

]
,

D1 =




I − kuR
−1

R∗
0 kuR

−1
(B −B∗)T

0 (1− kx)I 0

0 0 (1− kp)I




which clearly has the form of di®erential LRPs (2.14). Similarly to the discrete
case, the matrices A, B, Q and R represent the current solution, R∗, Q∗ stand
the optimal solution and ku, kx and kp are scalar gain parameters.

2.6. Software for n-D (LRP) analysis and design

The great advantage of the state-space description is that the analysis and syn-
thesis methods derived from it are easily amenable to computer implementation.
In what follows, state-space models require manipulation of vectors and matrices,
therefore several software packages for engineers can be used for simulating and
for evaluating a system’s behaviour through the state-space representation. The
most widely used software package which supports such a system description is
Matlab (The Mathworks Inc., 2004). This package can be easily adopted for
simulating, and also for visualization of LRPs or n-D systems.
To date, some packages for simulating and analysis of 2-D (n-D) systems and

LRPs which work under Matlab environment have been presented (D‘Andrea,
1999; Gałkowski et al., 2000). Unfortunately, they only provide some simple tools
for system simulations, analysis and synthesis. The package Lrp Toolbox (Gał-
kowski et al., 2000) makes use of 2-D and 1-D models of both di®erential and
discrete LRPs for their analysis. The 1-D model of LRP can be very easily im-
plemented on a computer but becomes quickly impractical when the pass length
grows. However, in some simple cases, it is possible to exploit the structure of the
matrices. One of the major features of the Lrp Toolbox are routines for con-
structing the discrete approximation of a di®erential LRP, which is a nontrivial
task in the case of LRPs and 2-D systems in general (Gramacki, 1999a). Never-
theless, this package does not involve any tool to analyse and synthesise uncertain
LRPs or performance design purposes.
The Multidimensional Systems (MD) Toolbox (D‘Andrea, 1999) invo-

lves many useful routines for n-D system analysis and design. They may be used
to test the stability of n-D systems, to simulate them and to perform control de-
sign for these systems. However, this software does not provide tools to solve n-D
system theory problems with uncertain data, and there are no routines to manipu-
late LRPs and 2-D(n-D) state-delayed systems. Even through LRPs analysis and
design are possible with 2-D system routines, this package does not exploit LRPs
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features (e.g. in LRPs case the pass pro¯le vector is simultaneously the output
vector) which leads to other algebraic manipulations and to many simpli¯cations
in relation to a clear 2-D approach.

2.7. Concluding remarks

This chapter gives a brief introduction to n-D state-space models and their ability
to formulate n-D control theory problems. There is no doubt that n-D systems
constitute the important class of systems according to a wide variety of applications
arising in both theory and practical applications. Motivated by these applications,
the interest in n-D systems is growing and there is a need for numerical software to
analyse them. However, commonly known numerical methods for system analysis
and design which are based on computing system poles, cannot be directly applied
to 2-D (n-D) system analysis because of an in¯nite number of 2-D (n-D) system
poles. Therefore, these methods have very high computational cost and they
cannot be directly used as a basis to build a software tool for the automatic analysis
and synthesis of n-D systems. In order to overcome computational difficulties we
propose to put the alternative problems formulations to some theoretical problems
for n-D systems and LRPs which results in computationally feasible tests. The
proposed approach is based on combining the state-space representations of a
considered class of n-D systems with Lyapunov’s framework to derive the problem
formulation in terms of LMI which are described in the next chapter.



Chapter 3

LINEAR MATRIX INEQUALITY METHODS

Recently, linear matrix inequality (LMI) methods have become popular among re-
searchers from the control community due to their relative simplicity and e®ective
numerical solution. The basic idea of the LMI methods is to approximate a given
problem via an optimization problem with a linear objective and LMI constraints.
These problems are recognized to belong to the class of P problems because they
are solved with polynomial-time algorithms.
LMI methods are reviewed and discussed in detail in this chapter. First, we

need to describe the background information required to understand what LMIs
are. Next, the application of modern polynomial-time interior-points methods to
solve optimization problems under LMI constraints are described. In particular,
it is shown that convex and quasi-convex optimization problems, which involve
LMIs, can be adopted as a core to build software to analyse and synthesise 2-
D (or n-D in general) systems and LRPs, where uncertainties, disturbances and
delays occur. Moreover, some software packages used to solve convex optimization
problems are described.

3.1. Linear matrix inequalities

A linear matrix inequality (LMI) is an expression of the form

F (x) = F (x)T = F0 +

n∑

i=1

xiFi º 0 (3.1)

where

• x = (x1, . . . , xn), x ∈ Rn - is a vector of n real numbers called the decision
variables to be found,

• F0, . . . ,Fn - a given set of real symmetric matrices of equal dimension,

• the inequality symbol º means that the expression (3.1) is nonnegative de-
¯ned, that is zTF (x)z > 0, ∀z 6= 0, z ∈ Rn.

The constraint (3.1) is often used to de¯ne a minimization problem, which is
commonly referred to as a semide¯nite program (SDP) (Vandenberghe and Boyd,
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1996) of the form

min cTx

subject to F (x) º 0 (3.2)

where the vector c ∈ Rn is given.
It is important to note that LMIs have several intrinsic and attractive features.

Firstly, the LMI (3.1) is convex constraint on x (a convex feasibility set). Secondly,
while the constraint is matrix inequality instead of a set of scalar inequalities like in
linear programming (LP), a much wider class of feasibility sets can be considered.
Indeed, for example, LMIs allow us to describe quadric curves like circles (see,
Example 3.1). Thirdly, the convex problems involving LMIs can be solved with
powerful interior-point methods (Nesterov and Nemirovskii, 1994). In this case
”solved” means that we can ¯nd the vector of the decision variables x that satis¯es
the LMI, or determine that no solution exists. Sometimes, such solvability problem
is called a feasibility problem or an LMI problem in literature. Moreover, the right
hand side of (3.1) is symmetric matrix and it is nonnegative de¯ned if, and only
if, all its eigenvalues are nonnegative.

Example 3.1. To con¯rm that the feasibility set represented by LMI is the convex
set, the following inequality is now considered (adopted from (Meinsma, 1997)).


1 0 x1
0 1 x2
x1 x2 1




︸ ︷︷ ︸
F (x)

=



1 0 0
0 1 0
0 0 1




︸ ︷︷ ︸
F 0

+x1



0 0 1
0 0 0
1 0 0




︸ ︷︷ ︸
F 1

+x2



0 0 0
0 0 1
0 1 0




︸ ︷︷ ︸
F 2

º 0 (3.3)

In this case, we see that the feasible set is the interior of the unit disc
(√

x21+x
2
2≤1

)
,

that is depicted in Fig. 3.1. Note that the Schur complement (for details see Sec-

x
1

x
2

0.5

0.5

Fig. 3.1 . Example of a feasibility set.

tion 3.5.1) of the block

[
1 0
0 1

]
in (3.3) gives the equivalent condition

1−
[
x1 x2

] [ 1 0
0 1

] [
x1
x2

]
º 0 ⇔ 1− (x21 + x22) ≥ 0
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It is important to note that since the intersection of two or more convex sets
is again convex (Boyd and Vandenberghe, 2004), then the intersection of two or
more convex sets described by LMIs is again a convex set. This means that there
is no distinction between a set of LMIs (where p denotes the number of LMIs)





F (1)(x) º 0
...

F (p)(x) º 0

and a single LMI
diag

(
F (1)(x), . . . ,F (p)(x)

)
º 0

Example 3.2. To illustrate the fact that multiple LMIs can be expressed as a single
LMI, the following example is considered. Suppose, two convex sets described by
(3.3) and

x1 + 0.5 ≥ 0
are given. They can be expressed by the LMI of the form




1 0 x1 0
0 1 x2 0
x1 x2 1 0
0 0 0 x1 + 0.5


 º 0

which represents the convex set depicted in in Fig. 3.2 (the intersection of hyper-
plane and the interior of the unit circle).

x
1

x
2

0.5

0.5

Fig. 3.2 . Example of a feasibility set 2.

It is worth mentioning that in the case of convex optimization problems with
convex objective functions, any local minimum is a global minimum. This means
that any algorithm that can compute a local minimum for a convex optimization
problem, will compute in fact a global minimum.

Remark 3.1. Note that the expressions F (x) ¹ 0 and F (x) ¹ G(x) can be
rewritten as −F (x) º 0 and G(x) − F (x) º 0 respectively. Moreover, since an
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LMI is written with º or ¹ then we refer it as a nonstrict LMI. On the other hand,
≺ or Â denotes that the considered LMI is a strict one. It turns out that a nonstrict
LMI can be reduced to an equivalent strict LMI by eliminating equality constraints
(a more thorough discussion on this can be found in (Boyd et al., 1994)). Keeping
these facts in mind, we generally deal with strict negative de¯ned LMIs.

3.1.1. Bilinear matrix inequalities

It is a fact that most control problems cannot be directly written in the form of
the LMI (3.1). Thus, bilinear matrix inequalities (BMIs) have been introduced as
a general framework to tackle these control problems (Safonov et al., 1994). BMI
has the following form

F (x, y) = F (x, y)T = F0 +
n∑

i=1

xiFi +
m∑

j=1

yjGj +
n∑

i=1

m∑

j=1

xiyjHij º 0 (3.4)

where the variables are x = (x1, . . . , xn), x ∈ Rn and y = (x1, . . . , ym), y ∈ Rm,
and the symmetric matrices F0, Fi, i = 1, . . . , n, Gj , j = 1, . . . ,m and Hij ,
i = 1, . . . , n, j = 1, . . . ,m are given data. Unfortunately, BMIs are in general
highly non-convex optimization problems, which can have multiple local solutions,
hence solving a general BMI was shown to be NP-hard (Toker and ÄOzbay, 1995)
i.e. no polynomial-time algorithm has been found so far for solving them (we
cannot utilize the convex optimization methods) (Goh et al., 1994). This means
that the solution to the problem formulated in terms of BMI can be provided
with approximation methods. Obviously, this introduces a signi¯cant degree of
conservativeness. In e®ect, BMIs are not so popular as LMIs. However, some of
the problems recognized as BMI problems (and therefore assumed to be NP-hard
problems) have ”hidden” convexity properties and they can be reformulated in
terms of LMI.
In this dissertation, a BMI problem formulation will be used to indicate that

a considered problem cannot be directly solved with polynomial-time algorithms
but in some cases exploration of problem properties can lead to the problem for-
mulation in terms of LMI.
On the other hand, an interesting point to note is that a BMI of the form

(3.4) is an LMI in x for ¯xed y and an LMI in y for ¯xed x. Furthermore, it
means that BMI is convex in x and convex in y but not jointly convex in x and
y (VanAntwerp and Braatz, 2000).

Example 3.3. Consider the following bilinear inequality

1− xy > 0 (3.5)

where x and y are scalar variables. It is clear that (3.5) does not represent a
convex set. To see this, we can consider two points on xy-plane which satisfy the
constraint (3.5), e.g. p1 = (x1, y1) = (0.2, 2) and p2 = (x2, y2) = (4, 0.2) and we
look on the Fig. 3.3. Obviously, the point in the half way between the two values,
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Fig. 3.3 . Example of a non-convex set.

i.e.

p3 =
1

2
(0.2, 2) +

1

2
(4, 0.2) = (2.1, 1.1)

does not satisfy (3.5).

Today, problems formulated in BMI framework can be solved with algorithms
based on a spatial branch and bound strategy which are available only for very
small problems. Moreover, there remains some problems in the branch and bound
approach therefore these methods are still under development (El Ghaoui and
Niculescu, 1999).

3.2. Algorithms and software for LMI methods

Since the simplex algorithm was discovered in the 1940s, much e®ort has been
spent trying to overcome the poor worst-case behaviour of the algorithm - the
number of iterations may be exponential in the number of unknowns. This e®ort
resulted in algorithms with better computational complexity. The¯rst polynomial-
time algorithm is the ellipsoid algorithm that was developed in the late 1970’s by
Khachiyan (Khachiyan, 1979). This started an intensive search for algorithms with
a strong emphasis on convex optimization and computational complexity issues.
Then in 1988, interior point algorithms (or interior point method - IPM) had been
established by Nesterov and Nemirovskii. This mainly motivates the increasing
popularity of LMI methods (called semi-de¯nite programming - SDP) which are
convex optimization problems and can be solved with IPM.
The general features of IPMs are:

• they are efficient in theory - worst-case computational cost of problem solving
is polynomial function of the number of decision variables,
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• they are efficient in practice i.e. about 5 to 50 iterations, almost independent
of input data, are required to ¯nd a solution.

Due to the importance of both ellipsoid and interior point algorithms, they will
be presented in the next two subsections.

3.2.1. Ellipsoid algorithm

The ellipsoid algorithm is the simplest algorithm to solve LMI problems where the
solution with prescribed accuracy is attained in polynomial-time. The basic idea
behind this algorithm is to, given a starting ellipsoid that contains the optimal
solution (i.e. x∗), cut the ellipsoid in half. Then make a minimal volume ellip-
soid enclosing that half that contains the optimal solution, and iterate until the
optimum is reached.
In more detail, the ellipsoid algorithm contains the following steps

Step 1: Set the iteration counter k = 0 and ¯nd a feasible starting point (with
standard numerical computations) x(0)

Step 2: Compute an ellipsoid E(k) that contains an optimal point x(k)

Step 3: Compute a plane that passes through the centre of the ellipsoid so that
the solution is guaranteed to lie on one side of the plane

Step 4: Discard that part of the plane which does not contain an optimal point

Step 5: If prescribed accuracy is attained then stop, otherwise set k = k+1 and
return to the second step

The above steps guarantee that a sequence of ellipsoids contains an optimal point
and the volume of these ellipsoids decreases geometrically (for mathematical details
see, for example, (Boyd et al., 1994)). However, the ellipsoid algorithm is rather
slow due to slow practical convergence, therefore this algorithm is not particular
efficient from a computational point of view. Therefore, available LMI solvers use
an interior-point algorithm that currently has many of variations.

3.2.2. Interior-point algorithm

Recently, interior-point methods (IPM) have been applied to optimization pro-
blems involving LMIs. The algorithm based on IPM is more computationally
efficient in practice than the ellipsoid one (Nesterov and Nemirovskii, 1994; Van-
denberghe and Balakrishnan, 1997; Vandenberghe and Boyd, 1996).
The basic idea of the interior-point algorithm is as follows (Meinsma, 1997)

Step 1: Construct a barrier function φ(x) that is well de¯ned for strict feasible x
and is −ε (where −∞ < ε¿ 0) only at the optimal x = x∗

Step 2: Generate a sequence {x(k)} so that

lim
k→∞

φ(x(k)) = −ε
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Step 3: Stop if φ(x(k)) is negative enough

This algorithm uses the constraints to de¯ne a barrier function which is convex
within the feasible region and in¯nite outside it. One of the simplest barrier
functions is

φ(x) = − log det (F (x)) = log det
(
F−1(x)

)

This barrier function is incorporated into an objective function f0(x) = cTx (c ∈
Rn is a given vector), which allows the constrained optimization problem to be
replaced with an unconstrained optimization problem

min f(x) = min f0(x) + µφ(x) = cTx− µ log det (F (x)) (3.6)

where the parameter µ > 0 is to be selected. The optimization problem (3.6)
is iteratively solved with the descent method (Beck, 1991; Henrion, 2003) which
produces a minimizing sequence

xk+1 = xk + tk∆xk (3.7)

where ∆xk is the step of search direction and tk ≥ 0 is the size or step length. It
turns out that for the optimization problem (3.6) Newton’s method can be applied,
therefore tk is the gradient of f(x), and ∆xk is the inverse of the Hessian of f(x).
As an example of the particular IPM for solving LMIs, we consider the pro-

jective method (Gahinet and Nemirovski, 1997; Nemirovskii and Gahinet, 1994),
which has been efficiently implemented in a Matlab-based software (Gahinet
et al., 1995). This method guarantees to ¯nd for ε > 0, an ε-solution to the
problem within a ¯nite number of °ops bounded by

mn3 log

(
C

ε

)

wherem is the total row size of the LMIs, n is the total number of decision variables
and C is some data-dependent scaling factor. Moreover, no initial feasible solution
is required for the projective method.

3.2.3. Implementation and computational issues

It is known that the vector and matrix operations are fundamental to engineering
and scienti¯c problems. Therefore, several software packages for engineers provide
manipulating and computing on vectors and matrices. Among them, Matlab
has become a standard environment for algorithm development and numerical
computation, including algorithms for solving problems formulated in terms of
LMI. Since most engineering problems are of the form

F (x) =

k∑

p=1

[
LpXpR

T
p +RpX

T
p LT

p

]
(3.8)

where Lp,Rp are given matrices and Xp is the matrix variable which entries are
decision variables x1, . . . , xn, then the canonical representation of LMI (3.1) is
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inconvenient form which makes notation longer. However, each problem written
as (3.8) can be formulated in the form (3.1). To see this, the following example is
used.

Example 3.4. Consider the following LMI problem

ATPA− P ≺ 0 (3.9)

where P is the matrix variable of the block diagonal structure (i.e. P =diag(P h,P v)
P h ∈ Rnh×nh ; P v ∈ Rnv×nv and nh + nv = n) to be found and A ∈ Rn×n is a
given matrix (note that the presented LMI is the stability test for a discrete 2-D
system described by RM (Kaczorek, 1985)).
Since A ∈ R2×2 (i.e. nh = 1 and nv = 1) then (3.9) can be expressed in terms

of the scalar data and the scalar variables as

[
a11 a21
a12 a22

] [
x1 0
0 x2

] [
a11 a12
a21 a22

]
−
[
x1 0
0 x2

]
≺ 0

Noting that

P =

[
x1 0
0 x2

]
= x1

[
1 0
0 0

]
+ x2

[
0 0
0 1

]
= x1P 1 + x2P 2

we have the following expression

x1

[
a211 − 1 a11a12
a12a11 a212

]
+ x2

[
a221 a21a22

a22a21 a222 − 1

]
≺ 0

which is in the form of (3.1).

Since the decision variables have a matrix structure, i.e. they are matrices,
then it may lead to more efficient computation. To see this fact, observe that
the Newton step ∆xk in (3.7) can be found by a solution of the linear system of
equations (LSE) written in the form

H∆xk = −g (3.10)

where

Hij =trace
(
F (x)−1F iF (x)

−1F j(x)
)

i, j = 1, . . . , n

gi =
ci
µ
+ trace

(
F (x)−1F i

)
i = 1, . . . , n

The standard approach to solve the LSE de¯ned in (3.10) is to form the HessianH

(which in some cases dominates the cost of solving LSE) and the gradient g, and
then use the Cholesky factorization or QR decomposition to ¯nd the result. It is
important to note that the Cholesky factorization is the most widely used method
for solving LSE, but the highest accuracy is obtained only for well-conditioned
problems. This means that the method can be used for problems which require



3. Linear matrix inequality methods 61

less accuracy (the standard accuracy for LMI solvers is 10−2). When the problem
becomes ill-conditioned (when we are near to the optimum) the LMI solver switches
from the Cholesky factorization to the QR decomposition. In most cases, the QR
decomposition is applicable to a wider class of matrices than Cholesky factorization
but it requires much greater memory and °oating operations. For more details on
comparisons between these two methods of solving LSE, see (Golub and Loan,
1996).

Example 3.5. Consider the problem of computation of the lower bound for stabi-
lity margin of a 2-D system (for further details see Example 3.9). In this example,
we aim to emphasize the trade o® between accuracy and e±ciency (speed) of the
solution when a switch from the Cholesky factorization to the QR decomposition
occurs. To see this, a random system of the order n = 11 has been generated
and the problem has been solved with the LMI solver. The results are listed in Ta-
ble 3.1. The LMI solver implemented in Lmi Control Toolbox (Gahinet et al.,

Table 3.1. Solutions obtained via the Choleske and the QR decompositions.
accuracy (ε) iterations QR iterations CPU time in sec.

10−2 60 0 11.87
10−3 100 15 55.92

1995) detects the situation when the Cholesky factorization fails due to numerical
instabilities and switches to the QR decomposition. This fact is reported by the
message (in this example, it was between 85th and 86th iteration of the performed
simulation).

Solver for generalized eigenvalue minimization

Iterations : Best objective value so far

. .

85 0.261484

* switching to QR

86 0.261223

. .

Note that presented computations have been performed with Lmi Control To-
olbox 1.0.8 under Matlab 6.5. The Matlab-¯les have been run on a PC with
AMD Duron 600 MHz CPU and 128MB RAM.

It should be pointed out that progress in interior point algorithms and har-
dware technology has been dramatic over the past twenty years. Problems that
once took days to solve can now be solved in minutes. The LMI problem with
hundreds of variables and constraints, can be solved in a few hours on a reasonably
priced desktop workstation or parallel computers, see (Benson, 2003; Lustig and
Rothberg, 1996) for some details.
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3.2.4. Software for solving LMIs

The growing use of computers and numerical methods result in several software
packages for manipulating and for solving LMIs and most of them are available un-
derMatlab (The Mathworks Inc., 2004) and Scilab (Gomez, 1999) environment
(but also under the other enviroments, for example the Maple-based package,
see (Xhafa and Navarro, 1996)). The most popular packages are: Sp, Sdpa (Fuji-
sawa et al., 2000), Sdpt3 (Toh et al., 2002), Pennon (Ko·cvara and Stingl, 2003),
Maxdet (Wu et al., 1996), Sdpsol (Wu and Boyd, 1999), Dspd (Benson and
Ye, 2002), Mosek (Andersen, 2001), SeDuMi (Sturm, 1999) and Lmi Control
Toolbox (Gahinet et al., 1995). Unfortunately, most of them have their own
commands to formulate the LMI problem and some of them are designed for spe-
ci¯c purposes, e.g. Maxdet is designed for determinant maximization problems,
Dsdp exploits structure for combinatorics and Pennon is a package for solving
problems of convex and nonconvex nonlinear programming (aimed at large-scale
problems with sparse data structure). Moreover, software packages di®er from
each other on efficiency (see (Mittelmann, 2000) for a recent comparison of these
solvers). This is why great attention has been paid to provide uniform interface for
specifying LMI. Recently, Yalmip (LÄofberg, 2004) has been created which gives
us simple commands for rapid prototyping of LMI problems and it supports most
of the existing LMI solvers.
Among a large number of available software packages, the following two are

considered in this dissertation to deal with LMI problems

• Lmi Control Toolbox,
• SeDuMi with Yalmip for LMI speci¯cation.

Both packages use Matlab as the working environment and implement IPM.

3.2.4.1. LMI Control Toolbox

The Lmi Control Toolbox (Gahinet et al., 1995) provides a fully integrated
general purpose environment for specifying and solving LMI control problems.
This package is mainly destined for 1-D systems but its LMI capabilities make it
useful anywhere LMI techniques are applicable, so it can be used for our purposes.
Key features of this package are

• support of three LMI solvers: feasibility problems, minimization of linear
objectives under LMI constraints, and generalized eigenvalue minimization,

• interactive LMI editor which allows us to specify LMI as symbolic expres-
sions,

• efficient storage and computation of LMI problems.
The Lmi Control Toolbox can handle any system of LMIs of the form

(similar to the form represented by 3.8)

NTL(X1,X2, . . . ,Xk)N ≺ MTR(X1,X2, . . . ,Xk)M (3.11)



3. Linear matrix inequality methods 63

where X1,X2, . . . ,Xk are the matrix variables, possibly with some prescribed
structure, N andM are known square matrices of identical dimensions and L(·)
and R(·) are symmetric block matrices with identical block structures. Each block
of L(·) and R(·) is an affine expression in the matrix variables X1,X2, . . . ,Xk

and their transposes.
In order to solve an LMI, the following basic steps have to be made

Step 1: To initialize internal representation of the LMIs, the command setlmis
has to be given as the ¯rst step. All data for structure, dimension of the
LMIs and matrix variables will be stored in the initialized vector.

Step 2: For each of the unknown matrix variables X1,X2, . . . ,Xk in (3.11), its
structure and dimension has to be speci¯ed. This is done with the command
lmivar(type,structure) where type selects from available types of matrix
variables i.e symmetric, rectangular and other structures. The parameter
structure gives further information on the structure of X i, i = 1, 2, . . . , k
depending on its type de¯ned by parameter type.

Step 3: Specify the term content of each LMI with command lmiterm. The
syntax is lmiterm (id, A, B) where A and B are real matrices, id=[lmi1,
i, j, k] refers to the (i, j)th block of L(·) or R(·) in (3.11) and k denotes
the matrix variable number.

Step 4: This is the last step. After declaring the matrix variables and LMIs,
the resulting speci¯cation is written in the Matlab variable with the com-
mand matlabvariable= getlmis. Finally, invoke one of the implemented
solvers for given problem (one from feasibility, EVP or GEVP problem-see
Section 3.3).

Example 3.6. Consider LMI (3.9) from Example 3.4. Since nh and nv are
given then A ∈ R(nh+nv)×(nh+nv) and the solution can be found with the following
program written under Lmi Control Toolbox

setlmis([]); %Initialize LMI

P=lmivar(1,[nh 1;nv 1]); % P is the matrix variable

% with block-diagonal structure

% nh and nv are given

lmiterm([-1 1 1 P],1,1); % LMI #1: P>0

lmiterm([2 1 1 P],A’,A); % LMI #2: A’*P*A

lmiterm([2 1 1 P],1,-1); % LMI #2: -P

example=getlmis; % LMI name

feasp(example); % try to find the solution

% by solving feasibility problem
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3.2.4.2. SeDuMi

SeDuMi (Sturm, 1999) is aMatlab-package which allows us to solve optimization
problems with linear, quadratic and semide¯niteness constraints. It implements
the primal-dual interior point algorithm (Sturm, 2000). The algorithm has an
O
(√
n log

(
1
ε

))
worst case bound (n denotes the number of decision variables and ε

is an accuracy), and treats initialization issues by means of the self-dual embedding
technique of (Ye et al., 1994). The iterative solutions are updated in a product
form, which makes it possible to provide highly accurate solutions. SeDuMi has
some features which are not available under Lmi Control Toolbox

• possibility to impose positive semide¯niteness constraints,

• advantage of matrix sparsity is used to make computation faster,

• the computational worst-case cost of performing each iteration is bounded
by
√
n log

(
1
ε

)
.

Unfortunately, SeDuMi requires the conic formulation of LMI to specify the pro-
blem (recall that the conic formulation is widely used by mathematicians) which
is inconvenient for our purposes. To work with the standard form of LMI and with
matrix variables (see Section 3.2.3 for more details) the pre-processing steps are
required (it is clear that these steps are time-consuming). Such conversion can be
performed with Yalmip.

3.2.4.3. Yalmip

Yalmip (LÄofberg, 2004) is aMatlab toolbox for rapid prototyping of optimization
problems. The package initially focused on SDP, but the latest release extends
this scope signi¯cantly. Yalmip can now be used for convex linear, quadratic,
second order cone and SDP, as well as for non-convex SDP, mixed integer, multi-
parametric and geometric programming.
The main advantages of Yalmip are:

• only 3 new commands are needed to formulate LMIs,

• constraints and objective functions are de¯ned with an intuitive and standard
Matlab code,

• supports numerous (approximately 20) external SDP solvers.

Example 3.7. In order to solve the LMI problem described in Example 3.4 under
Yalmip and SeDuMi, the following set of commands have to be performed (it is
assumed that nh = 1 and nv = 1)

P=sparse(1:2,1:2,sdpvar(2,1)); % the matrix P

F=lmi(P>0); % LMI #1

F=lmi(A’*P*A-P<0); % LMI #2

solution=solvesdp(F); % solve optimization problem
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3.3. Standard LMI problems

The LMI software can solve the LMI problems formulated in three di®erent forms:

• feasibility problem,

• linear optimization problem,

• generalized eigenvalue minimization problem.

3.3.1. Feasibility problem

A feasibility problem is de¯ned as follows

De¯nition 3.1. Find a solution x = (x1, . . . , xn) such that

F (x) º 0 (3.12)

or determine that the LMI (3.12) is infeasible.

A typical situation for the feasibility problem is a stability problem where
one has to decide if a system is stable or not (an LMI is feasible or not). As an
example of a feasibility problem, consider Example 3.4.

3.3.2. Linear objective minimization problem

Another standard LMI problem is minimization of a linear objective function under
LMI constraint and it is stated as follows

De¯nition 3.2. Minimize a linear function cTx (x = (x1, . . . , xn)), where c ∈
Rn is a given vector, subject to an LMI constraint (3.12) or determine that the
constraint is infeasible. Thus the problem can be written as

min cTx

subject to F (x) º 0

This problem can appear in the equivalent form of minimizing the maximum eige-
nvalue of a matrix that depends a±nely on the variable x, subject to an LMI
constraint (this is often called EVP)

min λ

subject to λI − F (x) º 0

As an example of using this optimization procedure, the problem of the H∞
norm computation for a 2-D discrete system is considered.

Example 3.8. Consider the 2-D system represented by the FMM of the form

x(i+ 1, j + 1) =A1x(i+ 1, j) +A2x(i, j + 1) +B1u(i+ 1, j) +B2u(i, j + 1)

y(i, j) =Cx(i, j) +Du(i, j)
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where the matrices A1, A2, B1, B2, C and D are given. Next, introduce the
matrices

A =
[

A1 A2

]
, B =

[
B1 B2

]
, Ĉ =

[
C 0

0 C

]
, D̂ =

[
D 0

0 D

]

and

S =

[
P 0

0 0

]
, R =

[
Q 0

0 −Q

]

where P Â 0 and Q Â 0 are matrices to be found. Adapting results from (Du
and Xie, 2002; Xie et al., 2002), it can be shown that the problem of ¯nding the
minimal H∞ norm bound γ is linear objective minimization

min
PÂ0,QÂ0

µ

subject to

[
ATPA+R− S +CTC Ĉ

T
D̂ +ATPB

BTPA+ D̂
T
Ĉ D̂

T
D̂ − µI +BTPB

]
≺ 0

where µ = γ2. Since the matrices A1, A2, B1, B2, C and D are assumed to be

A1 =




0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


 , A2 =




0 −1 0 −1
0 0 −1 0
0 0 0 0
0 0 0 0


 , B1 =




0
0
1
0


 , B2 =




1
0
1
−1


 ,

C =
[
1 0 0 0

]
, D = [0]

(3.13)

then the computation performed with Lmi Control Toolbox gives us the result
γ = 10.1985 (with accuracy ε ≤ 10−2). This result is close to the H∞ norm of the
system γ = 10.0 obtained in an analytic way (Du and Xie, 2002). This means that
LMI approach to the H∞ norm computation of a 2-D system allows us to provide
not conservative conditions, at least for this example.

3.3.3. Generalized eigenvalue problem

The last LMI problem is the generalized eigenvalue problem (GEVP) which allows
us to minimize the maximum generalized eigenvalue of a pair of matrices that
depend affinely on the variable x = (x1, . . . , xn). The general form of GEVP is
stated as follows

min λ

subject to





A(x) ≺ λB(x)

B(x) Â 0
C(x) ≺ D(x)

(3.14)

where C(x) ≺ D(x) and A(x) ≺ λB(x) denote set of LMIs. It is necessary to
distinguish between the standard LMI constraint, i.e.

C(x) ≺ D(x)
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and the LMI involving λ (called the linear-fractional LMI constraint)

A(x) ≺ λB(x)

which is quasi-convex with respect to the parameters x and λ. However, this pro-
blem can be solved by similar techniques as those for previous problems, see (Boyd
et al., 1994) for details.
As an example of using GEVP, let us consider the problem of lower bound for a
stability margin computation of a 2-D system.

Example 3.9. The lower bound for stability margin σ2 can be obtained by solving
the following quasi-convex optimization problem (Xu et al., 2004)

max
XÂ0, X1Â0, σ2>0

σ2

subject to




Â
T

1 XÂ1+X1−X (1+σ2) Â
T

1 XÂ2 0

(1+σ2) Â
T

2 XÂ1 −X1 (1+σ2) Â
T

2 X

0 (1+σ2)XÂ2 −X


≺0

(3.15)

where the matrices Â1, Â2 are given and X Â 0, X1 Â 0 are matrix variables to
be found. The above optimization problem cannot be directly solved by one of the
LMI solver. This is because the condition (3.15) has no form de¯ned by (3.14).
Therefore, the following transformations are required. First, decompose the matrix
inequality (3.15) on

(1+σ2)




0 Â
T

1 XÂ2 0

Â
T

2 XÂ1 0 Â
T

2 X

0 XÂ2 0


+




Â
T

1 XÂ1+X1−X 0 0

0 −X1 0

0 0 −X


≺0

which further leads to




0 Â
T

1 XÂ2 0

Â
T

2 XÂ1 0 Â
T

2 X

0 XÂ2 0


 ≺ (1+σ2)−1



−Â

T

1 XÂ1−X1+X 0 0

0 X1 0

0 0 X




Now, it is obvious that under the following substitutions

λ = (1 + σ2)
−1

and

A(x)=




0 Â
T

1 XÂ2 0

Â
T

2 XÂ1 0 Â
T

2 X

0 XÂ2 0


 , B(x)=



−Â

T

1 XÂ1−X1+X 0 0

0 X1 0

0 0 X



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the problem (3.15) can be rewritten as

min
XÂ0, X1Â0, λ>0

λ

subject to

{
A(x) ≺ λB(x)

B(x) Â 0
(3.16)

which is clearly the GEVP of the form (3.14).
Suppose now the 2-D system represented by RM of the form (2.1) is given

where

A11 = −0.5, A12 = −0.395, A21 = 1, A22 = −0.01
and the following matrices

Â1 =

[
A11 A12

0 0

]
, Â2 =

[
0 0

A21 A22

]

are de¯ned. As the result of the computations performed with Lmi Control
Toolbox σ2 = 0.2820 has been obtained(with the accuracy ε ≤ 10−2). The com-
parison of the lower bounds for the stability margin derived by presented method
here with previous results is shown in Table 3.2. This comparison shows that

Table 3.2. Comparison of the lower bounds for the stability margin σ2.
Agathoklis’s result (Agathoklis, 1988) σ2 = 0.127

Fernando’s and Trinh’s result (Fernando and Trinh, 1999) σ2 = 0.2500
LMI result σ2 = 0.2820

the lower bounds for the stability margin obtained in this dissertation are larger
than those obtained by using the methods in (Agathoklis, 1988) and (Fernando
and Trinh, 1999). This means that the lower bounds for the stability margin in
this dissertation are less conservative than those reported in (Agathoklis, 1988)
and (Fernando and Trinh, 1999). Moreover, it turns out that the analytic result
is σ2 =

11
39 = 0.28205128205128 therefore it proves again that the LMI approach

allows us to provide not conservative conditions.

It should be pointed out that positivity of the term B(x) (see (3.14) and
(3.16)) is required for the well-posedness of the problem and the applicability of
polynomial-time methods (Gahinet et al., 1995). Due to this, the problems where
the following form of B(x) appears

B(x) =

[
B1(x) 0

0 0

]
, B1(x) Â 0 (3.17)

cannot be solved directly with LMI software. To overcome this difficulty, the
constraints

A(x) ≺ λB(x), B(x) Â 0
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can be replaced by

A(x) ≺
[

Y 0

0 0

]
, Y ≺ λB1(x), B1(x) Â 0

where Y is an additional matrix variable of proper dimensions.

Example 3.10. Let us consider again the problem of the H∞ norm computation
for a 2-D discrete system (see Example 3.8). During formulating this problem
as the GEVP, a semi-de¯nite constraint appeared. However, this constraint can
be replaced by another one to obtain the LMI problem formulation as it has been
presented above.

According to this replacement, the problem of ¯nding of minimal H∞ norm
bound γ can be formulated as GEVP and has the following form

min
PÂ0,QÂ0,Y Â0

µ

subject to





Y ≺ µI[
ATPA+R−S+CTC Ĉ

T
D̂ +ATPB

BTPA+D̂
T
Ĉ D̂

T
D̂+BTPB

]
≺
[
0 0

0 Y

] (3.18)

where µ = γ2 and Y is additional variable of proper dimension. In case of the
system (3.13) the result is γ = 10.2002 (with the accuracy ε ≤ 10−2).

3.4. Analytic solution of the LMI problem

It should be pointed out that in some special cases, the control problems formulated
in terms of LMI (e.g. the stability problem) have an analytic solution which can
be computed by direct and more e®ective methods. This fact can be used to check
or to validate the numerical results.

It can be shown that the LMI (3.1) is equivalent to n polynomial inequalities.
To see this, consider the well-known result in matrix theory (Golub and Loan,
1996) that given real symmetric matrix F (x) ∈ Rn×n is positive de¯nite if, and
only if, all of its principal minorsmi(x) are positive. This means that the principal
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minors are multivariate polynomials of indeterminates xi i.e.

m1(x) =F (x)11=F011+

n∑

i=1

xiFi11

m2(x) =det

([
F (x)11 F (x)12
F (x)21 F (x)22

])
=

(
F011+

n∑

i=1

xiFi11

)(
F022+

n∑

i=1

xiFi22

)

−
(
F021+

n∑

i=1

xiFi21

)(
F012+

n∑

i=1

xiFi12

)

mk(x) =det






F (x)11 · · · F (x)1k
...

. . .
...

F (x)k1 · · · F (x)kk







mn(x) =det(F (x)) =det






F (x)11 · · · F (x)1n
...

. . .
...

F (x)n1 · · · F (x)kn







where F (x)kl denotes the element on k-th row and l-th column of F (x).

Example 3.11. Consider again the problem of ¯nding a block-diagonal matrix
P Â 0 (P = diag (P h,P v)) such that the following LMI

ATPA− P ≺ 0 (3.19)

or
−ATPA+ P Â 0 (3.20)

is satis¯ed. Since P = diag(x1, x2) and the matrix A is given by

A =

[
a11 a12
a21 a22

]
=

[
0.4942 0.5706
0.1586 0.4662

]
(3.21)

then the solution of the LMI (3.20) is equivalent to the solution of the set of
inequalities

m1(x)=− x1(a211 − 1)− x2a221 = 0.75576636x1 − 0.02515396x2 > 0
m2(x)=− x1(a211 − 1)− x2a221 = 0.32558436x1 + 0.78265756x2 > 0
m3(x)=

(
−x1(a211 − 1)− x2a221

)(
−x1a212 − x2(a222 − 1)

)

−(−x1a12a11 − x2a22a21)(−x1a12a11 − x2a22a21)
=− 0.32558436x21 + 0.5579956166x1x2 − 0.02515396x22 > 0

(3.22)

with
x1 > 0 and x2 > 0 (3.23)

On the other hand, recall that the LMI (3.1) is a convex set in Rn de¯ned as

F =
{
x ∈ Rn : F (x) = F0 +

n∑

i=1

xiFi º 0
}
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which can be described in terms of principal minors as

F = {x ∈ Rn : mi(x) ≥ 0, i = 1, . . . , n}
Hence the inequalities (3.22) and (3.23) describe the convex set which is depicted
in Fig. 3.4 as the shaded area. Additionally, the constraints x1 < 2 and x2 < 2

x1

p1

p2

x2

Fig. 3.4 . Feasible set plot.

have been imposed to bound the plot. This plot has been created with Yalmip by
running the following sequence of commands

A =[ 0.4942 0.5706; 0.1586 0.4662]% the matrix A

x = sdpvar(2,1); % two decision variable: x(1) and x(2)

F = set(-(A(1,1)^2)*x(1)-x(2)*A(2,1)^2+x(1)>0)

F = F+set(-(A(1,2)^2)*x(1)-x(2)*A(2,2)^2+x(2)>0)

F = F+set(x(1)>0)

F = F+set(x(2)>0)

F = F+set(x(1)<2)

F = F+set(x(2)<2)

F = F+set([-(A(1,1)^2)*x(1)-x(2)*A(2,1)^2+x(1),...

-A(1,1)*A(1,2)*x(1)-A(2,1)*A(2,2)*x(2);...

-A(1,1)*A(1,2)*x(1)-A(2,1)*A(2,2)*x(2),...

-(A(1,2)^2)*x(1)-x(2)*A(2,2)^2+x(2)]>0)

plot(F) % plot the feasible set

To validate the result, computations for two points p1 = (x1, x2) = (2, 0.5) and
p2 = (x1, x2) = (0.5, 2) will be provided. First consider the point p1. In this case,
the matrix below is obtained from the LMI (3.19).

R = ATPA− P =

[
−1.4990 0.6010
0.6010 0.2598

]

Because eigenvalues of the matrix R are λ1 = −1.6847 and λ2 = 0.4456, it is clear
that p1 is not the solution of the considered LMI (see Fig. 3.4 that p1 does not lie
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inside the feasible set). Taking p2 into computation yields

R =

[
−0.3276 0.2889
0.2889 −1.4025

]

which is negative de¯ned (its eigenvalues are λ1 = −1.4752 and λ2 = −0.2549).
On the other hand, evaluating the principal minors (3.22) yields

Table 3.3. Values of the principal minors.
p1 p2

m1(x) 0.3759836866 0.3759836866
m2(x) -0.259839940 1.402522940
m3(x) 1.498955740 0.327575260

These results clearly show that in the case of the point (p1 not all principal minors
are positive, hence we conclude again that this point does not solve the LMI (3.19)
with (3.21).

3.5. Methods to reformulate hard problems into LMIs

This section is devoted to methods which are useful in cases when it is necessary
to obtain the LMI form the non-LMI formulation i.e. when a matrix inequality is
not linear in respect to its parameters (e.g. the BMI form).
Before the main methods will be described, an important fact from the matrix

theory is presented. This will be helpful to many transformations required by the
proofs. That is, if some matrix F (x) is positive de¯ned than zTF (x)z Â 0, ∀z 6= 0,
z ∈ Rn. Assume now that z = My where M is any given nonsingular matrix,
hence

zTF (x)z Â 0
implies that

yTMTF (x)My Â 0
This means that some rearrangements of the matrix elements do not change the
feasible set of LMIs. For example, if the following LMI is feasible

[
A B

C D

]
≺ 0

then immediately the following LMI is feasible too
[

D C

B A

]
≺ 0

where [
D C

B A

]
=

[
0 I

I 0

] [
A B

C D

] [
0 I

I 0

]
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3.5.1. Schur complement formula

Quadratic but convex inequality can be converted into the LMI form using Schur
complement formula given by the following Lemma.

Lemma 7. (Boyd et al., 1994) Let A ∈ Rn×n and C ∈ Rm×m be symmetric
matrices and A Â 0 then

C +BTA−1B ≺ 0

if and only if

U =

[ −A B

BT C

]
≺ 0 or, equivalently, U =

[
C BT

B −A

]
≺ 0

The matrix C+BTA−1B is called the Schur complement of A in U . The identical
result holds for a positive de¯ned case.

Example 3.12. Consider a controller design for discrete LRPs (2.16). It can be
shown that the following LMI gives su±cient condition for stability along the pass

(Φ+RK)TW (Φ+RK)−W ≺ 0 (3.24)

where W Â 0 is block-diagonal matrix variable, Φ and R are given matrices
identi¯ed in process state-space model (2.16) as

Φ =

[
A B0

C D0

]
, R =

[
B 0

0 D

]

and

K =

[
K1 K2

K1 K2

]

is the matrix to be found. Applying the Schur complement formula to (3.24) yields

[
−W−1

Φ+RK

Φ
T +KTRT −W

]
≺ 0

The above form is still nonlinear due to the occurrence of terms W −1 and W

(hence it can be stated in terms of BMI). To overcome this problem, introduce the
substitution P = W−1 and then multiply the result from the left and the right by
diag (I,P ) to obtain

[ −P ΦP +RN

PΦT +NTRT −P

]
≺ 0 (3.25)

where N = KP . Now, it is straightforward to see that (3.25) is the feasibility
problem (see De¯nition 3.1), which is numerically solvable.



74 3.5. Methods to reformulate hard problems into LMIs

3.5.2. Elimination of a norm bounded matrix

In robustness analysis, we often encounter the following terms

HFE +ETFTHT (3.26)

where H , E are known real matrices of appropriate dimensions, and the matrix
F represents parameter uncertainties which satis¯es

FTF ¹ I or equivalently ‖F‖ ≤ 1

Inequalities which consist of (3.26) can be transformed into the LMI with the
following Lemma

Lemma 8. Let H, E be given real matrices of appropriate dimensions and F

satisfy FTF ¹ I. Then for any ε > 0 the following holds

HFE +ETFTHT ¹ εHHT +
1

ε
ETE

Proof. Since it is true that

(
ε

1

2 HT − ε− 1

2 FE
)T (

ε
1

2 HT − ε− 1

2 FE
)
º 0

then expansion of the above yields

ε−1ETFTFE + εHHT ºHFE +ETFTHT

Next, observe that

‖F‖ ≤ 1⇔ λmax(F
TF) ≤ 1⇔ FTF ¹ I

hence

εHHT +
1

ε
ETE º ε−1ETFTFE + εHHT º HFE +ETFTHT

and the proof is complete ¥

Note that some part of the proof can be found in (Oliveira, 2002).

3.5.3. Elimination of variables

For certain speci¯c matrix inequalities, if is often possible to eliminate some of the
matrix variables.

Lemma 9. (Gahinet and Apkarian, 1994; Iwasaki and Skelton, 1994) Let Ψ ∈
Rq×q be a symmetric matrix and P ∈ Rr×q and Q ∈ Rs×q be real matrices then
there exists a matrix Θ ∈ Rr×s such that

Ψ+ P T
Θ

TQ+QT
ΘP ≺ 0 (3.27)
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if and only if the inequalities

WT
PΨWP ≺ 0 andWT

QΨWQ ≺ 0

both hold, whereWP andWQ are full rank matrices satisfying Im(WP ) = ker(P )
and Im(WQ) = ker(Q)

This is a key lemma in stabilisation problems where inequalities of the form
(3.27) appear. However, it can also be used to eliminate variables from already
formulated LMI. Since some variables can be eliminated, the computation burden
can be reduced greatly. To see this, the following example is provided.

Example 3.13. Consider again the stabilisation problem presented in Exam-
ple 3.12. The right-hand term in (3.25) can be rewritten as

[ −P ΦP +RN

PΦT +NTRT −P

]
=

[ −P ΦP

PΦT −P

]
+

[
R

0

]
N
[
0 I

]

+

[
0

I

]
NT

[
RT

0
]

Using Lemma 9, we obtain

WT
R

[ −P ΦP

PΦT −P

]
WT

R ≺ 0, WT
S

[ −P ΦP

PΦT −P

]
WT

S ≺ 0

where WR = diag(ker(R), I) and WS = diag(I,0). These two LMI conditions
can be checked with less computation burden than the LMI condition provided in
Example 3.12. Illustrative computations have been performed for processes of pre-
scribed order (n) and the results are listed in Table 3.4. Note that all computations

Table 3.4. Execution time comparison.
n Example 3.12 (CPU time in sec.) This Example (CPU time in sec.)
6 0.11 0.06
8 0.22 0.11
12 1.15 0.6
15 19.06 1.76
20 73.44 7.91

have been performed with Lmi Control Toolbox 1.0.8 under Matlab 6.5. The
Matlab-¯les have been run on a PC with AMD Duron 600 MHz CPU and 128MB
RAM.

3.6. Concluding remarks

In this chapter, LMI methods which have become a standard in system theory, have
been described in detail. It has been done by providing the mathematical theory
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required to understand what LMIs are and to manipulate them. It is shown that
the LMI approach is very attractive due to its numerical advantages and relative
simplicity. These numerical advantages lie in the fact that computations required
to solve LMIs maintain a reasonable computational cost i.e. the computational
cost of solving LMIs is a polynomial function of the number of decision variables.
Hence it is clear that a problem formulated in terms of LMI belongs to the class
of P-problems.
Moreover, LMIs provide an alternate problem formulation in 1-D system the-

ory that avoids direct manipulation on system poles. This makes LMIs especially
useful in the solving of n-D system analysis and synthesis problems, because com-
putations over system poles are omitted.



Chapter 4

ROBUSTNESS ANALYSIS WITH LMI METHODS

It turns out that LMI methods o®er the chance to approximate many NP-hard
problems via polynomial-time algorithms and therefore, these methods make it
possible to ¯nd a solution for such non-trivial problems. One of the class of pro-
blems for which LMI methods are well suited, are control problems with uncertain
data. Indeed, there are many examples of control problems with uncertain data
which have been e®ectively solved using LMI methods. These solution are frequ-
ently obtained under the assumption that a system matrix entries range in a given
convex set and hence such a set can be described in terms of LMI (El Ghaoui and
Niculescu, 1999).
A fundamental point to note is that most of the known results are only pre-

sented for 1-D systems. Therefore, due to the lack of results in robust analysis and
synthesis of LRPs, this chapter provides them. Resulting conditions are formu-
lated in terms of LMI and hence, in the sense of computational complexity, this
approach shows that robust analysis and synthesis problems for LRPs and n-D
systems in general, can be reduced to polynomial-time problems.

4.1. Computed-aided methods for robustness problems

It is known that most robustness problems in both 1-D and n-D system theory
have been proven to be NP-hard (Blondel and Tsitsiklis, 2000b). One of the ways
to overcome the computational problems which have arisen in robustness analysis
and synthesis is to use simulation and numerical tools to ¯nd an upper bound on
parameter values for which a system remains stable.
Using this approach, the robustness of LRP or n-D system with uncertain

parameters can be determined with many simulations of LRP or n-D system per-
formed under various scenarios, i.e. with many di®erent parameter values. For
each run, the simulation results are noted and the in°uence of parameter values
are studied. An important advantage of such a procedure is that it is easy to
perform and an engineer who is interested in an LRP or n-D system robustness
is not required to be an expert in advanced mathematics or n-D system theory.
Moreover, this technique can be applied for a very wide variety of n-D systems,
including n-D systems with delays. Obviously, values of an uncertain parameter
belong to a set which usually has an in¯nite number of elements, therefore we
cannot perform all simulations in ¯nite time. Even though we are interested in
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performing a limited number of simulations, we have to keep in mind that the
resulting conclusion is only restricted to used parameter values. Further, we do
not know for which parameter values the simulations have to be performed.
To reduce some of these drawbacks the methods based on LMI problem formu-

lation can be used. However, the main difficulty behind the direct application of
LMI methods to solve a robust design problem is the fact that the stability region
(a set of all stable matrices) is generally non-convex. This means that the problem
of interest can be generally stated in terms of BMI, which is extremely difficult
to solve by existing global optimization approaches. To overcome this problem,
a convex approximation of non-convex stability region is used. This immediately
results in a sufficiency of obtained LMI conditions, but it is often about the best
we can do.
To proceed, robustness problems in LRP (2-D) system theory e.g. robust sta-

bility and robust stabilisation problems will be reformulated in an LMI framework
with the help of convex analysis and matrix theory. In what follows, uncertain
parameters are assumed to vary in a prescribed convex set, therefore such a set
can be described in terms of LMI.
Suppose now that uncertainty is modelled with a norm-bounded model (2.39)-

(2.40). In this case, the inequality (2.40) represents a convex set. To see this, apply
the Schur complement formula to obtain

FTF ¹ I ⇔
[

I F

FT I

]
º 0 (4.1)

It is illustrated by the following example.

Example 4.1. Since the matrix F is assumed to be dimension 2× 1, then the co-
nvex set represented by (4.1) can be depicted on a two-dimensional plane. Consider
the following Yalmip program

x = sdpvar(2,1); % two variables

F = set([eye(2), x; x’, 1]>0); % the constraint (4.1)

plot(F);

which generates the Fig. 4.1. It is straightforward to see that the set depicted in
this ¯gure is the convex set.

It was mentioned that the important property of LMIs is that they form a
convex constraint on the decision variables vector x. This means that any convex
combination of solutions taken from a feasible set of LMIs, are also a solution.
This also means that in case of uncertainty modelled with a polytopic model (see
the equation (2.41)), we only need to ¯nd a solution for all vertices of the polytop
to obtain a solution for all elements of the uncertainty set. The main advantage
associated with this fact is that we need to compute a solution for a ¯nite number
of LMIs which clearly involves a ¯nite amount of computation.
Affine parameter-dependent matrices (2.42) can be easily transformed to the

polytopic form (2.41). It stems from the fact that parameters change their values
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Fig. 4.1 . The set represented by the inequality (4.1).

in the parameter box with 2k corners (see Fig. 2.8), where k denotes the number
of parameters. It is clear that M(p) is an affine function in p = (p1, p2, . . . , pk),
thus it maps these corners to the polytope of vertices. In this case each vertex can
be determined ∀p ∈ ∆0 with the formula below

M i = M0 + p1M1 + . . .+ pkMk (4.2)

where i = 1, .., 2k. The graphical illustration of this transformation (for the pa-
rameters p1 and p2) is depicted in Fig. 4.2. Because of such a transformation,

p1

p1

p1

p2p2p2

M1

M2

M4

M3

Fig. 4.2 . Transformation from the affine model to the polytopic model.

analysis and synthesis problems with uncertain data, modelled with the affine
model of uncertainty can be considered as polynomial-time solvable.

4.2. Robust stability and stabilisation of di®erential LRPs

One key area for which no results are currently available is stability and stabilisa-
tion of di®erential LRPs in the presence of uncertainties in the model structure.
The presence of these uncertainties in the matrices, which de¯ne the state-space
model of the process under consideration, requires conditions that ensures the
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process to be robustly stable for all admissible uncertainties. Robust stability
conditions can be further employed to solve the robust stabilisation problem.

4.2.1. Robust stability

4.2.1.1. Norm-bounded model of uncertainty

Consider uncertain di®erential LRPs described by the following state-space model
over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) =(A+∆A)xk+1(t) + (B0 +∆B0)yk(t) + (B +∆B)uk+1(t)

yk+1(t) =(C +∆C)xk+1(t) + (D0 +∆D0)yk(t) + (D +∆D)uk+1(t)
(4.3)

The matrices A, B, B0, C, D, D0 de¯ne the nominal model (2.14) and ∆A,
∆B, ∆B0, ∆C, ∆D, ∆D0 represent admissible uncertainties which are assumed
to be of the form

[
∆A ∆B0 ∆B

∆C ∆D0 ∆D

]
=

[
H1

H2

]
F
[
E1 E2 E3

]
(4.4)

In this last equation, H1, H2, E1, E2, E3 are known constant matrices of com-
patible dimensions, and F is an unknown matrix with constant entries which
satis¯es

FTF ¹ I (4.5)

For a stability goal, consider the state-space model (4.3) with no control inputs
i.e. uk+1(t) = 0, then by de¯ning the following matrices

Â1 =

[
A B0

0 0

]
, Â2 =

[
0 0

C D0

]
(4.6)

and

∆Â1 =

[
∆A ∆B0

0 0

]
, ∆Â2 =

[
0 0

∆C ∆D0

]
(4.7)

the process state-space model (4.3) can be rewritten as

[
ẋk+1(t)
yk+1(t)

]
=

([
A B0

C D0

]
+

[
∆A ∆B0

∆C ∆D0

])[
xk+1(t)
yk(t)

]

=
(
Â1 +∆Â1

)
ξ(k, t) +

(
Â2 +∆Â2

)
ξ(k, t)

where

ξ(k, t) =

[
xk+1(t)
yk(t)

]
(4.8)

With this notation, we have the following sufficient condition for stability along
the pass in terms of LMI feasibility problem.
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Theorem 4.1. A di®erential LRP described by (4.3) is stable along the pass for
all admissible uncertainties if there exist matrices P 1 Â 0, P 2 Â 0 and a scalar
ε > 0 such that



−P 2 P 2C P 2D0 P 2H2 P 2H2

CTP 2 ATP 1+P 1A+εE
T
1 E1 P 1B0 P 1H1 P 1H1

DT
0 P 2 BT

0 P 1 −P 2+εE
T
2 E2 0 0

HT
2 P 2 HT

1 P 1 0 −εI 0

HT
2 P 2 HT

1 P 1 0 0 −εI



≺0 (4.9)

Proof. Let us choose the Lyapunov functional candidate as that de¯ned in (2.36).
Since

V̇1(k, t) = ẋTk+1(t)P 1xk+1(t) + x
T
k+1P 1ẋk+1(t)

and
∆V2(k, t) = yTk+1(t)P 2yk+1(t)− yTk (t)P 2yk(t)

then the associated increment for (2.36) is

∆V (k, t) =V̇1(k, t) + ∆V2(k, t)

=ẋTk+1(t)P 1xk+1(t)+x
T
k+1(t)P 1ẋk+1(t)

+yTk+1(t)P 2yk+1(t)−yTk (t)P 2yk(t)

(4.10)

which together with notation introduced in (4.6), (4.7) and (4.8) gives

∆V (k, t)=ξT (k, t)
(
(Â1+∆Â1)

TP+P (Â1+∆Â1)

+(Â2+∆Â2)R(Â2+∆Â2)−R
)
ξ(k, t)

(4.11)

where
P = diag(P 1,0), R = diag(0,P 2) (4.12)

Hence stability along the pass holds if ∆V (k, t) < 0 for ∀ξ(k, t) 6= 0, and a su±cient
condition for this is

(Â1+∆Â1)
TP+P (Â1+∆Â1) +(Â2+∆Â2)S(Â2+∆Â2)−R ≺ 0

where S = diag(P 3,P 2), and P 3 Â 0 is any given matrix of appropriate dimen-
sion. Next, an obvious application of the Schur complement formula yields

[
−S SÂ2

Â
T

2 S Â
T

1 P + PÂ1 −R

]
+

[
0 S∆Â2

∆Â
T

2 S ∆Â
T

1 P + P∆Â1

]
≺ 0

or, equivalently (the block −P 3 is negative de¯ned therefore it can be removed),


−P 2 P 2C P 2D0

CTP 2 ATP 1+P 1A P 1B0

DT
0 P 2 BT

0 P 1 −P 2


+



0 P 2H2 P 2H2

0 P 1H1 P 1H1

0 0 0






F 0 0

0 F 0

0 0 F





0 0 0

0 E1 0

0 0 E2




+



0 0 0

0 ET
1 0

0 0 ET
2






FT
0 0

0 FT
0

0 0 FT






0 0 0

HT
2 P 2 HT

1 P 1 0

HT
2 P 2 HT

1 P 1 0


≺0
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Based on the result of Lemma 8, we obtain



−P 2 P 2C P 2D0

CTP 2 ATP 1 + P 1A+ εET
1 E1 P 1B0

DT
0 P 2 BT

0 P 1 −P 2 + εE
T
2 E2




+ε−1



0 P 2H2 P 2H2

0 P 1H1 P 1H1

0 0 0






0 0 0

HT
2 P 2 HT

1 P 1 0

HT
2 P 2 HT

1 P 1 0


≺0

Finally, using the Schur complement formula, we ¯nd that the last inequality is
equivalent to the LMI (4.9). This concludes the proof. ¥

Remark 4.1. If there are no uncertain matrices in the process model (4.3) then
the LMI (4.9) reduces into LMI for nominal model - see (Gałkowski et al., 2003c)
for details.

4.2.1.2. Polytopic model of uncertainty

Here it is assumed that uncertainty of the di®erential fraction of an uncertain
di®erential LRP (4.3) has a polytopic character, i.e. all possible choices for the
matrices which de¯ne the current pass state dynamics in (4.3) can be expressed as

[
A B0

]
∈ Co

([
Ai Bi

0

])
(4.13)

where i = 1, 2, . . . , h and

Co
([

Ai Bi
0

])
:=

{
X : X=

h∑

i=1

αi

[
Ai Bi

0

]
, αi ≥ 0,

h∑

i=1

αi=1

}
(4.14)

For the current pass pro¯le updating equation in (4.3) a standard norm-bound on
the perturbations is assumed, i.e. the second equation entry in (4.3) takes the form

yk+1(t) = (C +∆C)xk+1(t) + (D0 +∆D0)yk(t) (4.15)

where [
∆C ∆D0

]
=H2F

[
E1 E2

]

and the matrix F satis¯es (4.5). The following result gives an LMI-based sufficient
condition for stability along the pass.

Theorem 4.2. A di®erential LRP of the form described by (4.3), with uncerta-
inty structure modelled by (4.13)-(4.14) and (4.15) is stable along the pass for all
admissible uncertainties if there exist matrices P 1 Â 0, P 2 Â 0 and a scalar ε > 0,
such that



−P 2 P 2C P 2D0 P 2H2

CTP 2 AiTP 1 + P 1A
i + εET

1 E1 P 1B
i
0 + εE

T
1 E2 0

DT
0 P 2 BiT

0 P 1 + εE
T
2 E1 −P 2 + εE

T
2 E2 0

HT
2 P 2 0 0 −εI


 ≺ 0 (4.16)
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Proof. Taking account of the uncertainty in the considered process model, we get




−P 2 P 2C P 2D0

CTP 2 AiTP 1 + P 1A
i P 1B

i
0

DT
0 P 2 BiT

0 P 1 −P 2


+



0

ET
1

ET
2


FT

[
HT

2 P 2 0 0
]

+




P 2H2

0

0


F

[
0 E1 E2

]
≺0

which in view of Lemma 8 is equivalent to



−P 2 P 2C P 2D0

CTP 2 AiTP 1+P 1A
i+εET

1 E1 P 1B
i
0+εE

T
1 E2

DT
0 P 2 BiT

0 P 1+εE
T
2 E1 −P 2+εE

T
2 E2




+ ε−1




P 2H2

0

0


[HT

2 P 2 0 0
]
≺0

Finally, application of the Schur complement formula gives (4.16). This completes
the proof. ¥

Remark 4.2. Some comments are required for Theorem 4.2. First, it should be
emphasized that the result has been obtained by keeping P 1 constant and indepen-
dent of the index i. The main drawback associated with this fact is that the Lyapu-
nov matrix P 1 must work for all uncertain matrices (4.14). This condition can
introduce a signi¯cant degree of conservativeness to the stability condition (4.16).
This can be overcome by using parameter-dependent Lyapunov functions (Apka-
rian and Tuan, 1998, 2000). Unfortunately, there is no result for LRPs where
parameter-dependent Lyapunov functions are used. Work is proceeding on apply-
ing such functions and will be reported on in due course.

It is clear that computation can be only performed in the case when all vertices
(i.e. all edge matrices Ai and Bi

0) of a convex polygon are known. Unfortuna-
tely, in many practical cases they are unknown, so it is required to determine
these vertices. This is best done with a numerical tool run on a computer. The
example of such a tool is Geometric Bounding Toolbox (Veres, 2004) which
provides computations in n-dimensional space. The main objective of this toolbox
is the computation of the convex hull of a ¯nite set of points (command convh)
which is useful for our purposes. The simplicity of using this software package is
demonstrated with the example below.

Example 4.2. The following set of commands generates a random set of points
in three-dimensional space and compute their convex hull

points3D = rand(7,3) % 7 random points in 3-D space

cxhull=convh(points3D) % determine their convex hull
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However, in the case of systems considered here where matrix representation
appears, it is necessary to perform transformation from space of real m by n
matrices to mn-dimensional real vector space, to make computations with the
Geometric Bounding Toolbox possible. Then, after computing a convex hull
in that real vector space, return to space of matrices and determine what matrices
have to be used in further computations.

4.2.1.3. A±ne model of uncertainty

It was shown that the affine model of uncertainty could be easily transformed to
the polytopic one where a set of vertices corresponds to extremal values of the
parameter vector. Faced with this fact, the affine model of uncertainty is not
considered to be present here any more. On the other hand, the affine model
allows us to maximize a stability region, i.e. the largest portion of the parameter
box where the stability along the pass can be established (for 1-D system case see,
for example, (Gahinet et al., 1995)). To proceed, de¯ne the nominal value of the
parameter pi as

p0i
=
pi + pi
2

which denotes the center of the interval [pi, pi]. Next, for each interval de¯ne its
radius by

δi =
pi − pi
2

to yield
pi ∈ [p0i

− µδi, p0i
+ µδi]

where µ > 0 is the unknown scalar to be selected. Maximization of µ leads to
maximization of the parameter box wherein stability along the pass is guaranteed.
It turns out that maximization of µ can be cast into GEVP.

4.2.2. Robust stabilisation

In practice, it can happen that an uncertain process can be unstable, hence the
robust stabilisation problem has to be addressed. To proceed, the following form
of the control law is used

uk+1(t) =
[

K1 K2

] [ xk+1(t)
yk(t)

]
(4.17)

where K1 and K2 are appropriately dimensioned matrices to be designed. In
e®ect, this control law uses feedback of the current state vector (which is assumed
to be available for use) and ‘feedforward’ of the previous pass pro¯le vector. Note
that in repetitive processes, the term ‘feedforward’ is used to describe the case
where state or pass pro¯le information from the previous pass (or passes) is used as
(part of) the input to a control law applied on the current pass, i.e. to information
which is propagated in the pass-to-pass (k) direction.
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4.2.2.1. Norm-bounded model of uncertainty

Application of the control law (4.17) to (4.3) gives the following form of the closed-
loop process

[
ẋk+1(t)
yk+1(t)

]
=

([
A+BK1 B0 +BK2

C +DK1 D0 +DK2

]

+

[
∆A+∆BK1 ∆B0+∆BK2

∆C+∆DK1 ∆D0+∆DK2

])[
xk+1(t)
yk(t)

] (4.18)

where the admissible uncertainties are assumed to be of the form (4.4) and (4.5).
In this case, the following theorem gives the condition of existing a controller that
stabilises the process (4.3) for all admissible uncertainties.

Theorem 4.3. Suppose that a di®erential LRP of the form described by (4.3),
with uncertainty structure modelled by (4.4) and (4.5), is subjected to a control
law of the form (4.17). Then the resulting closed-loop process is stable along the
pass for all admissible uncertainties if there exist matrices W 1 Â 0, W 2 Â 0, N1

and N2 of compatible dimensions and a scalar ε > 0 such that the following LMI
holds



−W 2+2εH2H
T
2 CW 1+DN1+2εH2H

T
1

W 1C
T+NT

1 DT+2εH1H
T
2 W 1A

T+NT
1 BT+AW 1+BN1+2εH1H

T
1

W 2D
T
0 +NT

2 DT W 2B
T
0 +NT

2 BT

0 E1W 1+E3N1

0 0

D0W 2+DN2 0 0

B0W 2+BN2 W 1E
T
1 +NT

1 ET
3 0

−W 2 0 W 2E
T
2 +NT

2 ET
3

0 −εI 0

E2W 2+E3N2 0 −εI



≺0

(4.19)

If the above LMI holds then the controller matrices K1 and K2 are given by

K1 =N1W
−1
1

K2 =N2W
−1
2

(4.20)

respectively.

Proof. Application of Theorem 4.1 result proves that the closed-loop process in
this case is stable along the pass if

[
−S SA2

A
T

2 S A
T

1 P + PA1 −R

]
+

[
0 S∆A2

∆A
T

2 S ∆A
T

1 P + P∆A1

]
≺ 0

where

A1=

[
A+BK1 B0+BK2

0 0

]
, ∆A1=

[
∆A+∆BK1 ∆B0+∆BK2

0 0

]
,
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A2=

[
0 0

C+DK1 D0+DK2

]
,∆A2=

[
0 0

∆C+∆DK1 ∆D0+∆DK2

]

Note that this last condition is not linear in P 1, P 2, P 3, K1 and K2. Clearly, it
is bilinear in variables {P 1,P 2} and {K1,K2} and therefore it may be considered
as a BMI problem (3.4), for which e®ective computations cannot be performed.
However, this can be reformulated as an LMI problem. To proceed, substitute A1

and A2 into this last expression to obtain (the block −P 3 has been removed due
to the fact the result does not depend on it)




−P 2 P 2C+P 2DK1 P 2D0+P 2DK2

CTP 2+KT
1 DTP 2 ATP 1+KT

1 BTP 1+P 1A+P 1BK1 P 1B0+P 1BK2

DT
0 P 2+KT

2 DTP 2 BT
0 P 1+KT

2 BTP 1 −P 2




+




0 P 2∆C+P 2∆DK1 P 2∆D0+P 2∆DK2

∆CTP 2+KT
1∆DTP 2 Ω1 P 1∆B0+P 1∆BK2

∆DT
0 P 2+KT

2∆DTP 2 ∆BT
0 P 1+KT

2∆BTP 1 0


≺0

where

Ω1 = ∆ATP 1+KT
1∆BTP 1+P 1∆A+P 1∆BK1

Next, pre- and post-multiply the result by diag(P−1
2 ,P−1

1 ,P−1
2 ) and make changes

of variables W 1 = P−1
1 , W 2 = P−1

2 , N1 =K1P
−1
1 , N2 =K2P

−1
2 to yield




−W 2 CW 1+DN1 D0W 2+DN2

W 1C
T+NT

1 DT W 1A
T+NT

1 BT+AW 1+BN1 B0W 2+BN2

W 2D
T
0 +NT

2 DT W 2B
T
0 +NT

2 BT −W 2




+




0 ∆CW 1+∆DN1 ∆D0W 2+∆DN2

W 1∆CT+NT
1∆DT

Ω2 ∆B0W 2+∆BN2

W 2∆DT
0 +NT

2∆DT W 2∆BT
0 +NT

2∆BT
0


≺0

(4.21)

where

Ω2 = W 1∆AT+NT
1∆BT+∆AW 1+∆BN1

Observe now that the second term in (4.21) can be rewritten as



0 0 0

0 W 1E
T
1 +NT

1 ET
3 0

0 0 W 2E
T
2 +NT

2 ET
3






FT
0 0

0 FT
0

0 0 FT





0 0 0

HT
2 HT

1 0

HT
2 HT

1 0




+



0 H2 H2

0 H1 H1

0 0 0






F 0 0

0 F 0

0 0 F





0 0 0

0 E1W 1 +E3N1 0

0 0 E2W 2 +E3N2


≺0
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Then, the application of the result of Lemma 8 gives



−W 2+2εH2H
T
2 CW 1+DN1+2εH2H

T
1 D0W 2+DN2

W 1C
T+NT

1 DT+2εH1H
T
2 Ω3 B0W 2+BN2

W 2D
T
0 +NT

2 DT W 2B
T
0 +NT

2 BT −W 2




+ε
−1



0 0 0

0 W 1E
T
1 +NT

1 ET
3 0

0 0 W 2E
T
2 +NT

2 ET
3





0 0 0

0 E1W 1+E3N1 0

0 0 E2W 2 +E3N2


≺0

where
Ω3 = W 1A

T+NT
1 BT+AW 1+BN1+2εH1H

T
1

Finally, an obvious application of the Schur complement formula gives the LMI
(4.19) and the proof is complete. ¥

It is clear that to compute the controller matrices K1 and K2 it is necessary
to compute the inverse of the matrices W 1 and W 2 - a task where numerical
problems could well arise if this matrix is badly scaled or almost singular.
One of the options is to obtain the solution with the smallest condition num-

ber. The problem of minimizing the condition number of a matrix U(x) Â 0, that
depends affinely on the variable x, can be formulated as a GEVP (3.14) of the
following form

min γ

subject to





F (x) Â 0,
µ > 0,

µI ≺ U(x) ≺ γµI

(4.22)

where F (x) Â 0 is the LMI constraint. However, the computational complexity of
this approach is ‘quite high’ (due to the fact that solving GEVP typically demands
more computational e®ort than solving other LMI problems) and it turns out that
reformulating the problem into EVP makes the computation process more efficient.
EVP form is obtained in two steps (see (Boyd et al., 1994) for further details).

Step 1: Rewrite the LMI constraint F (x) Â 0 and the positive de¯nite matrix
U(x) as

F (x) = F 0 +

m∑

i=1

xiF i, U(x) = U0 +

m∑

i=1

xiU i

Step 2: De¯ne the new variables ν = 1/µ and x̃ = x/µ, which yields the following
EVP problem:

min γ

subject to





νF 0 +

m∑

i=1

x̃iF i Â 0,

I ≺ νU0 +

m∑

i=1

x̃iU i ≺ γI

(4.23)

The above optimization procedure can be easily combined with many LMI
conditions.
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4.2.2.2. Polytopic model of uncertainty

Consider now the process which the current pass state updating equation matrices
range in the given polytope of matrices as it is described by

[
A B0 B

]
∈ Co

([
Ai Bi

0 Bi
])
, i=1, 2, . . . , h (4.24)

and

Co
([

Ai Bi Bi
0

])
:=

{
X : X =

h∑

i=1

αi

[
Ai Bi Bi

0

]
, αi≥0,

h∑

i=1

αi=1

}
(4.25)

For the current pass pro¯le updating equation in (4.3) we assume norm-bounded
type of uncertainty, i.e.

yk+1(t) =(C+∆C)xk+1(t)+(D0+∆D0)yk(t) + (D+∆D)uk+1(t) (4.26)

where [
∆C ∆D0 ∆D

]
=H2F

[
E1 E2 E3

]
(4.27)

and the matrix F satis¯es (4.5).

Theorem 4.4. Suppose that a di®erential LRP of the form described by (4.3),
with uncertainty structure modelled by (4.24)- (4.25) and (4.27), is subjected to a
control law of the form of (4.17). Then the resulting closed-loop process is stable
along the pass for all admissible uncertainties if there exist matrices W 1 Â 0,
W 2 Â 0, N1 and N2 of compatible dimensions and a scalar ε > 0, such that




−W 2+2εH2H
T
2 CW 1+DN1

W 1C
T+NT

1 DT W 1A
iT+NT

1 BiT+AiW 1+BiN1

W 2D
T
0 +NT

2 DT W 2B
iT
0 +NT

2 BiT

0 E1W 1 +E3N1

0 0

D0W 2+DN2 0 0

Bi
0W 2+BiN2 W 1E

T
1 +NT

1 ET
3 0

−W 2 0 W 2E
T
2 +NT

2 ET
3

0 −εI 0

E2W 2 +E3N2 0 −εI



≺ 0

(4.28)

If the LMI (4.28) holds then the controller matrices K1 and K2 are given by
(4.20).

Proof. Taking account of the results of Theorem 4.2 and Theorem 4.3, it is clear
that the following inequality holds



−W 2 CW 1+DN1 D0W 2+DN2

W 1C
T+NT

1 DT W 1A
iT+NT

1 BiT+AiW 1+BiN1 Bi
0W 2+BiN2

W 2D
T
0 +NT

2 DT W 2B
iT
0 +NT

2 BiT −W 2




+




0 ∆CW 1+∆DN1 ∆D0W 2+∆DN2

W 1∆CT+NT
1∆DT

0 0

W 2∆DT
0 +NT

2∆DT
0 0


≺0
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Obviously, the second term in the above inequality is nonlinear in matrix variables
{N1, N2, W 1, W 2} and unknown matrices {∆C,∆D0, ∆D}. Therefore, the
robust stabilisation problem considered here can be stated in terms of BMI, for
which polynomial-time interior-point algorithms cannot be applied. To overcome
this problem, i.e. to ¯nd the LMI problem formulation, rewrite the second term as



0 0 0

0 W 1E
T
1 +NT

1 ET
3 0

0 0 W 2E
T
2 +NT

2 ET
3






FT
0 0

0 FT
0

0 0 FT





0 0 0

HT
2 0 0

HT
2 0 0




+



0 H2 H2

0 0 0

0 0 0






F 0 0

0 F 0

0 0 F





0 0 0

0 E1W 1 +E3N1 0

0 0 E2W 2 +E3N2


≺0

Now, it is straightforward to see that application of Lemma 8 followed by carrying
out the Schur complement gives (4.28). This completes the proof. ¥

4.3. Robust stability and stabilisation of discrete LRPs

In this section, LMI methods are used as a basis to provide solutions of robust
stability and robust stabilisation problems for discrete LRPs. Based on the state-
space model of such processes, robust stability and robust stabilisation (using an
appropriately speci¯ed control law) conditions are provided for solving them in
terms of the feasibility of some LMIs.

4.3.1. Robust stability

The following state-space model of discrete LRPs is considered

xk+1(p+1)=(A+∆A)xk+1(p)+(B0+∆B0)yk(p)+(B+∆B)uk+1(p)

yk+1(p)=(C+∆C)xk+1(p)+(D0+∆D0)yk(p)+(D+∆D)uk+1(p)
(4.29)

The matrices ∆A, ∆B, ∆B0, ∆C, ∆D, ∆D0 represent admissible uncertainties
to be of the form

[
∆A ∆B0∆B

∆C ∆D0∆D

]
=

[
H1

H2

]
F
[

E1 E2 E3

]
(4.30)

where H1, H2, E1, E2, E3 are some known constant matrices with compatible
dimensions and F is an unknown constant matrix which satis¯es (4.5).
Now we have the following sufficient condition for stability along the pass in

terms of LMI (the LMI feasibility problem).

Theorem 4.5. An unforced discrete LRP described by (4.29) is stable along the
pass for all admissible uncertainties if there exist matrices P 1 Â 0, P 2 Â 0 and a
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scalar ε > 0 such that the following LMI holds




−P 1 0 P 1A P 1B0 P 1H1 P 1H1

0 −P 2 P 2C P 2D0 P 2H2 P 2H2

ATP 1 CTP 2 −P 1+εE
T
1 E1 0 0 0

BT
0 P 1 DT

0 P 2 0 −P 2+εE
T
2 E2 0 0

HT
1 P 1 HT

2 P 2 0 0 −εI 0

HT
1 P 1 HT

2 P 2 0 0 0 −εI



≺0 (4.31)

Proof. First, de¯ne the vectors

ξ(k + 1, p) =

[
xk+1(p+ 1)
yk+1(p)

]
, ζ(k, p) =

[
xk+1(p)
yk(p)

]
(4.32)

and use the matrices (4.6) and (4.7) to rewrite the state-space model (4.29) as

ξ(k + 1, p) = ((A1 +∆A1) + (A2 +∆A2)) ζ(k, p) (4.33)

Further, choose the candidate Lyapunov function as that de¯ned in (2.35). Since

∆V1(k, p) =x
T
k+1(p+ 1)P 1xk+1(p+ 1)− xTk+1(p)P 1xk+1(p)

∆V2(k, p) =y
T
k+1(p)P 2yk+1(p)− yTk (p)P 2yk(p)

then the increment is

∆V (k, p) =∆V1(k, p) + ∆V2(k, p)

=xTk+1(p+ 1)P 1xk+1(p+ 1)−xTk+1(p)P 1xk+1(p)

+yTk+1(p)P 2yk+1(p)−yTk (p)P 2yk(p)

(4.34)

which together with (4.32) and (4.33) gives

∆V (k, p)=ζT (k, p)
(
(A1+∆A1)

TP (A1+∆A1)

+ (A2 +∆A2)P (A2 +∆A2)− P ) ζ(k, p)
(4.35)

where P = diag(P 1,P 2). Hence stability along the pass holds if ∆V (k, p) < 0 for
∀ζ(k, p) 6= 0. Next, use of the Schur complement formula followed by application
of Lemma 8 yield




−P 1 0 P 1A P 1B0

0 −P 2 P 2C P 2D0

ATP 1 CTP 2 −P 1+εET
1 E1 0

BT
0 P 1 DT

0 P 2 0 −P 2+εET
2 E2




+ε
−1




0 0 P 1H1 P 1H1

0 0 P 2H2 P 2H2

0 0 0 0

0 0 0 0







0 0 0 0

0 0 0 0

HT
1 P 1 HT

2 P 2 0 0

HT
1 P 1 HT

2 P 2 0 0


≺0

Finally, using the Schur complement formula, we ¯nd that the last inequality is
equivalent to the LMI (4.31). This completes the proof. ¥
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The interesting point to note is that the alternative problem formulation pro-
vides us with a procedure to increase the process robustness. To proceed, rewrite
the uncertain process (4.29) as

[
xk+1(p+ 1)
yk+1(p)

]
=

[
A B0

C D0

] [
xk+1(p)
yk(p)

]
+

[
H1

H2

]
wk+1(p)

zk+1(p) =
[

E1 E2

] [ xk+1(p)
yk(p)

]

wk+1(p) =γ
−1Fzk+1(p)

(4.36)

which is a feedback system - for illustration see Fig. 4.3. Hence, based on (4.34)

discrete

uncertainty

D

LRPz w

Fig. 4.3 . An uncertain process as a feedback system.

and (4.36) we have that

∆V (k, p)=
(
ζ
T (k, p)AT

1 +w
T

k+1(p)H
T

1

)
P
(
A1ζ(k, p)+H1wk+1(p)

)

+
(
ζ
T (k, p)AT

2+w
T

k+1(p)H
T

2

)
P
(
A2ζ(k, p)+H2wk+1(p)

)
−ζ

T (k, p)P ζ(k, p)

=

[
ζ(k, p)
wk+1(p)

]T[
AT

1 PA1+AT
2 PA2−P AT

1 PH1+AT
2 PH2

H
T

1 PA1+H
T

2 PA2 H
T

1 PH1+H
T

2 PH2

][
ζ(k, p)
wk+1(p)

]

where

H1 =

[
H1

0

]
, H2 =

[
0

H2

]

Recalling that stability along the pass is held if ∆V (k, p)<0 for ∀{ζ(k, p), wk+1(p)}
6= 0. Therefore ∆V (k, p) < 0 is satis¯ed when

[
AT
1 PA1+AT

2 PA2−P AT
1 PH1+AT

2 PH2

H
T

1 PA1+H
T

2 PA2 H
T

1 PH1+H
T

2 PH2

]
≺ 0 (4.37)

Next, observe that (4.5) implies that

γ−2FTF ¹ γ−2I

hence

wT
k+1(p)wk+1(p) = γ−2zTk+1(p)F

TFzk+1(p) ¹ γ−2zTk+1(p)zk+1(p)
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Then, it is straightforward to see that for any wk+1(p), zk+1(p) and ∀γ > 0 the
following holds

wT
k+1(p)wk+1(p)− γ−2zTk+1(p)zk+1(p) ≤ 0

thus by noting E =
[

E1 E2

]
we have

wT
k+1(p)wk+1(p)− γ−2zTk+1(p)zk+1(p)

=
[
ζT (k, p) wT

k+1(p)
][−ETE 0

0 γ−2I

][
ζ(k, p)
wk+1(p)

]
≤ 0

(4.38)

Combining the results of (4.37) and (4.38) yields the ¯nal LMI condition for robust
stability of discrete LRPs as
[

AT
1 PA1+AT

2 PA2−P +ETE AT
1 PH1+AT

2 PH2

H
T

1 PA1+H
T

2 PA2 H
T

1 PH1+H
T

2 PH2 − γ−2I

]
≺ 0 (4.39)

It is observed that the term γ in the LMI of (4.39) can be minimized by using
linear objective minimization procedure

min
PÂ0

µ

subject to (4.39) with µ = γ−2

which increases the robustness of an uncertain process.

4.3.2. Robust stabilisation

The previous subsection was concerned with robust stability of open-loop proces-
ses. Here, a natural extension of obtained results to the case of closed-loop process
under a static feedback is presented. The problem here is to ¯nd a controller of
the form

uk+1(p) =
[

K1 K2

] [ xk+1(p)
yk(p)

]
(4.40)

where K1 and K2 are appropriately dimensioned matrices to be designed, such
that the closed-loop process is robustly stable. It is seen that the control law (4.40)
is composed of the weighted sum of current pass state feedback and feedforward
of the previous pass pro¯le (see (Gałkowski et al., 2002d) for further background
on this form of control action).
Application of the control law (4.40) to (4.29) yields the closed-loop process
[
xk+1(p+ 1)
yk+1(p)

]
=

([
A+BK1 B0+BK2

C+DK1 D0+DK2

]

+

[
∆A+∆BK1 ∆B0+∆BK2

∆C+∆DK1 ∆D0+∆DK2

])[
xk+1(p)
yk(p)

] (4.41)

where the admissible uncertainties are assumed to be of the form (4.30) and (4.5).
The existence of robustly stabilising K1 and K2 can be characterized in LMI

terms as follows.
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Theorem 4.6. Suppose that a discrete LRP of the form described by (4.29), with
uncertainty structure modelled by (4.30) and (4.5) is subjected to a control law of
the form (4.40). Then the resulting closed-loop process is stable along the pass for
all admissible uncertainties if there exist matrices W 1 Â 0, W 2 Â 0, N1 and N2

of compatible dimensions and a scalar ε > 0 such that the following LMI holds




−W 1 + 2εH1H
T
1 2εH2H

T
1 AW 1+BN1

2εH1H
T
2 −W 2 + 2εH2H

T
2 CW 1+DN1

W 1A
T+NT

1 BT W 1C
T+NT

1 DT −W 1

W 2B
T
0 +NT

2 BT W 2D
T
0 +N2D

T
0

0 0 E1W 1+E3N1

0 0 0

B0W 2+BN2 0 0

D0W 2+DN2 0 0

0 W 1E
T
1 +NT

1 ET
3 0

−W 2 0 W 2E
T
2 +NT

2 ET
3

0 −εI 0

E2W 2+E3N2 0 −εI



≺0

(4.42)

and the required controller matrices in (4.40) are given by (4.20).

Proof. Based on Theorem 4.5 we conclude that the closed-loop process is robustly
stabilised by the control law (4.40) if the following matrix inequality is satis¯ed




−P 1 0 P 1A+P 1BK1 P 1B0+P 1BK2

0 −P 2 P 2C+P 2DK1 P 2D0+P 2DK2

ATP 1+KT
1 BTP 1 CTP 2+KT

1 DTP 2 −P 1 0

BT
0 P 1+KT

2 BTP 1 DT
0 P 2+K2D

TP 1 0 −P 2




+




0 0 0 0

0 0 0 0

0 0 ET
1 +KT

1 ET
3 0

0 0 0 ET
2 +KT

2 ET
3







FT
0 0 0

0 FT
0 0

0 0 FT
0

0 0 0 FT







0 0 0 0

0 0 0 0

HT
1 P 1 HT

2 P 2 0 0

HT
1 P 1 HT

2 P 2 0 0




+




0 0 P 1H1 P 1H1

0 0 P 2H2 P 2H2

0 0 0 0

0 0 0 0







F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F







0 0 0 0

0 0 0 0

0 0 E1 +E3K1 0

0 0 0 E2 +E3K2


≺0

The above inequality is clearly stated in the form of BMI. To reformulate it into
LMIs, make use of the following change of variables W 1 = P−1

1 , W 2 = P−1
2

and then pre- and post- multiply both sides of this last inequality by diag(W 1,W 2,
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W 1,W 2). Next, an application of the result of Lemma 8 leads to

ε
−1




0 0 0 0

0 0 0 0

0 0 W 1E
T
1+NT

1 ET
3 0

0 0 0 W 2E
T
2+NT

2 ET
3







0 0 0 0

0 0 0 0

0 0 E1W 1+E3N1 0

0 0 0 E2W 2 +E3N2




+




−W 1 + 2εH1H
T
1 2εH2H

T
1 AW 1+BN1 B0W 2+BN2

2εH1H
T
2 −W 2 + 2εH2H

T
2 CW 1+DN1 D0W 2+DN2

W 1A
T+NT

1 BT W 1C
T+NT

1 DT −W 1 0

W 2B
T
0 +NT

2 BT W 2D
T
0 +N2D

T
0 −W 2


≺0

where N1 = K1W 1 and N2 = K2W 2. Finally, the Schur complement formula
gives (4.42) and the proof is complete. ¥

4.3.2.1. Alternative robust stabilisation

Here another approach to characterize and solve the robust stabilisation problem
of discrete LRPs is presented. To proceed, rewrite (4.41) in the form

[
xk+1(p+1)
yk+1(p)

]
= A

[
xk+1(p)
yk(p)

]
(4.43)

where

A=

[
A+BK1 B0+BK2

C+DK1 D0+DK2

]
+

[
∆A+∆BK1 ∆B0+∆BK2

∆C+∆DK1 ∆D0+∆DK2

]

Suppose also that the matrices describing the uncertainty in this last model are
written in the form

[
∆A+∆BK1 ∆B0+∆BK2

∆C+∆DK1 ∆D0+∆DK2

]
=

[
H1

H2

]
γ−1F

[
E1+E3K1 E2+E3K2

]

=γ−1HFE

(4.44)

where F satis¯es (4.5). The design parameter γ here can be considered as a term
which is used to attenuate the e®ects of the uncertainty, for which we have the
following result.

Theorem 4.7. Suppose that a discrete LRP of the form described by (4.29), with
uncertainty structure modelled by (4.44) and (4.5), is subjected to a control law of
the form (4.40). Then the resulting closed-loop process is stable along the pass for
all admissible uncertainties if there exist matrices W 1 Â 0, W 2 Â 0, N1 and N2
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of compatible dimensions and a scalar γ > 0 such that the following LMI holds




−W 1 0 AW 1+BN1

0 −W 2 CW 1+DN1

W 1A
T+NT

1 BT W 1C
T+NT

1 DT −W 1

W 2B
T
0 +NT

2 BT W 2D
T
0 +NT

2 DT
0

HT
1 HT

2 0

0 0 E1W 1+E3N1

B0W 2+BN2 H1 0

D0W 2+DN2 H2 0

0 0 W 1E
T
1 +NT

1 ET
3

−W 2 0 W 2E
T
2 +NT

2 ET
3

0 −γ2I 0

E2W 2+E3N2 0 −I



≺0

(4.45)

Proof. Using the RM and stability condition for a 2-D system, it follows imme-
diately that the LRP of the form (4.43) is stable along the pass if there exists a
block-diagonal matrix P = diag (P 1,P 2) Â 0 such that the following LMI holds

A
T
PA− P ≺0

An obvious application of the Schur complement formula yields

[
−P−1

Ω+ γ−1HFE

Ω
T + γ−1ETFTHT −P

]
≺ 0

where

Ω =

[
A+BK1 B0+BK2

C+DK1 D0+DK2

]
, H =

[
H1

H2

]
, E =

[
E1+E3K1 E2+E3K2

]

Applying the result of Lemma 8 to this last condition and then pre- and post-
multiplying the result by diag(ε−

1

2 P , ε−
1

2 I) gives

[
−P + P γ−2HHTP PΩ

Ω
TP −P +ETE

]
≺0

where a new matrix variable P is introduced as P = ε−1P . Next, an application
of the Schur complement formula gives




−P PΩ PH 0

Ω
TP −P 0 ET

HTP 0 −γ2I 0

0 E 0 −I


≺0 (4.46)

Finally, the proof can be completed in an identical manner to the proof of The-
orem 4.6. ¥
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The term γ in the LMI of (4.45) can again be minimized by using a linear
objective minimization procedure

min
W 1Â0,W 2Â0,N1,N2

µ

subject to (4.45) with µ = γ2

which, due to the presence of the term γ−1 in the uncertainty model (4.44), pro-
vides an essential advantage as it allows the extension of the uncertainty borders,
i.e. it increases the robustness.

4.4. Application examples

4.4.1. Analysis of ILC processes

It is clear that the principal requirement for ILC process is its stability along the
direction of learning iterations in addition to the stability of a control system. To
proceed, make use of the following change of variables

r =k − 1
νr(t) =νk−1(t) = ek(t)

to rewrite (2.53) in the di®erential LRP form as
[
η̇r+1(t)
νr+1(t)

]
=

[
A−BK1 −BK2

−CA+CBK1 I −CBK2

] [
ηr(t)
νr(t)

]
(4.47)

Since stability of the model (4.47) guarantees the learning convergence, then the
result of Theorem 4.3 provides the LMI condition for stability checking. Hence,
omitting the uncertainty, the LMI condition for stability ILC process can be for-
mulated as follows



−W 2 −CAW 1+CBN1 W 2−CBN2

−W 1A
TCT+NT

1 BTCT W 1A
T−NT

1 BT+AW 1−BN1 −BN2

W 2−NT
2 BTCT −NT

2 BT −W 2


≺0 (4.48)

whereW 1 Â 0,W 2 Â 0, N1, N2 are the matrices to be found. If they exist then
the explicit speci¯cation for the learning gain matrices are given by (4.20). It is
signi¯cant to note that the LMI condition of (4.48) can be easily implemented and
therefore tools like Lmi Control Toolbox, SeDuMi, or any equivalent software
can be used to solve the addressed problem.
To show the usefulness of learning gain matrices design method, the following

numerical example is given.

Example 4.3. Let us consider the ILC process (2.49) with the matrices given by

A =

[
0.1341 0.2674
1.1977 1.6292

]
, B =

[
0.5643 0.6876
1.8219 −0.8877

]
, C =

[
0.3095 −0.3533
0.0438 0.3968

]
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Fig. 4.4 . Simulation results.

Then the LMI (4.48) is feasible with

W 1 =

[
1.0198 0.0000
0.0000 1.0198

]
, W 2 =

[
0.6579 −0.0251
−0.0251 0.6458

]
,

N1 =

[
0.8024 0.9749
0.2487 −0.3750

]
, N2 =

[
0.0165 0.1004
0.2332 −0.0297

]

and the learning gain matrices are

K1 =

[
0.7868 0.9560
0.2439 −0.3677

]
, K2 =

[
0.0311 0.1567
0.3532 −0.0323

]

To con¯rm the learning convergence in this case, the simulation results are provided
- see Fig. 4.4. It is assumed that for the ¯rst trial the learning error is 1.

Furthermore, consider the case when (4.47) is subjected to norm-bounded un-
certainty i.e. it is assumed that uncertainty is modelled as an additive perturbation
(denoted here by ∆A and ∆B) to the nominal ILC process matrices (A and B)

[∆A ∆B] = H1F [E1 E2]

where H1, E1, E2 are given matrices and the matrix F satis¯es (4.5). Hence
the following matrix inequality can provide robust stability condition for the ILC
process



−W 2 −CAW 1 +CBN1 W 2 −CBN2

−W 1A
TCT +NT

1 BTCT W 1A
T −NT

1 BT +AW 1 −BN1 −BN2

W 2 −NT
2 BTCT −NT

2 BT −W 2




+



0 0 0

0 W 1∆AT −NT
1∆BT +∆AW 1 −∆BN1 −∆BN2

0 −NT
2∆BT

0




+




0 −C∆AW 1 +C∆BN1 −C∆BN2

−W 1∆ATCT +NT
1∆BTCT

0 0

−NT
2∆BTCT

0 0


 ≺ 0
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Unfortunately, the above inequality is nonlinear and cannot be efficiently solved.
To make the inequality amenable to polynomial-time computation, the matrix
manipulation provided by Theorem 4.3 are applied. As a result, the following
LMI condition is obtained



−W 2 + 2ε2CH1H
T
1 CT −CAW 1 +CBN1

−W 1A
TCT +NT

1 BTCT W 1A
T −NT

1 BT +AW 1 −BN1 + 2ε1H1H
T
1

W 2 −NT
2 BTCT −NT

2 BT

0 E1W 1 +E2N2

0 0

0 E1W 1 +E2N1

0 0

W 2 −CBN2 0 0 0 0

−BN2 W 1E
T
1 +NT

2 ET
2 0 W 1E

T
1 +NT

1 ET
2 0

−W 2 0 NT
2 ET

2 0 NT
2 ET

2

0 −ε1I 0 0 0

E2N2 0 −ε1I 0 0

0 0 0 −ε2I 0

E2N2 0 0 0 −ε2I




≺ 0

where the matricesW 1 Â 0,W 2 Â 0, N1, N2 and the scalars ε1 > 0, ε2 > 0 are
to be found via numerical computations.
The following example shows the usefulness of provided LMI condition.

Example 4.4. Let us consider the same ILC process as in Example 4.3. Further,
suppose that the uncertainty is modelled with

H1 =

[
0.0001
0.0061

]
, E1 =

[
0.0763 0.0541

]
, E2 =

[
0.0537 0.0331

]

then the following numerical result is obtained

W 1 =

[
1.0720 −0.0094
−0.0094 1.0796

]
, W 2 =

[
0.7009 −0.0265
−0.0265 0.6878

]
,

N1 =

[
0.8395 1.0294
0.2718 −0.3933

]
, N2 =

[
0.0194 0.1084
0.2514 −0.0292

]

with ε1 = 1.0860 and ε2 = 1.0860. In this case, the corresponding learning gain
matrices are

K1 =

[
0.7915 0.9603
0.2504 −0.3621

]
, K2 =

[
0.0338 0.1590
0.3576 −0.0286

]

To con¯rm that the obtained controller works properly for all models encountered
by an assumed uncertainty set, the simple simulation for the particular choice of
the matrix F = 0.7 is presented. Simulations of a learning error νr+1(t) and
a state ηr+1(t) variables are depicted in Fig. 4.5 (with the assumption that the
initial learning error is 1). Since the number of decision variables to be found in
this example is 16, then time required to ¯nd the solution was 0.4 seconds.
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Fig. 4.5 . Simulation results for an uncertain ILC process.

Table 4.1. Computation time.
n m p q CPU time in seconds
2 2 2 16 0.40
3 2 3 26 0.72
5 2 5 52 1.86
6 5 6 104 7.53
10 7 10 252 71.73
12 10 12 398 259.09

Obviously, due to the polynomial time complexity of the considered problem,
e±ciency is maintained for higher problem dimensions - see Table 4.1. Note that
all computations have been performed with Lmi Control Toolbox 1.0.8 under
Matlab 6.5. The Matlab-¯les have been run on a PC with AMD Duron 600
MHz CPU and 128MB RAM.
The overall number of decision variables q is computed from

q =
n(n+ 1)

2
+
m(m+ 1)

2
+ nl +ml + 2

where n is the number of states, m is the number of outputs and l is the number
of inputs. Further, the terms sequence in the above equation denotes the number
of decision variables involved in W 1, W 2, N1, N2 and ε1,2 respectively.

4.4.2. Stability of a parallel computing process

To consider the stability problem of a parallel computing process, note ¯rst that
one of the variables n1 and n2 can have a ¯nite value (in this case n2) then system
(2.55) can be considered and analysed as a discrete LRP.
It is written in (Bauer et al., 2001) that the use of 2-D state-space models for

parallel computing processes has been motivated by existing results on the stability
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of such models. Unfortunately, considered in the paper stability conditions are
computationally ine®ective due to large dimensions of used matrices. Indeed, in
that paper the following matrix is used

Acc(n) =




J(n, 0) 0 · · · 0

K(n, 0) J(n− 1, 1) · · · 0

...
...

. . .
...

0 0 · · · J(0, n)
0 0 · · · K(0, n)




where n denotes the time instant and matrices J(n1, n2) and K(n1, n2) are iden-
tifying in (2.55) as

J(n1, n2)=

[
A11(n1, n2) A12(n1, n2)

0 0

]
,K(n1, n2)=

[
0 0

A21(n1, n2) A22(n1, n2)

]

Hence, it is clear that the dimension of the matrix Acc(n) can be vary large due
to n value, therefore potential computational and numerical problems may occur.
Moreover, it is a necessity to perform computations for all possible choices of
incomplete output masks. Therefore, as it is written in (Bauer et al., 2001), the
stability problem belongs to the class of NP-hard problems - even for ¯nite n.
To overcome these difficulties the approach developed in this chapter can be used
to ¯nd an exact or an approximate solution to the stability problem of parallel
computing processes.
While the number of all possible choices of incomplete output masks is not

large, then the stability test can be based on LMI condition provided by The-
orem 4.5 where there are no uncertain matrices in the process model (4.3).
On the other hand, it can be assumed that matrices, which are the result of

all possible choices of incomplete output masks, belong to some bounded set of the
space of matrices. Furthermore, suppose that this set is a convex set or it can be
approximated by a convex set represented by HFE where F satis¯es (4.5) and
the matrices H and E are given. That is, matrices uncertainty can be put in the
norm-bounded form and hence (2.55) can be written as

[
xh(n1+1, n2)
xv(n1, n2+1)

]
=

([
A11(n1, n2) A12(n1, n2)
A21(n1, n2) A22(n1, n2)

]

+

[
∆A11(n1, n2) ∆A12(n1, n2)
∆A21(n1, n2) ∆A22(n1, n2)

])[
xh(n1, n2)
xv(n1, n2)

] (4.49)

where
[
∆A11(n1, n2) ∆A12(n1, n2)
∆A21(n1, n2) ∆A22(n1, n2)

]
=

[
H1

H2

]
F
[
E1 E2

]
= HFE

This means that the provided theorems o®er a powerful implementable tool to sta-
bility analysis of a parallel or distributed computation process. Even though such
an approach is applied for each time instant (assumed to be ¯nite), determining
the process stability involves quite a reasonable amount of computations.



4. Robustness analysis with LMI methods 101

4.5. Concluding remarks

This chapter shows that LMI methods, which are standard in 1-D system theory,
can be applied to analysis and synthesis for LRPs in the presence of uncertainty.
The main obstacles towards applying classical 2-D system theory methods in these
cases are computational problems which are avoided using LMI methods. More-
over, as it is shown, LMI methods allow us to extend the uncertainty borders via
an optimization procedure, i.e. increasing the robustness. Also, they are nume-
rically efficient and allow the efficient handling of considerably high dimensional
problems.



Chapter 5

LMI METHODS IN PERFORMANCE ANALYSIS

It has been shown that the condition for the existence of H∞ and H2 controllers
can be written in the form of matrix inequality, which turns out to be bilinear
with respect to its parameters (Helton and Merino, 1998; Saberi et al., 1995;
Zhou et al., 1996). Therefore, such a condition cannot be tested with efficient
computational method. Fortunately, we do not have to solve nonlinear problems
because potential difficulties can be omitted using a variety of methods. Both
Riccati-based (Doyle et al., 1989) and LMI-based (Boyd et al., 1994; Dullerud
and Paganini, 2000; Scherer and Weiland, 2002) solutions have been considered
for H∞ and H2 control problems in 1-D system theory. It is natural question to
ask if such computationally e®ective approaches can be extended to 2-D (n-D)
linear systems and LRPs. In the case of 2-D discrete linear systems, some work
on H∞ and H2 approaches have been reported - see, for example, (Du and Xie,
2002; Ŝebek M., 1993; Tuan et al., 2002). However, these control problems for
LRPs still remain unsolved although some preliminary results have already been
reported on H∞ control (Paszke et al., 2003, 2004). This lack of results is mainly
seen for di®erential LRPs, and hence the purpose of this chapter is to ¯ll that gap.
In addition to these results, the solution to theH∞ control problem with para-

meter uncertainty in all the matrices of the process state-space model, is provided.
Further, the numerical design procedure for a controller maintaining an adequate
level of performance represented by the quadratic cost, is presented. Searching for
such a controller is called a guaranteed cost control problem and it has even been
considered for 2-D linear systems (Guan et al., 2001). However, this paper only
contains a design method for a 2-D system represented by FMM, in which the spe-
cial case of boundary conditions is taken into account, and it seems that there are
no results for LRPs. Therefore, this chapter proposes a design algorithm involving
a convex optimization for an LRP controller achieving a suboptimal guaranteed
cost such that the process can be stabilised for all admissible uncertainties.

5.1. Performance speci¯cations for LRPs and n-D systems

One of the most frequently considered ways to describe the performance speci¯ca-
tions of a control system is to use H2 and H∞ norms (Zhou et al., 1996) of signals
and systems. These norms turn out to be natural measures of the worst possible
performance for many classes of input signals.
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In the presented approach, the generalized signals w and z are chosen to
characterize performance properties to be achieved by the controller. The signal
w is the generalized disturbance which collect various disturbance signals. This
signal is assumed to be member of Lr

2 space i.e. space of signals with ¯nite energy
where the Lr

2 norm is de¯ned. In the case of a 2-D signal described by mixed
time and space variables, Lr

2 norm is de¯ned as follows (see (Du and Xie, 2002)
for de¯nition Lr2 norm of discrete 2-D signal).

De¯nition 5.1. The L2 norm of the vector wk(t)∈Rr×1 de¯ned over [0,∞], [0,∞]
is given by

‖w‖2 =

√√√√
∞∑

k=0

∫ ∞

0

wk(t)Twk(t) dt (5.1)

and wk(t) is said to be a member of L
r
2{[0,∞], [0,∞]}, or Lr

2 for short, if ||w||2 <
∞.

The signal z represents the controlled variable. Taking into consideration
these additional signals, the state-space models of both di®erential (Gdiff) and
discrete LRPs (Gdisc) are

Gdiff

{
ẋk+1(t) = Axk+1(t) +B0yk(t) +Buk+1(t) +B1wk+1(t)
yk+1(t) = Cxk+1(t) +D0yk(t) +Duk+1(t) +D1wk+1(t)

(5.2)

and

Gdisc

{
xk+1(p+ 1) = Axk+1(p) +B0yk(p) +Buk+1(p) +B1wk+1(p)

yk+1(p) = Cxk+1(p) +D0yk(p) +Duk+1(p) +D1wk+1(p)
(5.3)

respectively. In the above equations, wk+1(t) and wk+1(p) are the Rr×1 distur-
bance input vectors which belong to Lr

2. Due to the fact that the pass pro¯le vector
is simultaneously the output vector, we can write zk+1(t) = yk+1(t) in di®erential
case or zk+1(p) = yk+1(p) in discrete one (see also the equation (2.21)).
To study H∞ or H2 control of LRPs, de¯nitions of H∞ and H2 norms are

required. First the H∞ norm de¯nition is provided

De¯nition 5.2. A di®erential (discrete) LRP described by (5.2) (by (5.3) respec-
tively) is said to have the H∞ disturbance attenuation (the H∞ norm bound) γ if
it is stable along the pass and

sup
06=w∈Lr

2

‖y‖2
‖w‖2

< γ (5.4)

The above de¯nition corresponds to the maximum gain peak of frequency
response, i.e. supremum of the maximum singular value of the frequency response
of the process. This can be computed from

‖G(s, z)‖∞ = sup
ω1∈R,ω2∈[0,2π]

σ
[
G(jω1, e

jω2)
]
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in a di®erential case and from

‖G(z1, z2)‖∞ = sup
ω1,ω2∈[0,2π]

σ
[
G(ejω1 , ejω2)

]

in a discrete case. G(s, z) and G(z1, z2) are the 2-D transfer function matrices
between pass pro¯le and disturbance signal and they are given by

G(s, z) =
[
0 I

] [ sI −A −B0

−zC I − zD0

]−1[
B1

D1

]
(5.5)

and

G(z1, z2) =
[
0 I

] [ I − z1A −z1B0

−z2C I − z2D0

]−1[
B1

D1

]
(5.6)

for di®erential and discrete cases respectively. The H2 norm de¯ned as the square
of the L2 norm of wk(t) is commonly termed the total energy in the signal wk(t)

‖G(s, z)‖2 =
√

1

(2π)2

∫ 2π

0

∫ ∞

−∞

trace (G∗(−jω2, ejω1)G(−jω2, ejω1)) dω2dω1

(5.7)
where G∗(·) denotes the complex conjugate transpose of G(·).
A fundamental point to note is that the H2 norm of a process coincides with

the total output energy in the impulse response of a process. This observation
leads immediately to the algorithms that determine the H2 norm of the process -
see Section 5.6 for details.

5.2. H∞ control of di®erential LRPs

5.2.1. LMI-based H∞ norm computation
To compute the H∞ norm, consider the case of a di®erential LRP (5.2) with no
control inputs but with external disturbance inputs given by

[
ẋk+1(t)
yk+1(t)

]
=

[
A B0

C D0

] [
xk+1(t)
yk(t)

]
+

[
B1

D1

]
wk+1(t) (5.8)

Noting that the measured output vector is equal to the pass pro¯le vector, we now
have the following Theorem which gives an H∞ condition for stability along the
pass in terms of LMI.

Theorem 5.1. A di®erential LRP which can be written in the form (5.8) is stable
along the pass and has the H∞ disturbance attenuation γ > 0 if there exist matrices
P 1 Â 0, and P 2 Â 0 of appropriate dimensions such that the following LMI holds




−P 2 P 2C P 2D0 P 2D1

CTP 2 ATP 1 + P 1A P 1B0 P 1B1

DT
0 P 2 BT

0 P 1 −P 2 + I 0

DT
1 P 2 BT

1 P 1 0 −γ2I


 ≺ 0 (5.9)
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Proof. Let us introduce the associated Hamiltonian as

H(k, t) =∆V (k, t)+yTk+1(t)yk+1(t)− γ2wT
k+1(t)wk+1(t)

=∆V (k, t)+ ξT (k, t)LTLξ(k, t)−γ2wT
k+1(t)wk+1(t)

=
[
ξT (k, t) wT

k+1(t)
]
Θ

[
ξ(k, t)
wk+1(t)

] (5.10)

where ∆V (k, t) is de¯ned in (4.10), ξ(k, t) is introduced by (4.8) and

Θ=

[
Â

T

1 P+PÂ1+Â
T

2 SÂ2+LTL−R PB̂1+Â
T

2 SD̂1

B̂
T

1 P+D̂
T

1 SÂ2 D̂
T

1 SD̂1−γ2I

]
(5.11)

and P = diag (P 1,0) , S = diag (P 3,P 2) ,

B̂1 =

[
B1

0

]
, D̂1 =

[
0

D1

]
, L =

[
0 I

]

The matrix P 3 is any given positive de¯ned matrix of appropriate dimension. Then
to ensure that stability along the pass and H∞ noise attenuation γ holds, (5.10)
must satisfy

H(k, t) ≺ 0
Now, it is straightforward to see that the condition Θ ≺ 0 guarantees that (5.4)
holds for any nonzero wk+1(t) ∈ Lr

2{[0,∞], [0,∞]}. This implies that processes
described by (5.8) are stable along the pass with the H∞ norm less than γ. Finally,
an obvious application of the Schur complement formula gives (5.9) and the proof
is complete. ¥

Remark 5.1. In many practice cases it is desirable to compute the minimum
disturbance rejection level γ. This minimum can be obtained by solving a linear
objective minimization problem of the following form

min
P 1Â0,P 2Â0

µ

subject to (5.9) with µ = γ2
(5.12)

5.2.2. H∞ control with a static feedback controller
The purpose of this section is to study the solution to the problem of H∞ distur-
bance attenuation in the case of full state access, i.e. the case when the control
law of the form (4.17) is applied.
Under these assumptions, the following result shows that the LMI setting

extends to allow the design of a control law of the form (4.17) for stability along
the pass closed-loop process with a prescribed H∞ disturbance attenuation.
Theorem 5.2. Suppose that a di®erential LRP described by (5.2) is subject to a
control law de¯ned by (4.17). Then the resulting closed-loop process is stable along
the pass and has the prescribed H∞ disturbance attenuation γ > 0 if there exist
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matrices W 1 Â 0, W 2 Â 0, N1 and N2 of compatible dimensions such that the
following LMI holds



−W 2 CW 1+DN1 D0W 2+DN2 D1 0

W 1C
T+NT

1 DT W 1A
T+NT

1 BT+AW 1+BN1 B0W 2+BN2 B1 0

W 2D
T
0+NT

2 DT W 2B
T
0 +NT

2 BT −W 2 0 W 2

DT
1 BT

1 0 −γ2I 0

0 0 W 2 0 −I



≺0

(5.13)

If this condition holds, the H∞ controller matrices K1 and K2 are given by
(4.20).

Proof. Application of the Theorem 5.1 result shows that the closed-loop process in
this case is stable along the pass with the prescribed H∞ disturbance attenuation
γ > 0 if 


−S SA2 SD̂1

A
T

2 S A
T

1 P + PA1 +LTL−R PB̂1

D̂1S B̂
T

1 P −γ2I


 ≺ 0 (5.14)

where

A1=

[
A+BK1 B0+BK2

0 0

]
, A2=

[
0 0

C+DK1 D0+DK2

]

Note that this last condition is not linear in P 1, P 2, P 3, K1 and K1 (it is in the
BMI form). To overcome this problem, ¯rst apply the Schur complement to yield




−S SA2 SD̂1 0

A
T

2 S A
T

1 P + PA1 −R PB̂1 LT

D̂
T

1 S B̂
T

1 P −γ2I 0

0 L 0 −I


 ≺ 0

Next, substitute of A1 and A2 into this last expression, pre- and post-multiplying
the result by diag(P−1

3 ,P−1
2 ,P−1

1 ,P−1
2 , I, I) and set W 1 = P−1

1 , W 2 = P−1
2 ,

W 3 = P−1
3 , N1 = K1P

−1
1 , N2 = K2P

−1
2 . Finally, by observing that the

result does not depend on the matrix W 3, the condition (5.13) is obtained. This
concludes of the proof. ¥

5.2.3. H∞ control with a dynamic pass pro¯le controller
Previously, a full access to the state vector was assumed. Here, the problem of
a pass pro¯le controller existing such that the closed-loop process is stable along
the pass and the H∞ norm bound is less then γ > 0 is considered. It turns
out that such a controller can not be designed by direct application of known
methods for 2-D systems (Du and Xie, 2002) because they only deal with discrete
systems. Furthermore, the intrinsic feature of LRPs is that the pass pro¯le vector
is simultaneously the output vector. Taking into account this feature, the new
solution is provided.
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To begin consideration of the problem, recall that the following result is used
in this section.

Lemma 10. (Dullerud and Paganini, 2000) Suppose that the n × n matrices
Σ Â 0 and Γ Â 0 are given and nc is a positive integer. Then there exists n× nc
matrices Σ2, Γ2 and nc × nc symmetric matrices Σ3, and Γ3, such that

[
Σ Σ2

Σ
T
2 Σ3

]
Â0 and

[
Σ Σ2

Σ
T
2 Σ3

]−1
=

[
Γ Γ2

Γ
T
2 Γ3

]

if, and only if, [
Σ I

I Γ

]
º 0

In order to solve the H∞ control problem considered here, introduce the
following pass pro¯le feedback controller of the order nc

[
ẋck+1(t)
yck+1(t)

]
=

[
Ac11 Ac12

Ac21 Ac22

][
xck+1(t)
yck(t)

]
+

[
Bc1

Bc2

]
yk(t)

uk+1(t)=
[
Cc1 Cc2

] [xck+1(t)
yck(t)

]
+Dcyk(t)

(5.15)

where xck+1(t) ∈ Rn1×1 is the controller state vector, yck(t) ∈ Rm1×1 is the control-
ler output vector and nc = n1 +m1. Next, denote

Φ =

[
A B0

C D0

]
, Ω =

[
B1

D1

]
, B2 =

[
B

D

]
, C2 =

[
0 I

]
,

Ac =

[
Ac11 Ac12

Ac21 Ac22

]
, Bc =

[
Bc1

Bc2

]
, Cc =

[
Cc1 Cc2

] (5.16)

Introduce now, the so-called augmented state and pass pro¯le vectors

ẋk+1(t) =

[
ẋk+1(t)
ẋck+1(t)

]
, yk(t) =

[
yk(t)
yck(t)

]

and the matrices

Π =




I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I


 , Π1 =




I 0 0 0

0 0 I 0

0 0 0 0

0 0 0 0


 , Π2 =




0 0 0 0

0 0 0 0

0 I 0 0

0 0 0 I


 (5.17)

to obtain the closed-loop process of the form
[
ẋk+1(t)
yk+1(t)

]
=A

[
xk+1(t)
yk(t)

]
+Bwk+1(t)

yk+1(t) =C

[
xk+1(t)
yk(t)

] (5.18)
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where

A=Π

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T =(Π1+Π2)

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T

=Π1

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T+Π2

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T=A1+A2

B = Π1

[
Ω

0

]
+Π2

[
Ω

0

]
= B1+B2, C =

[
C2 0

]
Π

T

In the following, introduce the matrix of controller data as

Θ =

[
Dc Cc

Bc Ac

]
(5.19)

and

A1=Π1

[
Φ 0

0 0

]
Π, A2=Π2

[
Φ 0

0 0

]
Π, Γ1=Π1

[
B2 0

0 I

]
, Γ2=Π2

[
B2 0

0 I

]
,

C2=

[
C2 0

0 I

]
Π

T , C=
[
C2 0

]
Π

T , B1=Π1

[
Ω

0

]
, B2=Π2

[
Ω

0

]

(5.20)

It allows presenting the closed-loop process matrices in the form affine in the
controller data matrix Θ as

A1 = A1 + Γ1ΘC2, A2 = A2 + Γ2ΘC2, B1 = B1, B2 = B2,C = C (5.21)

Hence, we have the following result based on Theorem 5.1.

Theorem 5.3. A di®erential LRP described by (5.2) is stable along the pass and
has the H∞ disturbance attenuation γ > 0 if there exist matrices Sv Â 0, P h Â 0,
such that the following inequality holds




−S SA2 SB2 0

A
T

2 S A
T

1 P + PA1 −R PB1 C
T

B
T

2 S B
T

1 P −γ2I 0

0 C 0 −I


 ≺ 0 (5.22)

where S = diag(I,Sv), P = diag(P h, I), R = diag(0,Sv).

This can be resolved to the following form.

Theorem 5.4. If there exist matrices P h11
Â 0, Uh11

Â 0, Sv11
Â 0, T v11

Â 0
such that the LMIs de¯ned by (5.23)–(5.25) hold then there exists a controller of
the form (5.15) which guarantees that the di®erential LRP described by (5.18) is
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stable along the pass and has the H∞ disturbance attenuation γ > 0.




WT
c 0 0

0 I 0

0 0 I







−T v11
+D0T v11

DT
0 CUh11

+D0T v11
BT
0

Uh11
CT+B0T v11

DT
0 Uh11

AT+AUh11
+B0T v11

BT
0

DT
1 BT

1

T v11
DT

0 T v11
BT
0

D1 D0T v11

B1 B0T v11

−γ2I 0

0 −I + T v11







Wc 0 0

0 I 0

0 0 I


 ≺ 0

(5.23)

[
ATP h11

+P h11
A+CTSv11

C P h11
B1+CTSv11

D1

BT
1 P h11

+DT
1 Sv11

C DT
1 Sv11

D1−γ2I

]
≺ 0 (5.24)

[
P h11 I

I Uh11

]
º 0,

[
Sv11 I

I T v11

]
º 0 (5.25)

where Wc is full column rank matrix whose image satis¯es

Im (Wc) =ker

([
DT

BT

])

Suppose now that the LMIs (5.23)-(5.25) are feasible. Then the following
is a systematic procedure for obtaining the corresponding controller state-space
matrices.

Step 1: Compute the matrices P h12, P v12 using the following formulas

Sv12
S−1v22

ST
v12
= Sv11

− T−1v11

P h12
P−1

h22
P T

h12
= P h11

−U−1
h11

where P h22 = I and Sv22 = I

Step 2: Construct the matrices P h Â 0 and Sv Â 0 as

P h =

[
P h11

P T
h12

P h12
I

]
, Sv =

[
Sv11

ST
v12

Sv12
I

]

and then the matrices S = diag(I,Sv), P = diag(P h, I), R = diag(0,Sv)

Step 3: Compute the matricesM , N and Ψ de¯ned in (5.28)

Step 4: Solve the following LMI

Ψ+MT
ΘN +NT

Θ
TM ≺ 0

to obtain (5.19) i.e. the matrices which de¯ne the controller state-space mo-
del (5.15).
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Proof. Using matrix de¯nitions (5.21), the inequality (5.22) can be rewritten as




−S SA2 + SΓ2ΘC2 SB2 0

AT
2 S+CT

2Θ
T
Γ
T
2 S AT

1 P+CT
2Θ

T
Γ
T
1 P+PA1+PΓ1ΘC2−R PB1 CT

BT
2 S BT

1 P −γ2I 0

0 C 0 −I


 ≺ 0

⇔




−S SA2 SB2 0

AT
2 S AT

1 P + PA1 −R PB1 CT

BT
2 S BT

1 P −γ2I 0

0 C 0 −I


+




0 SΓ2ΘC2 0 0

0 PΓ1ΘC2 0 0

0 0 0 0

0 0 0 0




+




0 0 0 0

CT
2Θ

T
Γ
T
2 S CT

2Θ
T
Γ
T
1 P 0 0

0 0 0 0

0 0 0 0


 ≺ 0

(5.26)

It is straightforward to see that (5.26) can be rewritten as




−S SA2 SB2 0

AT
2 S AT

1 P + PA1 −R PB1 CT

BT
2 S BT

1 P −γ2I 0

0 C 0 −I


+




SΓ2
PΓ1
0

0


Θ

[
0 C2 0 0

]

+
[
Γ
T
2 S Γ

T
1 P 0 0

]
Θ

T




0

CT
2

0

0


 ≺ 0

(5.27)

Now, de¯ne the matrices

Ψ =




−S SA2 SB2 0

AT
2 S AT

1 P + PA1 −R PB1 CT

BT
2 S BT

1 P −γ2I 0

0 C 0 −I


 , MT =




SΓ2
PΓ1
0

0


 ,

N =
[
0 C2 0 0

]
(5.28)

to present (5.27) in the form

Ψ+MT
ΘN +NT

Θ
TM ≺ 0 (5.29)

In the sequel, invoke Lemma 9 to eliminate the matrix variable Θ and obtain

WT
MΨWM ≺ 0 and WT

NΨWN ≺ 0 (5.30)

where

WM ∈ ker(M), WN ∈ ker(N) (5.31)
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Next, note that

M =
[
Γ
T
2 S ΓT

1 P 0 0
]
=
[
Γ
T
2 Γ

T
1 0 0

]



S 0 0 0

0 P 0 0

0 0 I 0

0 0 0 I


=MnV (5.32)

where the matrices P and S are partitioned as

P =




P h11
P h12

0 0

P T
h12

P h22
0 0

0 0 I 0

0 0 0 I


 , S =




I 0 0 0

0 I 0 0

0 0 Sv11
Sv12

0 0 ST
v12

Sv22




and

P h =

[
P h11

P h12

P T
h12

P h22

]
, P v =

[
I 0

0 I

]
, Sh =

[
I 0

0 I

]
, Sv =

[
Sv11

Sv12

ST
v12

Sv22

]

Observe that the solution of (5.22) is independent of the matrices P v and Sh but
they are necessary to compute V −1 (the matrix V is de¯ned in (5.32)). Further-
more, it is important now to observe that

ker(MnV ) = V −1 ker(Mn)

and using (5.31) yields that

WM = V −1WMn
.

Therefore, the ¯rst inequality in (5.30) is

WT
Mn

V −T
ΨV −1WMn

≺ 0
Furthermore, introduce the matrix Ξ as

Ξ = V −T
ΨV −1 =




−S−1 A2P
−1 B2 0

P−1AT
2 P−1AT

1 +A1P
−1 −R B1 P−1CT

BT
2 BT

1 −γ2I 0

0 CP−1
0 −I




Then, two inequalities of (5.30) are

WT
Mn
ΞWMn

≺ 0 (5.33)

and
WT

NΨWN ≺ 0 (5.34)

These inequalities clearly are in the BMI form, thus to obtain LMI for (5.33) and
(5.34) some matrix manipulations are required. First, rewrite matrices in the full
form

Mn =
[
Γ2

T
Γ1

T
0 0

]
=



0 0 0 0 BT

0 0 0 0 0

0 0 DT
0 0 I 0 0 0 0

0 0 0 I 0 0 0 0 0 0



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Γ1 = Π1

[
B2 0

0 I

]
=




I 0 0 0

0 0 I 0

0 0 0 0

0 0 0 0







B 0 0

D 0 0

0 I 0

0 0 I


 =




B 0 0

0 I 0

0 0 0

0 0 0




Γ2 = Π2

[
B2 0

0 I

]
=




0 0 0 0

0 0 0 0

0 I 0 0

0 0 0 I







B 0 0

D 0 0

0 I 0

0 0 I


 =




0 0 0

0 0 0

0 D 0

0 0 I




N =
[
0 C2 0 0

]
=



0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 I 0 0




C2 =

[
C2 0

0 I

]
Π

T =



0 I 0 0

0 0 I 0

0 0 0 I







I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I


 =



0 0 I 0

0 I 0 0

0 0 0 I




It is clear to see that the kernels of Mn and N are images of

WMn
=




I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 ND 0 0 0 0

0 0 0 0 0 0 0

0 0 NB 0 0 0 0

0 0 0 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I




, WN =




I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I




where

NB ∈ ker(BT ), ND ∈ ker(DT ),

Moreover, the matrices P−1, S−1 and R can be partitioned in the following way

P−1=




Uh11
Uh12

0 0

UT
h12

Uh22
0 0

0 0 I 0

0 0 0 I


 , S−1=




I 0 0 0

0 I 0 0

0 0 T v11
T v12

0 0 T T
v12

T v22


 , R=




0 0 0 0

0 0 0 0

0 0 Sv11
Sv12

0 0 ST
v12

Sv22



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It allows us to rewrite the matrix Ξ as

Ξ=




−I 0 0 0 0 0 0 0 0 0

0 −I 0 0 0 0 0 0 0 0

0 0 −T v11 −T v12 CUh11
CUh12

D0 0 D1 0

0 0 −T T
v12

−T v22 0 0 0 0 0 0

0 0 Uh11
CT

0 Uh11
AT+AUh11

AUh12
B0 0 B1 0

0 0 UT

h12
CT

0 UT

h12
AT

0 0 0 0 0

0 0 DT
0 0 BT

0 0 −Sv11 −Sv12 0 I

0 0 0 0 0 0 −ST
v12

−Sv22 0 0

0 0 DT
1 0 BT

1 0 0 0 −γ2I 0

0 0 0 0 0 0 I 0 0 −I




Consider the ¯rst BMI constraint (5.34)

WT
Mn
ΞWMn

≺ 0

By observing that the forth and sixth rows of WMn
are zero, the last inequality

can be rewritten as




N T

D N T

B 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I







−T v11 CUh11
D0 0 D1 0

Uh11
CT Uh11

AT+AUh11
B0 0 B1 0

DT
0 BT

0 −Sv11 −Sv12 0 I

0 0 −ST
v12

−Sv22 0 0

DT
1 BT

1 0 0 −γ2I 0

0 0 I 0 0 −I




×




ND 0 0 0 0

NB 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I



≺0

Next, application of the Schur complement formula yields (5.23). In order to
obtain the inequality (5.24), rewrite the matrix Ψ as

Ψ=




−I 0 0 0 0 0 0 0 0 0

0 −I 0 0 0 0 0 0 0 0

0 0 −Sv11 −Sv12 Sv11C 0 Sv11D0 0 Sv11D1 0

0 0 −ST
v12

−Sv22 ST
v12

C 0 ST
v12

D0 0 ST
v12

D1 0

0 0 CTSv11 CTSv12 ATP h11
+P h11

A AP h12
P h11

B0 0 P h11
B1 0

0 0 0 0 P T

h12
A 0 P T

h12
B0 0 P T

h12
B1 0

0 0 DT
0 Sv11 DT

0 Sv11 BT
0 P h11

BT
0 P h12

−Sv11 −Sv12 0 I

0 0 0 0 0 0 −ST
v12

−Sv22 0 0

0 0 DT
1 Sv11 DT

1 Sv12 BT
1 P h11

BT
1 P h12

0 0 −γ2I 0

0 0 0 0 0 0 I 0 0 −I




Next, by observing that the some rows of WN are zero, the condition (5.34)
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reduces to




−Sv11
−Sv12

Sv11
C Sv11

D1 0

−ST
v12

−Sv22
ST

v12
C ST

v12
D1 0

CTSv11
CTSv12

ATP h11
+ P h11

A P h11
B1 0

DT
1 Sv11

DT
1 Sv12

BT
1 P h11

−γ2I 0

0 0 0 0 −I



≺ 0

Further, application of the Schur complement formula gives






ATP h11
+P h11

A P h11
B1 0

BT
1 P h11

−γ2I 0

0 0 −I




+




CTSv11 CTSv12

DT
1 Sv11 DT

1 Sv12

0 0



[

T v11 T v12

T T
v12

T v22

][
Sv11C Sv11D1 0

ST
v12

C ST
v12

D1 0

]
≺0

which is equivalent to LMI (5.24). Additionally, applying of Lemma 10 gives as
the result the conditions de¯ned in (5.25) and the proof is completed. ¥

The disturbance attenuation level γ can be optimized by solving the following
linear minimization problem

min
P h11

Â0,Uh11
Â0,Sv11

Â0,T v11
Â0

µ

subject to (5.23)− (5.25) with µ = γ2
(5.35)

To show the usefulness of this result, let us consider the following numerical exam-
ple.

Example 5.1. Consider the di®erential LRP of the form (5.2) with matrices given
by

A =

[
−1.4684 −1.3745
−1.4080 −1.6290

]
,B0 =

[
0.0309 0.2553
0.0635 0.2229

]
,C =

[
0.0810 0.0948
0.0610 0.0289

]
,

D0 =

[
0.0494 0.0510
0.0530 0.0227

]
, B1 =

[
1.9635 0.9644
1.0872 1.6311

]
,D1 =

[
1.5410 0.1196
1.2650 0.1512

]
,

B =

[
1.9070 1.2824
2.6290 2.1252

]
,D =

[
0.2106 1.5249
0.0572 2.6082

]

With this data, application of the controller design procedure of (5.35) yields

P h11 =

[
0.1169 0.1036
0.1036 0.1740

]
, Uh11 = 10

6

[
8.3795 0.5142
0.5142 9.1918

]
,

Sv11 =

[
6.1931 −5.8899
−5.8899 7.6801

]
, T v11 =

[
0.8599 0.1589
0.1589 0.8198

]



5. LMI methods in performance analysis 115

and the corresponding H∞ controller matrices are

Ac=

[
−3.8573 −1.5123
−1.7765 −0.9105

]
,Bc=

[
0.1405 0.1581
0.0712 0.0991

]
,

Cc=

[
0.7487 0.7430
0.0520 −0.0499

]
, Dc=

[
−0.1041 −0.2130
−0.0180 −0.0040

]

Moreover, the minimum γ derived in this example is 2.1530.

5.2.4. Numerical computations of the Lyapunov matrix

It should be pointed out that providing the Lyapunov matrix results in computa-
tional problems which are nontrivial due to required of existence of the matricesX
and Y such that Y = X−1. Unfortunately, this problem is non-convex therefore
the convex formulation is required. Moreover, the controller order is equal to the
rank of X − Y so it is hard to specify the controller order. It is shown in (Fu
and Luo, 1997) that computational problems which have arisen in ¯xed output
feedback design are NP-hard problems.
In the above design procedure, the dynamic controller with unspeci¯ed order

was considered. In this case, the constraint Y = X−1 Â 0 can be replaced
by Y º X−1 Â 0 (Iwasaki and Skelton, 1994) which, after applying the Schur
complement formula, leads to

[
Y I

I X

]
º 0

Thus, the convex formulation has been found and it can be applied in H∞ con-
troller design - see conditions in (5.25). Unfortunately, since one of the block
X is chosen as I (the identity matrix) then the condition number of X can be
large. To avoid computation problems, the approach based on the singular value
decomposition (SVD) is used. As the ¯rst step, SVD of I −XY is computed

I −XY = UΣV T

Next, the matricesM and N are chosen as

M =UΣ
1

2

N =V Σ
1

2

and they satisfy MNT = I − XY . This allows us to compute the Lyapunov
matrix L from the relation

[
Y I

NT
0

]
= L

[
I X

0 MT

]

As the next step, partition L as

L =

[
L11 L12

LT
12 L22

]
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to obtain

L

[
I X

0 MT

]
=

[
L11 L12

LT
12 L22

] [
I X

0 MT

]
=

[
L11 L11X +L12M

T

LT
12 LT

12X +L22M
T

]

Based on the above equation, the blocks of L can be computed from

L11 = Y

LT
12 = NT

L11X +L12M
T = I

LT
12X +L22M

T = 0

thus L22 = Σ
1

2 V TXUT
Σ
− 1

2 and L and its inversion are

L =

[
Y N

NT L22

]
, L−1 =

[
X M

MT K

]

where K is any given matrix of appropriate dimension.
It should be pointed out that there several algorithms exist which give suffi-

cient condition for ¯nding the matrices X and Y so that Y = X−1 via convex
optimization (Iwasaki and Skelton, 1995a,b). This immediately allows us to apply
LMI methods.
The idea of these algorithms is based on the observation that for any matrices

X Â 0 and Y Â 0 that satisfy
[

Y I

I X

]
º 0 (5.36)

the condition trace(XY ) = n (where n denotes the number of rows of the matrix
X (or Y )) implies that XY = I. Hence, the solution to the problem of ¯nding
the matrices X Â 0 and Y Â 0 such that X = Y −1 is reduced to the solution

min
XÂ0,Y Â0

trace(XY )

subject to (5.36)

It was illustrated in (Oliveria and Geromel, 1997) that the above optimization
problem can be solved in an e®ective way using Product Reduction Algorithm
(PRA). Moreover, this algorithm is simple in numerical implementation and can
therefore be used for our purposes.

5.2.4.1. Product Reduction Algorithm

The preliminary step of this algorithm is to provide any matrices X0 Â 0 and
Y 0 Â 0 which satisfy (5.36) then set the iteration counter k = 0 and successively
perform the following steps
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Step 1: De¯ne the linear function

fk(X,Y ) = trace (XkY + Y kX)

Step 2: Compute Xk+1 and Y k+1 by solving linear objective minimization pro-
blem of the form

min
XÂ0,Y Â0

fk(X,Y )

subject to (5.36)

Step 3: If prescribed accuracy ε is attained e.g. trace (Xk+1Y +Y k+1X)−2n≤ε
(where n denotes the number of rows ofX or Y ) then stop, otherwise return
to the second step.

5.3. H∞ control of uncertain di®erential LRPs

In this section we extend the results of the previous section to a process model
containing some uncertainties in all the matrices. The presence of these uncer-
tainties in the model structure is the consequence of varying physical parameters
and imperfect knowledge on process dynamics. Motivated by this practical fact,
we are interested in designing a static feedback controller that stabilises the con-
sidered class of LRPs and ensures that the H∞ norm bound does not exceed the
prescribed level for all admissible uncertainties. Two representations of uncerta-
inty are taken into consideration: norm-bounded and polytopic forms. Both of
these representations have their advantages and disadvantages and there are also
practically relevant problem areas where one in more suitable than the other.

5.3.1. Norm-bounded model of uncertainty

Here, we assume that the uncertainty is norm bounded in both the state and pass
pro¯le updating equations. This form corresponds to the process with uncertainty
which is modelled as an additive perturbation to the nominal model matrices. In
such a case we can write the process state-space model in the form
[
ẋk+1(t)
yk+1(t)

]
=

([
A B0

C D0

]
+

[
∆A ∆B0

∆C ∆D0

])[
xk+1(t)
yk(t)

]
+

([
B

D

]
+

[
∆B

∆D

])
uk+1(t)

+

([
B1

D1

]
+

[
∆B1

∆D1

])
wk+1(t)

(5.37)

where the admissible uncertainties are assumed to be of the form
[
∆A ∆B0 ∆B ∆B1

∆C ∆D0 ∆D ∆D1

]
=

[
H1

H2

]
F
[

E1 E2 E3 E4

]
(5.38)

and where H1, H2, E1, E2, E3, E4 are known constant matrices of compatible
dimensions, and F is an unknown matrix with constant entries which satis¯es
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(4.5). In this case, the following theorem gives the condition of a controller existing
that stabilises the process (5.37) and ensures that the H∞ norm bound does not
exceed prescribed level for all admissible uncertainties.

Theorem 5.5. Suppose that a di®erential LRP of the form described by (5.37),
with uncertainty structure modelled by (5.38) and (4.5), is subjected to a control
law of the form (4.17). Then the resulting closed-loop process is stable along the
pass for all admissible uncertainties and has the prescribed H∞ disturbance atte-
nuation γ > 0 if there exist matricesW 1 Â 0,W 2 Â 0, N1 and N2 of compatible
dimensions and a scalar ε > 0 such that the following LMI holds




−W 2+3εH2H
T
2 CW 1+DN1+3εH2H

T
1

W 1C
T+NT

1 DT+3εH1H
T
2 W 1A

T+NT
1 BT+AW 1+BN1+3εH1H

T
1

W 2D
T
0 +NT

2 DT W 2B
T
0 +NT

2 BT

DT
1 BT

1

0 0

0 E1W 1 +E3N1

0 0

0 0

D0W 2+DN2 D1 0 0 0 0

B0W 2+BN2 B1 0 W 1E
T
1 +NT

1 ET
3 0 0

−W 2 0 W 2 0 W 2E
T
2 +NT

2 ET
3 0

0 −γ2I 0 0 0 ET
4

W 2 0 −I 0 0 0

0 0 0 −εI 0 0

E2W 2+E3N2 0 0 0 −εI 0

0 E4 0 0 0 −εI




≺ 0

(5.39)

If (5.39) holds then the controller matrices K1 and K2 are given by (4.20).

Proof. In view of the proof of Theorem 5.2 it can be shown that the closed-loop
process is stable along the pass for all admissible uncertainties and has prescribed
H∞ disturbance attenuation γ > 0 if the following inequality is satis¯ed



0 ∆CW 1+∆DN1 ∆D0W 2+∆DN2 ∆D1 0

W 1∆CT+NT
1∆DT ∆Λ ∆B0W 2+∆BN2 ∆B1 0

W 2∆DT
0 +NT

2∆DT W 2∆BT
0+NT

2∆BT
0 0 0

∆DT
1 ∆BT

1 0 0 0

0 0 0 0 0




+




−W 2 CW 1+DN1 D0W 2+DN2 D1 0

W 1C
T+NT

1 DT
Λ B0W 2+BN2 B1 0

W 2D
T
0 +NT

2 DT W 2B
T
0+NT

2 BT −W 2 0 W 2

DT
1 BT

1 0 −γ2I 0

0 0 W 2 0 −I



≺0

(5.40)

where Λ = W 1A
T +NT

1 BT +AW 1+BN1 and ∆Λ = W 1∆AT+NT
1∆BT+

∆AW 1+∆BN1. The ¯rst term in the above inequality can be rewritten as

HFE +E
T
F

T
H

T
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where

H =




0 H2 H2 H2 0

0 H1 H1 H1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, F=diag (F ,F ,F ,F ,F) ,

E =diag (0,E1W 1 +E3N1,E2W 2 +E3N2,E4,0)

An obvious application of Lemma 8 followed by application of the Schur comple-
ment formula yields (5.39) and the proof is complete. ¥

5.3.2. Polytopic model of uncertainty

Consider the di®erential LRP which the current pass state updating equation
matrices range in the polytope of matrices as it is described by

[
A B B0 B1

]
∈ Co

([
Ai Bi

0 Bi B1

])
, i=1, 2, . . . , h (5.41)

and

Co
([

Ai Bi
0 Bi Bi

1

])
:=

{
X :X=

h∑

i=1

αi

[
Ai Bi

0 Bi Bi
1

]
, αi ≥ 0,

h∑

i=1

αi=1

}
(5.42)

For the current pass pro¯le updating equation in (5.2) we assume a norm-bounded
type of uncertainty

yk+1(t) =(C+∆C)xk+1(t)+(D0+∆D0)yk(t)

+ (D+∆D)uk+1(t)+(D1+∆D1)wk+1(t)

where
[
∆C ∆D0 ∆D ∆D1

]
= H2F

[
E1 E2 E3 E4

]
(5.43)

and the matrix F satis¯es (4.5).

Theorem 5.6. Suppose that a di®erential LRP of the form described by (5.2), with
uncertainty structure modelled by (5.41)-(5.42) and (5.43), is subjected to a control
law of the form of (4.17). Then the resulting closed-loop process is stable along
the pass for all admissible uncertainties and has the prescribed H∞ disturbance
attenuation γ > 0 if there exist matrices W 1 Â 0, W 2 Â 0, N1 and N2 of
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compatible dimensions and a scalar ε > 0, such that



−W 2+3εH2H
T
2 CW 1+DN1

W 1C
T+NT

1 DT W 1A
iT+NT

1 BiT+AiW 1+BiN1

W 2D
T
0 +NT

2 DT W 2B
iT
0 +NT

2 BiT

DT
1 BiT

1

0 0

0 E1W 1 +E3N1

0 0

0 0

D0W 2+DN2 D1 0 0 0 0

Bi
0W 2+BiN2 Bi

1 0 W 1E
T
1+NT

1 ET
3 0 0

−W 2 0 W 2 0 W 2E
T
2 +NT

2 ET
3 0

0 −γ2I 0 0 0 ET
4

W 2 0 −I 0 0 0

0 0 0 −εI 0 0

E2W 2+E3N2 0 0 0 −εI 0

0 E4 0 0 0 −εI




≺0

(5.44)

If the LMI (5.44) holds then the controller matrices K1 and K2 are given by
(4.20).

Proof. It can be proven in an identical manner to proofs of previously presented
Theorems. ¥

5.4. H∞ control of discrete LRPs

This section addresses the problem of the H∞ disturbance rejection or attenuation
problem for discrete LRP. Therefore, the aim can be summarized as ¯nding an
implementable control law which will give stability along the pass closed loop with
a prescribed degree of disturbance rejection, including the case when there is an
uncertainty in the model structure.

5.4.1. LMI-based H∞ norm computation
Consider the model of a discrete LRP (5.3) with no control inputs but with external
disturbance inputs given by

[
xk+1(p+ 1)
yk+1(p)

]
=

[
A B0

C D0

] [
xk+1(p)
yk(p)

]
+

[
B1

D1

]
wk+1(p) (5.45)

then with (5.4) we have the following result.

Theorem 5.7. A discrete LRP described by (5.45) is stable along the pass and
has the H∞ disturbance attenuation γ > 0 if there exist matrices P 1 Â 0 and
P 2 Â 0 such that the following LMI with P = diag(P 1,P 2) holds




−P PΦ PΩ 0

Φ
TP −P 0 CT

2

Ω
TP 0 −γ2I 0

0 C2 0 −I


 ≺ 0 (5.46)
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where Φ, Ω and C2 are de¯ned in (5.16).

Proof. In order to ensure the H∞ noise attenuation γ holds, it is required that
the associated Hamiltonian de¯ned by

H(k, p) = ∆V (k, p)+yTk+1(p)yk+1(p)− γ2wT
k+1(p)wk+1(p) (5.47)

satis¯es

H(k, p) < 0 (5.48)

where ∆V (k, p) is de¯ned in (4.34). Next, by carrying out appropriate substitutions
we obtain

H(k, p)=
[
ζT (k, p) wT

k+1(p)
][ΦTPΦ−P +CT

2C2 Φ
TPΩ

Ω
TPΦ ΩPΩ−γ2I

][
ζ(k, p)
wk+1(p)

]

where ζ(k, p) is de¯ned in (4.32). Now the above condition guarantees that (5.48)
holds for any ζ(k, p), wk+1(p) 6= 0. Finally, application of the Schur complement
formula gives the solution and the proof is complete. ¥

Remark 5.2. Since LRPs share certain structural similarities with 2-D linear
systems then the result can be also obtained via manipulations required for 2-D
linear systems described by RM, for example, in (Du and Xie, 2002). On the
other hand, it should be pointed out that the structure of the control algorithms
are not well founded physically due to the fact that, for example, the concept of
a state for these systems is not uniquely de¯ned. Furthermore, it turns out that,
in case of LRP, a control law is a combination of current pass information and
‘feedforward’ information from the previous pass. In terms of 2-D systems this is
the equivalent to a clear state feedback control law, which has not been used in (Du
and Xie, 2002) for H∞ control. Moreover, it is known in terms of RM, that
the pass pro¯le vector is simultaneously the output vector which employs di®erent
algebraic manipulations and in e®ect yields a simpli¯ed version in comparison to
the standard 2-D approach of (Du and Xie, 2002; Du et al., 2001).

Remark 5.3. It can be seen that the inequality (5.46) has the same form as the
inequality (4.46). Therefore, the robust stabilisation of an uncertain LRP can be
solved via H∞ control results developed here.

5.4.2. H∞ control with a static feedback controller

The following result enables (4.40) to be designed to give stability along the pass
of the closed-loop process with a prescribed disturbance rejection bound.

Theorem 5.8. Suppose that a discrete LRP described by (5.3) is subject to a
control law of the form (4.40). Then the resulting closed-loop process is stable
along the pass with the prescribed H∞ disturbance attenuation γ > 0 if there exists
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matrices W 1 Â 0, W 2 Â 0, N1 and N2 such that the following LMI holds



−W 1 0 AW 1+BN1 B0W 2+BN2 B1 0

0 −W 2 CW 1+DN1 D0W 2+DN2 D1 0

W 1A
T+NT

1 BT W 1C
T+NT

1 DT −W 1 0 0 0

W 2B
T
0 +NT

2 BT W 2D
T
0 +NT

2 DT
0 −W 2 0 W 2

BT
1 DT

1 0 0 −γ2I 0

0 0 0 W 2 0 −I



≺0

(5.49)

and the required controller matrices in (4.40) are given by (4.20).

Proof. Applying the result of Theorem 5.7 it follows immediately that stability
along the pass holds if there exist matrices P 1 Â 0 and P 2 Â 0 such that




−P 1 0 P 1A+P 1BK1 Λ1 P 1B1 0

0 −P 2 P 2C+P 2DK1 Λ2 P 2D1 0

ATP 1+KT
1 BTP 1 CTP 2+KT

1 DTP 2 −P 1 0 0 0

Λ
T
1 Λ

T
2 0 −P 2 0 I

BT
1 P 1 DT

1 P 2 0 0 −γ2I 0

0 0 0 I 0 −I



≺0

where Λ1 = P 1B0+P 1BK2 and Λ2 = P 2D0+P 2DK2, This last inequality is not
in LMI form because it is nonlinear with respect to its parameters. Consequently,
set P 1 = W−1

1 , P 2 = W−1
2 and pre and post-multiply by diag(W 1, W 2, W 1,

W 2, I, I), followed by setting N 1 =K1W 1 and N2 =K2W 2 to obtain the LMI
of (5.49) and the proof is complete. ¥

Note that the H∞ disturbance attenuation here can be minimized using the
linear objective minimization procedure which leads, in e®ect, to minimization of
the e®ects of the disturbance.

min
W 1Â0,W 2Â0,N1,N2

µ

subject to (5.49) with µ = γ2

5.4.3. H∞ control with a dynamic pass pro¯le controller
The control law of the previous section requires that the complete current pass
state vector is available for measurement. If this is not the case then one option
is to use an observer to reconstruct it. In this section, we consider the control of
processes described by (5.3) through use of a full dynamic pass pro¯le feedback
controller of the order nc

[
xck+1(p+ 1)
yck+1(p)

]
=

[
Ac11 Ac12

Ac21 Ac22

][
xck+1(p)
yck(p)

]
+

[
Bc1

Bc2

]
yk+1(p)

uk+1(p)=
[
Cc1 Cc2

] [xck+1(p)
yck(p)

]
+Dcyk+1(p)

(5.50)

where xck(p) ∈ Rn1 is the controller state vector, yck(p) ∈ Rm1 is the output vector
and nc = n1 +m1.
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To obtain the state-space model of the resulting closed-loop process, use the
notation (5.16)-(5.17) and introduce the so-called augmented state and pass pro¯le
vectors for the closed-loop process as

xk+1(p) =

[
xk+1(p)
xck+1(p)

]
, yk(p) =

[
yk(p)
yck(p)

]

Then the closed-loop process is given by
[
xk+1(p+ 1)
yk+1(p)

]
=A

[
xk+1(p)
yk(p)

]
+Bwk(p)

yk+1(p) =C

[
xk+1(p)
yk(p)

] (5.51)

where

A=Π

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T , B=Π

[
Ω

0

]
, C =

[
C2 0

]
Π

T

Next, de¯ne

A =

[
Φ 0

0 0

]
, B2 =

[
B2 0

0 I

]
, C2 =

[
C2 0

0 I

]
, C =

[
C2 0

]
, B =

[
Ω

0

]

then it is obvious that the closed-loop state-space model matrices can be written
in the following form which is affine in the controller data matrix Θ (introduced
in (5.19))

A = Π
[

A+B2ΘC2
]
Π

T , C = CΠT , B = ΠB (5.52)

Now we have the following result which gives an existence condition for the con-
troller matricesAc, Bc, Cc,Dc to ensure stability along the pass and then enables
controller design.

Theorem 5.9. Suppose that a dynamic pass pro¯le feedback controller de¯ned
by (5.50) is applied to a discrete LRP described by (5.3) with resulting closed-
loop state-space model (5.51). Suppose also that there exist matrices P 11 Â 0,
(P 11 = diag(P h11,P v11)) and R11 Â 0, (R11 = diag(Rh11,Rv11)) such that the
LMIs de¯ned by (5.53)–(5.55) below hold. Then the resulting closed-loop process
is stable along the pass and has the H∞ disturbance attenuation γ > 0



N 1 0 0

0 I 0

0 0 I



T

ΦR11Φ

T−R11 Ω ΦR11C
T
2

Ω
T −γ2I 0

C2R11Φ
T

0 −I+C2R11C
T
2






N 1 0 0

0 I 0

0 0 I


≺0 (5.53)




N 2 0 0

0 I 0

0 0 I



T

Φ

TP 11Φ−P 11 Φ
TP 11Ω CT

2

ΩP 11Φ Ω
TP 11Ω− γ2I 0

C2 0 −I






N 2 0 0

0 I 0

0 0 I


≺0 (5.54)

[
P h11 I

I Rh11

]
º 0,

[
P v11 I

I Rv11

]
º 0 (5.55)
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where N 1 and N 2 are full column rank matrices whose images satisfy

Im (N 1) = ker
(
BT
2

)
, Im (N 2) = ker(C2)

Proof. Interpreting the result of Theorem 5.7 in terms of the matrices (5.52) gives
the following inequality

Ψ+MT
ΘN +NT

Θ
TM ≺ 0 (5.56)

where

Ψ=




−R RA RB 0

ATR −R 0 CT

BTR 0 −γ2I 0

0 C 0 −I


 , MT=




RB2

0

0

0


 , N =

[
0 C2 0 0

]

and R = ΠTPΠ. Partitioning the matrix R as

R = ΠTPΠ =




P h11
0 P h12

0

0 P v11
0 P v12

P T
h12

0 P h22
0

0 P T
v12

0 P v22


 =

[
P 11 P 12

P T
12 P 22

]
(5.57)

where

P h =

[
P h11

P h12

P T
h12

P h22

]
, P v =

[
P v11

P v12

P T
v12

P v22

]

it can be written that

P−1
h =

[
Rh11

Rh12

RT
h12

Rh22

]
, P−1

v =

[
Rv11

Rv12

RT
v12

Rv22

]

and

R−1 = ΠTP−1
Π =




Rh11
0 Rh12

0

0 Rv11
0 Rv12

RT
h12

0 Rh22
0

0 RT
v12

0 Rv22


 =

[
R11 R12

RT
12 R22

]

After manipulations similar to these described in the proof of Theorem 5.4 the
conditions of (5.53) and (5.54) are obtained.
The last problem is to provide the conditions which allow us to ¯nd the matrix

P and its inverse. To begin, ¯rst note again that P = diag(Ph,P v) and that only
P 11 and R11 appear in the ¯rst two LMIs to be satis¯ed. Application of Lemma 10
now gives the required conditions and the proof is complete. ¥

If this last result holds then the stabilising controller can be designed using
the following algorithm
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Step 1: Compute the matrices P h12, P v12 using

P h12P
−1
h22P

T
h12 = P h11 −R−1

h11,

P v12P
−1
v22P

T
v12 = P v11 −R−1

v11

where P h22 = I and P v22 = I

Step 2: Construct P h Â 0 and P v Â 0 and then the matrix P = diag(P h,P v).

Step 3: Compute the matricesM , N and Ψ.

Step 4: Solve the LMI (5.56) (where Θ is the unknown matrix) and hence the
controller state-space model matrices.

Also the disturbance attenuation level γ can be minimized using the following
optimization procedure

min
P 11Â0, R11Â0

µ

subject to (5.53)− (5.55) with µ = γ2

5.5. H∞ control of uncertain discrete LRPs

This section deals with the robust H∞ control problem for discrete LRPs with
norm-bounded uncertainty. For this purpose consider a discrete LRP with un-
certainty modelled as additive perturbations to the nominal model matrices with
resulting state-space model

xk+1(p+ 1) =(A+∆A)xk+1(p) + (B +∆B)uk+1(p) + (B0 +∆B0)yk(p)

+ (B1 +∆B1)wk+1(p)

yk+1(p) =(C +∆C)xk+1(p) + (D +∆D)uk+1(p) + (D0 +∆D0)yk(p)

+ (D1 +∆D1)wk+1(p)

(5.58)

where the admissible uncertainties to be of the form (5.38) and (4.5). Now we
have the following result.

Theorem 5.10. Suppose that a discrete LRP described by (5.58) with the un-
certainty structure satisfying (5.38) and (4.5) is subject to a control law de¯ned
by (4.40). Then the resulting closed-loop process is stable along the pass with the
prescribed H∞ disturbance attenuation γ > 0 if there exist a scalar ε > 0 and
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matrices W 1 Â 0, W 2 Â 0, and N1, N2 such that the following LMI holds




−W 1 + 3εH1H
T
1 3εH1H

T
2 AW 1+BN1 B0W 2+BN2

3εH1H
T
2 −W 2 + 3εH2H

T
2 CW 1+DN1 D0W 2+DNT

2

W 1A
T+NT

1 BT W 1C
T+NT

1 DT −W 1 0

W 2B
T
0 +NT

2 BT W 2D
T
0 +NT

2 DT
0 −W 2

BT
1 DT

1 0 0

0 0 0 W 2

0 0 0 W 1E
T
1 +NT

1 ET
3

0 0 0 0

0 0 0 0

B1 0 0 0 0

D1 0 0 0 0

0 0 0 0 0

0 W 2 E1W 1+E3N1 0 0

−γ2I 0 0 E2W 2+E3N2 0

0 −I 0 0 E4

0 0 −εI 0 0

W 2E
T
2 +NT

2 ET
3 0 0 −εI 0

0 ET
4 0 0 −εI




≺0

(5.59)

If this condition holds, the corresponding controller matrices are given by (4.20).

Proof. On applying (4.40), the closed-loop process stability along the pass condi-
tion can be written in the form

Γ+ H̃F̃Ẽ + Ẽ
T
F̃

T
H̃

T ≺ 0

where Γ is left hand side of LMI (5.49) and

H̃=




0 0H1 H1 H1 0

0 0H2 H2 H2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



,
F̃ =diag (F ,F ,F ,F ,F ,F) ,

Ẽ=diag (0,0,E1W 1+E3N1,E2W 2+E3N2,E4,0)

The LMI of (5.59) is now obtained by an application of the inequality of Lemma 8
followed by the Schur complement formula and the proof is complete. ¥

To reduce the e®ects of the disturbance vector, the following linear objective
minimization procedure can be used.

min
W 1Â0,W 2Â0,N1,N2,ε>0

µ

subject to (5.59) with µ = γ2
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5.5.1. Alternative robust stabilisation

In this subsection the solution for the H∞ problem is applied to design a pass pro-
¯le feedback controller in the presence of norm-bounded parameter uncertainties.
Consider the state-space model of a discrete LRP written in the form (4.29).

Further, use the notation (5.16)-(5.17) and introduce

∆Φ =

[
∆A ∆B0

∆C ∆D0

]
=

[
H1

H2

]
γ−1F

[
E1 E2

]
,

∆B2 =

[
∆B

∆D

]
=

[
H1

H2

]
γ−1F

[
E3

]

The matrices H1, H2, E1, E2, E3 are known and constant and a scalar γ > 0
is given, hence they are de¯ned in the same form as in (4.30) and the matrix F

satis¯es (4.5). In the case when the pass pro¯le controller (5.50) is applied, the
closed loop process state space model can be written as

[
xk+1(p+ 1)
yk(p+ 1)

]
= (A+∆A)

[
xk+1(p)
yk(p)

]

yk+1(p) = C

[
xk+1(p)
yk(p)

]
(5.60)

with

A+∆A=Π

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T+Π

[
∆Φ+∆B2DcC2 ∆B2Cc

0 0

]
Π

T

=Π

[
Φ+B2DcC2 B2Cc

BcC2 Ac

]
Π

T+Π

[
γ−1H
0

]
F
[
E+E3DcC2 E3Cc

]
Π

T

=A+HFE

where the matrices Φ, B2, C2 are as before and

H =

[
H1

H2

]
, E =

[
E1 E2

]
(5.61)

Now we have the following result.

Theorem 5.11. Consider a discrete LRP whose dynamics are described by (5.58).
Suppose also that a full dynamic pass pro¯le feedback controller de¯ned by (5.50)
is applied. Then the resulting closed-loop process (5.60) is stable along the pass
holds if there exist matrices P 11 Â 0, (P 11 = diag (P h11,P v11)) and R11 Â 0,
(R11 = diag (Rh11,Rv11)) such that the following LMIs hold




N 1 0 0

0 I 0

0 0 I



T

Φ

TP 11Ξ−P 11 Φ
TP 11H ET

HTP 11Φ HTP 11H −γ2I 0

E 0 −I






N 1 0 0

0 I 0

0 0 I


≺0 (5.62)
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


N 2 0 0

0 I 0

0 0 I



T

ΦR11Φ

T−R11 ΦR11E
T H

ER11Φ
T −I+ER11E

T
0

HT
0 −γ2I






N 2 0 0

0 I 0

0 0 I


≺0 (5.63)

[
P h11 I

I Rh11

]
º 0,

[
P v11 I

I Rv11

]
º 0 (5.64)

where N 1 and N 2 are full column rank matrices whose images satisfy

Im(N 1) = ker(C
T
2 ), Im(N 2) = ker([B

T
2 ET

3 ])

Proof. Based on the proof of Theorem 4.7 it can be shown that the closed-loop
stability along the pass holds in this case if




−P PA PH 0

A
T
P −P 0 E

T

H
T
P 0 −γ2I 0

0 E 0 −I


 ≺ 0

where A, H, E are de¯ned as before. Next, apply similar transformations to those
used in the previous proof to obtain (5.62)–(5.64) and the proof is complete. ¥

To increase robustness, the term γ in the LMIs of (5.62)–(5.63) has to be mi-
nimized. This can be achieved by using a linear objective minimization procedure

min
P 11Â0,R11Â0

µ

subject to (5.62)− (5.64) with µ = γ2

5.6. H2 control of di®erential LRPs

TheH2 norm of the system is another commonly used control performance measure
for control synthesis. For 2-D linear discrete systems, the H2 control problem was
considered and solved in (Tuan et al., 2002). However, the H2 control problem
in the case of di®erential LRPs is still unsolved and therefore, this problem is
investigated in this section.
It has been mentioned that the H2 norm of a process Gdiff (5.2) is the energy

(L2 norm) of the response g(k, t) to an impuls applied at t = 0, k = 0, and denoted
by δ(k, t). Then (5.7) is equivalent to (by invoking Parseval’s theorem in the 2-D
case)

‖Gdiff‖2 =
√
‖g(k, t)‖22=

√√√√
∞∑

k=0

∫ ∞

0

gT (k, t)g(k, t)dt (5.65)

Note that the above equation is valid for the case of a single input stable along the
pass process Gdiff . To extend this de¯nition to vector-valued inputs, introduce

uhk(t) = δ(k, t)eh
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where eh ∈ Rl×1 is the vector whose entries are zero except for a unit entry in
position h, 1 ≤ h ≤ l. Then we have that

‖Gdiff‖2 =

√√√√
l∑

h=1

∞∑

k=0

∫ ∞

0

(gh)T (k, t)gh(k, t)dt

To determine gh(k, t),¯rst introduce

ξh(k, t) =

[
ẋhk+1(t)
yhk+1(t)

]
, ζh(k, t) =

[
xhk+1(t)
yhk (t)

]
, Ω=

[
B

D

]
, Ψ=

[
C D0

]

Then, due to physical applications of LRPs where nonzero boundary conditions
(2.15) appear, we have that

ξh(k, t)=(Â1+Â2)ζ
h(k, t)+Ωδ(k, t)eh=




Ω̂h+Â2ζ

h(k, t), for k=0, α≥ t≥0
(Â1+Â2)ζ

h(k, t), for k>0, α≥ t≥0
0, otherwise

(5.66)
and

gh(k, t) = Ψζh(k, t) +Dδ(k, t)eh =





D̂h+D0y
h
k (t), for k = 0, α ≥ t ≥ 0

Ψζh(k, t), for k > 0, α ≥ t ≥ 0
0, otherwise

(5.67)
where D̂h and Ω̂h denote h-th column of the matrices D and Ω respectively.
The following result gives a sufficient condition for stability along the pass and an
upper bound on the H2 norm of the 2-D transfer function matrix.

Theorem 5.12. A di®erential LRP described by (5.2) but without disturbance
input is stable along the pass and has the H2 norm bound γ > 0, i.e. ‖Gdiff‖2 < γ,
if there exist matrices P 1 Â 0 and P 2 Â 0 such that the following LMIs hold



−P 2 P 2C P 2D0

CTP 2 ATP 1+P 1A+CTC P 1B0+CTD0

DT
0 P 2 BT

0 P 1+DT
0 C −P 2+DT

0 D0


 ≺ 0 (5.68)

and

trace
(
αDTD + αBTP 1B + αDTP 2D

)
+ trace

(
Ψ

TP 2Ψ

∫ α

0

f(t)f(t)T dt

)

+ trace

(
DT

0 D0

∫ α

0

f(t)f(t)T dt

)
<γ2

(5.69)

Proof. It is straightforward to see that if (5.68) holds then the following


−P 2 P 2C P 2D0

CTP 2 ATP 1+P 1A P 1B0

DT
0 P 2 BT

0 P 1 −P 2


+



0

CT

DT
0


[0 C D0

]
≺0 (5.70)
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holds too. As the second term of the left hand side of (5.70) is clearly non-negative
de¯nite, it is obvious that



−P 2 P 2C P 2D0

CTP 2 ATP 1+P 1A P 1B0

DT
0 P 2 BT

0 P 1 −P 2


 ≺ 0 (5.71)

which invoking Theorem 4.1 for process without uncertainty implies that the process
is stable along the pass.

To show the H2 performance, recall ¯rst that (5.71) holds if xk+1(t) 6= 0 and
yk(t) 6= 0 in

V (k, t) = ẋTk+1(t)P 1xk+1(t)+x
T
k+1(t)P 1ẋk+1(t)+y

T
k+1(t)P 2yk+1(t)−yTk (t)P 2yk(t)

the following is satis¯ed

∆V (k, t) < 0

Next, introduce

∆V h(k, t) = (ẋhk+1)
T (t)P 1x

h
k+1(t) + (x

h
k+1)

T (t)P 1ẋ
h
k+1(t)

+ (yhk+1)
T (t)P 2y

h
k+1(t)− (yhk )T (t)P 2y

h
k (t)

(5.72)

and note that

∆V (k, t) =
l∑

h=1

∆V h(k, t)

where

∆V h(k, t) = (ζh)T (k, t)
(
Â

T

1 P+PÂ1 + Â
T

2 RÂ2−R
)
ζh(k, t)

with P , R given in (4.12) and Â1, Â2 de¯ned in (4.6).

If stability along the pass holds then the following equality holds

∞∑

k=0

∫ ∞

0

∆V h(k, t) =

∞∑

k=0

∫ α

0

∆V h(k, t) = 0 (5.73)

Furthermore, based on (5.66) and (5.72) we have

∞∑

k=0

∫ ∞

0

∆V h(k, t)=

∫ α

0

Ω̂
T

h (P+R)Ω̂hdt+

∫ α

0

(ζh)T (0, t)Â
T

2 (P+R)Â2ζ
h(0, t)dt

+
∞∑

k=0

∫ ∞

0

(ζh)T (k, t)
(
Â

T

1 P+PÂ1+Â
T

2 RÂ2−R
)
ζh(k, t)
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Given (5.65), we also have that

‖Gdiff‖22 =
l∑

h=1

∞∑

k=0

∫ ∞

0

ghT (k, t)gh(k, t)dt

=

l∑

h=1

(∫ α

0

D̂
T

h D̂hdt+

∫ α

0

(yh0 )
T (t)DT

0 D0y
h
0 (t)dt

+

∞∑

k=0

∫ ∞

0

ζhT (k, t)ΨT
Ψζh(k, t)dt

)

and also, using (5.73),

‖Gdiff‖22 =
l∑

h=1

(
∞∑

k=0

∫ ∞

0

∆V h(k, t)dt+ αD̂
T

h D̂h+

∫ α

0

(yh0 )
T (t)DT

0 D0y
h
0 (t)dt

+

∞∑

k=0

∫ ∞

0

ζhT (k, t)ΨT
Ψζh(k, t)dt

)

(5.74)

Routine manipulations show that (5.74) is equivalent to

‖Gdiff‖22 =
l∑

h=1

(
αD̂

T

h D̂h + αBT
hP 1Bh + αDT

hP 2Dh

+

∫ α

0

(ζh)T (0, t)ΨTP 2Ψζ
h(0, t)dt+

∫ α

0

(yh0 )
T (t)DT

0 D0y
h
0 (t)dt

+

∞∑

k=0

∫ ∞

0

(ζh)T (k, t)
(
Ψ

T
Ψ+Â

T

1 P+PÂ1+Â
T

2 SÂ2−R
)
ζh(k, t)dt

)

(5.75)

Further transformations lead to

‖Gdiff‖22 =trace
(
αDTD + αBTP 1B + αDTP 2D

)

+ trace

(
Ψ

TP 2Ψ

∫ α

0

f(t)f(t)T dt

)
+ trace

(
DT

0 D0

∫ α

0

f(t)f(t)T dt

)

+

∞∑

k=0

∫ ∞

0

ζT (k, t)
(
Ψ

T
Ψ+Â

T

1 P+PÂ1 + Â
T

2 SÂ2−R
)
ζ(k, t)dt

It now follows immediately from this last expression that (5.68) and (5.69) imply
that ‖Gdiff‖2 < γ holds and the proof is complete. ¥

Remark 5.4. Note that the H2 norm bound here can be minimized using the
following linear objective minimization procedure

min
P 1Â0,P 2Â0

µ

subject to (5.68) and (5.69) with µ = γ2
(5.76)
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5.6.1. H2 control with a static feedback controller

Some applications areas clearly require the design of control laws which guarantee
stability along the pass and also have the maximum possible disturbance attenu-
ation (here as measured by the H2 norm).
The problem considered here is as follows: for a given γ > 0, ¯nd a controller

of the form (4.17) for the process (5.2) such that the closed-loop process is stable
and the H2 norm of the 2-D transfer function matrix between the disturbance
vector and the current pass pro¯le, denoted here by G(s, z) (see, (5.5)) bounded
by γ, i.e. ||G(s, z)||2 < γ - is also termed the H2 disturbance rejection bound.
The following result gives a solution to this problem with an algorithm for

designing the control law.

Theorem 5.13. Suppose that a di®erential LRP described by (5.2) is subject to a
control law de¯ned by (4.17). Then the resulting closed-loop process is stable along
the pass and has the prescribed H2 disturbance rejection bound γ > 0 if there exist
matrices W 1 Â 0, W 2 Â 0, N1 and N2 such that the following LMIs hold




−W 2 CW 1+DN1 D0W 2+DN2 0

NT
1 DT+W 1C

T W 1A
T+AW 1+NT

1 BT+BN1 B0W 2 +BN2 W 1C
T

NT
2 DT+W 2D

T
0 W 2B

T
0 +NT

2 BT −W 2 W 2D
T
0

0 CW 1 D0W 2 −I


≺0

(5.77)

and

trace(X)+trace(DT
0 D0Υ+αDT

1 D1) < γ2




X BT
1 DT

1 Π
1

2

B1 α−1W 1 0 0

D1 0 α−1W 2 0

Π
1

2 0 0 W 2


 Â 0,

(5.78)

where X is an additional symmetric matrix variable of proper dimension and

Π=

∫ α

0

Ψ
T y0(t)y

T
0 (t)Ψdt, Υ=

∫ α

0

y0(t)y
T
0 (t)dt (5.79)

If these conditions hold, the controller matrices K1 and K2 are given by (4.20).

Proof. Interpreting (5.75) (or Theorem 5.12 results) for the closed-loop process
yields




−P 2 P 2C + P 2DK1 P 2D0 + P 2DK2

KT
1 DTP 2+CTP 2 Λ1 P 1B0 +P 1BK1 +CTD0

KT
2 DTP 2+DT

0 P 2 BT
0 P 1+KT

2 BTP 1+DT
0 C −P 2 +DT

0 D0


 ≺ 0

where ΩT =
[

BT
1 DT

1

]
and Λ1 = ATP 1+P 1A+KT

1 BTP 1+P 1BK1+CTC.

Now set W 1 = P−1
1 , W 2 = P−1

2 , and pre- and post- multiply both sides of this
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last inequality by diag (W 2,W 1,W 2) to obtain




−W 2 CW 1 +DK1W 1 D0W 2 +DK2W 2

W 1K
T
1 DT+W 1C

T
Λ2 Λ

T
3

W 2K
T
2 DT+W 2D

T
0 Λ3 −W 2 +W 2D

T
0 D0W 2


 ≺ 0

where

Λ2 =W 1A
T+AW 1+W 1K

T
1 BT+BK1W 1+W 1C

TCW 1

Λ3 =W 2B
T
0 +W 2K

T
2 BT+W 2D

T
0 CW 1

An obvious application of the Schur complement formula to the left hand side of
this last expression and setting N 1 = K1W 1 and N2 = K2W 2 now yields



−W 2 CW 1 +DN1 D0W 2 +DN2 0

NT
1 DT+W 1C

T W 1A
T+AW 1+NT

1 BT+BN1 B0W 2 +BN2 W 1C
T

NT
2 DT+W 2D

T
0 W 2B

T
0 +NT

2 BT −W 2 W 2D
T
0

0 CW 1 D0W 2 −I


≺0

(5.80)

In what follows, by observing the fact that

trace (P 2Π)=trace
(
Π

1

2 P 2Π
1

2

)

where Π is de¯ned in (5.79) then the inequality (5.69) in this case becomes

trace(αD
T

1 D1+D
T

0 D0Υ)

+trace



[

BT
1 DT

1 Π
1

2

]



αW 1 0 0

0 αW 2 0

0 0 W 2



−1


B1

D1

Π
1

2




<γ

2
(5.81)

which is equivalent to (5.78). To see this, introduce a new matrix variable X and
make use of the following transformation to yield

Ω
T
ΘΩ =




X−αBT
1 W−1

1 B1−αDT
1 W−1

2 D1−Π
1

2 W 2Π
1

2 0 0 0

0 W 1 0 0

0 0 W 2 0

0 0 0 W 2




where

Θ =




X α
1

2 BT
1 α

1

2 DT
1 Π

1

2

α
1

2 B1 W 1 0 0

α
1

2 D1 0 W 2 0

Π
1

2 0 0 W 2


 , Ω =




I 0 0 0

−α
1

2 W−1
1 B1 I 0 0

−α
1

2 W−1
2 D1 0 I 0

−W−1
2 Π

1

2 0 0 I




Next, observe that the block (1,1) in the resulting matrix implies that

X Â αBT
1 W−1

1 B1 + αDT
1 W−1

2 D1 +Π
1

2 W−1
2 Π

1

2

Finally, apply the Schur complement formula and the proof is complete. ¥
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Remark 5.5. The H2 disturbance rejection bound γ in the LMI of (5.78) can be
minimized by using the linear objective minimization procedure

min
W 1Â0,W 2Â0,N1,N2

µ

subject to (5.77) and (5.78) with µ = γ2
(5.82)

Let us now show the applicability of this result with the following numerical
example.

Example 5.2. Consider the di®erential LRP represented by (a model of metal
rolling process, for details see (Gałkowski et al., 2003d))

A=

[
−0.0050 −5.8077
1 −0.0050

]
, B0=

[
0

0.0494

]
, C=

[
1 0
]
, D0=0.7692 (5.83)

where the boundary condition are

xk+1(0) =

[
0
0

]
, y0(t) = 1, 0 ≤ t ≤ α

Further, we assume the matrices B, D, B1 and D1 to be

B =

[
1.2
0.8

]
, D = 1.2, B1 =

[
0.7
0.3

]
, D1 = 0.8

The purpose is to ¯nd a controller of the form (4.17) such that (5.77) and (5.78)
are satis¯ed. By solving the convex optimization problem (5.82) we obtain

W 1 =

[
2.6102 0.2420
0.2420 0.0657

]
, W 2 = 0.7052,

N1 =
[
−2.7623 −0.5935

]
, N2 = −0.4522

Then, the following controller matrices are computed

K1 =
[
−0.3353 −7.7998

]
, K2 = −0.6412

That is, the controller guarantees that the closed-loop process is stable along the
pass and ensures that the H2 norm bound is never greater than 7.6607. The results
have demonstrated that the proposed approach is numerically simple and e®ective.

5.7. Guaranteed cost control of LRPs

In previous sections of this chapter, the problem of designing H∞ or H2 controllers
has been addressed. Here, another step is taken further to examine the next design
approach called guaranteed cost control (Moheimani and Petersen, 1996; Petersen
and McFarlane, 1994; Petersen et al., 1998). This is an area for which no results
currently exist and here we develop a solution to the problem of obtaining a control
law which simultaneously robustly stabilises an uncertain process and guarantees
that the associated cost function has a value below the prescribed upper bound.
Keeping up with this objective throughout the section, we will start by treating
di®erential LRPs and then deal with discrete LRPs.
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5.7.1. Di®erential LRP case

Consider an uncertain di®erential LRP described by the following state-space mo-
del over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) =(A+∆A)xk+1(t) + (B0 +∆B0)yk(t) + (B +∆B)uk+1(t)

yk+1(t) =(C +∆C)xk+1(t) + (D0 +∆D0)yk(t) + (D +∆D)uk+1(t)
(5.84)

The matrices A, B, B0, C, D, D0 de¯ne the nominal model and ∆A, ∆B, ∆B0,
∆C, ∆D, ∆D0 represent admissible uncertainties which are assumed to be of the
form [

∆A ∆B0 ∆B

∆C ∆D0 ∆D

]
=

[
H1

H2

]
F
[
E1 E2 E3

]
(5.85)

In this last equation,H1,H2, E1, E2, E3 are known constant matrices of compa-
tible dimensions, and F is an unknown matrix with constant entries which satis¯es
(4.5).
We start by developing the LMI condition which guarantees that the unforced

(the control input terms are deleted) process is stable along the pass and also the
associated cost function is bounded for all admissible uncertainties. These results
are then extended to design a guaranteed cost controller.
It is assumed that the following cost function is associated with the uncertain

process (5.84)

J =

∞∑

k=0

∫ ∞

0

(
uTk+1(t)Ψuk+1(t)

)
dt+

∞∑

k=0

∫ ∞

0

([
xk+1(t)
yk(t)

]T[
Q1 0

0 Q2

][
xk+1(t)
yk(t)

])
dt

(5.86)

where Ψ Â 0, Q1 Â 0 and Q2 Â 0 are given matrices, is bounded for all admissible
uncertainties.

Remark 5.6. LRPs are de¯ned over the ¯nite pass length α and, in practice,
only a ¯nite number of passes, say k∗, will actually be completed. Hence the cost
function (5.86) should be replaced by

J =

k∗∑

k=0

∫ α

0

(
uTk+1(t)Ψuk+1(t)

)
dt+

k∗∑

k=0

∫ α

0

([
xk+1(t)
yk(t)

]T[
Q1 0

0 Q2

][
xk+1(t)
yk(t)

])
dt

(5.87)

However, it is routine to argue that the signals involved can be extended from [0, α]
to the in¯nite interval in such a way that projection of the in¯nite interval solution
onto the ¯nite interval is possible. The same is true for the pass-to-pass direction
and hence we can work with (5.86).
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5.7.1.1. Guaranteed cost bound

Here we are interested in ¯nding an upper bound for the corresponding cost func-
tion of the unforced process (uk+1(t) = 0) with associated cost function

J0 =

∞∑

k=0

∫ ∞

0

([
xk+1(t)
yk(t)

]T[
Q1 0

0 Q2

][
xk+1(t)
yk(t)

])
dt (5.88)

The following theorem gives a sufficient condition for stability along the pass with
guaranteed cost.

Theorem 5.14. An unforced di®erential LRP described by (5.84) is robustly stable
if there exist matrices P 1 Â 0, P 2 Â 0 and a scalar ε > 0 such that the following
LMI holds



−P 2 P 2C P 2D0 P 2H2 P 2H2

CTP 2 ATP 1+P 1A+Q1+εE
T
1 E1 P 1B0 P 1H1 P 1H1

DT
0 P 2 BT

0 P 1 −P 2+Q2+εE
T
2 E2 0 0

HT
2 P 2 HT

1 P 1 0 −εI 0

HT
2 P 2 HT

1 P 1 0 0 −εI



≺0

(5.89)

Moreover, in this case the cost function (5.88) satis¯es the following upper bound

J0 ≤
k∗∑

k=0

xTk+1(0)P 1xk+1(0) +

∫ α

0

yT0 (t)P 2y0(t)dt (5.90)

Proof. Based on Theorem 4.1 proof, it is shown that stability along the pass holds
if ∆V (k, t) < 0 (de¯ned in (4.11)) for ξ(k, t) 6= 0. Next, it is straightforward to
see that the inequality

∆V (k, t) + ξT (k, t)

[
Q1 0

0 Q2

]
ξ(k, t) ≺ 0 (5.91)

implies that unforced process is stable along the pass. Noting that

Υ =

∞∑

k=0

∫ ∞

0

(
ξT (k, t)

[
Q1 0

0 Q2

]
ξ(k, t)

)
dt

and, since the process is stable along the pass, we now have that

Υ≤−
∞∑

k=0

∫
∞

0

(V̇1(k, t) + ∆V2(k, t))dt

=−
∞∑

k=0

x
T

k+1(t)P 1xk+1(t)

∣∣∣∣∣

∞

0

−

∫
∞

0

(
∞∑

k=0

(yTk+1(t)P 2yk+1(t)− y
T

k (t)P 2yk(t))

)
dt

=

∞∑

k=0

x
T

k+1(0)P 1xk+1(0)−

∫
∞

0

(
y
T

∞
(t)P 2y∞(t)−y

T

0 (t)P 2y0(t)
)
dt

=
∞∑

k=0

x
T

k+1(0)P 1xk+1(0) +

∫
∞

0

y
T

0 (t)P 2y0(t)dt

(5.92)



5. LMI methods in performance analysis 137

Using (4.11) and (5.91), a su±cient condition for stability along the pass which
ensures that (5.90) holds is given by
(
(A1 +∆A1)

TP + P (A1 +∆A1) + (A2 +∆A2)S(A2 +∆A2)−R+Q
)
≺ 0

where Q = diag(Q1,Q2), S = diag(P 3,P 2), and P 3 Â 0 are any given matrices
of the required dimensions. Next, an obvious application of the Schur complement
formula yields



−P 3 0 0 0

0 −P 2 P 2C+P 2∆C P 2D0+P 2∆D0

0 CTP 2+∆CTP 2 Λ1 P 1B0+P 1∆B0

0 DT
0 P 2+∆DT

0 P 2 BT
0 P 1+∆BT

0 P 1 Q2−P 2


≺0 (5.93)

where
Λ1 = ATP 1 +∆ATP 1 + P 1A+ P 1∆A+Q1

On removing the block −P 3 which is always negative de¯nite, (5.93) gives the
equivalent condition




−P 2 P 2C P 2D0

CTP 2 ATP 1+P 1A+Q1 P 1B0

DT
0 P 2 BT

0 P 1 Q2−P 2




+



0 P 2H2 P 2H2

0 P 1H1 P 1H1

0 0 0






F 0 0

0 F 0

0 0 F





0 0 0

0 E1 0

0 0 E2




+



0 0 0

0 ET
1 0

0 0 ET
2






FT
0 0

0 FT
0

0 0 FT






0 0 0

HT
2 P 2 HT

1 P 1 0

HT
2 P 2 HT

1 P 1 0


≺0

(5.94)

and by an obvious application of the result of Lemma 8, we obtain


−P 2 P 2C P 2D0

CTP 2 ATP 1+P 1A+εE
T
1 E1+Q1 P 1B0

DT
0 P 2 BT

0 P 1 Q2−P 2+εE
T
2 E2




+ε−1



0 P 2H2 P 2H2

0 P 1H1 P 1H1

0 0 0






0 0 0

HT
2 P 2 HT

1 P 1 0

HT
2 P 2 HT

1 P 1 0


≺0

(5.95)

Finally, an obvious application of the Schur complement formula gives (5.89) and
the proof is complete. ¥

Remark 5.7. Note that it is possible to minimize the upper bound on the cost
function (5.90) using the following optimization procedure

min
P 1Â0,P 2Â0

[
k∗∑

k=0

xTk+1(0)P 1xk+1(0) +

∫ α

0

yT0 (t)P 2y0(t)dt

]

subject to : (5.89)

(5.96)
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5.7.1.2. Guaranteed cost control with a static feedback controller

Now we proceed with the design of a static controller of the form of (4.17) that
stabilises the process (5.84) and guarantees the cost is bounded.
Applying the control law (4.17) to (5.84) gives the closed-loop process state-

space model of the form (4.18) and the associated cost function is

J =

∞∑

k=0

∫ ∞

0

([
xk+1(t)
yk(t)

]T[
Q1+KT

1ΨK1 KT
1ΨK2

KT
2ΨK1 Q2+KT

2ΨK2

][
xk+1(t)
yk(t)

])
dt (5.97)

where Ψ Â 0, Q1 Â 0 and Q2 Â 0 are given matrices.
The existence of stabilising K1 and K2 can be characterized in LMI terms

as follows.

Theorem 5.15. A di®erential LRP described by (5.84) is robustly stable under
the control law (4.17) if there exist matrices W 1 Â 0, W 2 Â 0, N1 and N2 and
a scalar ε > 0 such that the following LMI holds




−W 2+2εH2H
T
2 CW 1+DN1+2εH2H

T
1

W 1C
T+NT

1 DT+2εH1H
T
2 W 1A

T+AW 1+NT
1 BT+BN1+2εH1H

T
1

W 2D
T
0 +NT

2 DT W 2B
T
0 +NT

2 BT

0 E1W 1 +E3N1

0 0

0 N1

0 W 1

0 0

D0W 2+DN2 0 0 0 0 0

B0W 2 +BN2 W 1E
T
1 +NT

1 ET
3 0 NT

1 W 1 0

−W 2 0 W 2E
T
2 +N2E

T
3 NT

2 0 W 2

0 −εI 0 0 0 0

E2W 2+E3N2 0 −εI 0 0 0

N2 0 0 −Ψ−1
0 0

0 0 0 0 −Q−1
1 0

W 2 0 0 0 0 −Q−1
2




≺0

(5.98)

where Ψ Â 0, Q1 Â 0 and Q2 Â 0 are the given matrices for the cost func-
tion (5.86). Also, if this condition holds, then stabilising control law matrices K1,
K2 are given by (4.20). The cost function (5.97) of the closed-loop process (4.18)
satis¯es the following upper bound

J ≤
k∗∑

k=0

xTk+1(0)W
−1
1 xk+1(0) +

∫ α

0

yT0 (t)W
−1
2 y0(t)dt (5.99)

Proof. Since (5.89) is satis¯ed then applying the some matrix manipulations i.e.
setting W 1 = P−1

1 , W 2 = P−1
2 , U1 = W 1Q1W 1, U2 = W 2Q2W 2 followed by

pre- and post- multiplying of both sides of resulting inequality by diag(W 2,W 1,W 2)
we conclude that the closed-loop process (4.18) is robustly stabilised by the control
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law (4.17) if the following matrix inequality is satis¯ed



−W 2 CW 1+DN1 D0W 2+DN2

W 1C
T+NT

1 DT
Υ B0W 2+BN2+N1ΨNT

2

W 2D
T
0 +NT

2 DT W 2B
T
0+NT

2 BT+NT
2ΨN1 −W 2+U2+NT

2ΨN2




+



0 H2 H2

0 H1 H1

0 0 0






F 0 0

0 F 0

0 0 F





0 0 0

0 E1W 1+E3N1 0

0 0 E2W 2+E3N2




+



0 0 0

0 NT
1 ET

3+W 2E
T
1 0

0 0 NT
2 ET

3+W 2E
T
2






FT
0 0

0 FT
0

0 0 FT





0 0 0

HT
2 HT

1 0

HT
2 HT

1 0


≺0

(5.100)

where N1 = K1W 1, N2 = K2W 2 and Υ = W 1A
T+AW 1+NT

1 BT+BN1+
U1+NT

1ΨN1. Applying the result of Lemma 8 and making an obvious application
of the Schur complement formula gives (5.98) and the proof is complete. ¥

Note that it is possible to minimize the upper bound on the cost func-
tion (5.90) using the following optimization procedure

min
W 1Â0,W 2Â0

[
k∗∑

k=0

xTk+1(0)W
−1
1 xk+1(0)+

∫ α

0

yT0 (t)W
−1
2 y0(t)dt

]

subject to (5.98)

(5.101)

The convex optimization algorithm cannot be applied in this case because of the
nonlinear termsW−1

1 andW−1
2 . However, a controller which ensures the minimi-

zation of the guaranteed cost (5.99) can be achieved as follows. First note that,
from the fact that trace (XY ) = trace (Y X), we have

k∗∑

k=0

xTk+1(0)W
−1
1 xk+1(0)=

k∗∑

k=0

trace
(
xTk+1(0)W

−1
1 xk+1(0)

)

=

k∗∑

k=0

trace
(
W−1

1 xk+1(0)x
T
k+1(0)

)

and
∫ α

0

yT0 (t)W
−1
2 y0(t)dt=

∫ α

0

trace
(
yT0 (t)W

−1
2 y0(t)

)
=

∫ α

0

trace
(
W−1

2 y0(t)y
T
0 (t)

)

Next, recall that if a matrixM is symmetric and positive semi-de¯nite i.e. M º 0
then the eigenvalue decomposition of such a matrix gives

M = VΘV T (5.102)

where V is some unitary matrix and Θ is a diagonal with nonnegative diagonal
entries. Therefore, the matrix square root ofM can be de¯ned asM

1

2 = VΘ
1

2 V T
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and computed (Golub and Loan, 1996). Based on this, the matrices Υ
1

2 and Σ
1

2

Υ = Υ
1

2Υ
1

2 =

k∗∑

k=0

xk+1(0)x
T
k+1(0)

Σ = Σ
1

2Σ
1

2 =

∫ α

0

y0(t)y
T
0 (t)dt

can be obtained. The dimensions of Σ
1

2 and Υ
1

2 are n×n and m×m respectively.
Furthermore, introduce the symmetric matrices Ξ, Ω which satisfy

trace(Υ
1

2 W−1
1 Υ

1

2 ) < trace(Ξ)

trace(Σ
1

2 W−1
2 Σ

1

2 ) < trace(Ω)

hence we can write

Υ
1

2 W−1
1 Υ

1

2 ≺ Ξ, Σ
1

2 W−1
2 Σ

1

2 ≺ Ω (5.103)

Carrying out an obvious application of the Schur complement of (5.103) yields
[
−Ξ Υ

1

2

Υ
1

2 −W 1

]
≺ 0 and

[
−Ω Σ

1

2

Σ
1

2 −W 2

]
≺ 0 (5.104)

respectively. Finally, the following minimization problem can be formulated as

min
W 1Â0,W 2Â0,N1,N2

(trace(Ξ) + trace(Ω))

subject to : (5.98) and (5.104)
(5.105)

and the solution (4.20) now guarantees that the cost function is minimized over
the ¯nite pass length in the case when only a ¯nite number of trials is actually
completed. Since the minimization problem of (5.105) is the convex optimization
problem, then it is simple to implement using a computer and computationally
e®ective.
To show the validity of the above controller design procedure, let us provide

the following numerical example.

Example 5.3. Consider the di®erential LRP represented by (5.83) with the fol-
lowing boundary conditions

xk+1(0) =

[
0
0

]
, y0(t) = 1, 0 ≤ t ≤ α

Suppose also that the matrices B, D, H1, H2, E1, E2 and E3 are

B =

[
1.2
0.8

]
, D = 1.2, H1 =

[
0.2
0.4

]
, H2 = 0.1,

E1 =1.0 · 10−3
[
0.3 0.2

]
, E2 = 0.2, E3 = 0.5

(5.106)
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Further, it is assumed that

Q1 =

[
10 0
0 10

]
, Q2 = 20, Ψ = 10

then the application of procedure (5.105) for 20 passes (i.e. k∗ = 20) and α = 10
gives the solution matrices

W 1 =

[
0.0256 −0.0017
−0.0017 0.0022

]
, W 2 = 0.02249, Σ = 444.5218,

N1 =
[
−0.0199 −0.0025

]
, N2 = −0.0050, ε = 0.0069

Hence we get the following controller matrices

K1 =
[
−0.8965 −1.8275

]
, K2 = −0.2201

The obtained controller guarantees the stability along the pass of the closed-loop
process and ensures cost bound (5.99). It is clear that upper cost bound is 444.5218
i.e. it is equal to trace (Σ). On the other hand, it follows from (5.99) that

∫ 10

0

yT0 (t)W
−1
2 y0(t)dt = 10 ·W−1

2 = 444.642

This means that the proposed numerical procedure for controller matrices design
provides an e®ective method to obtain the minimum cost.

5.7.2. Discrete LRP case

The problem of designing a controller for a discrete LRP to make the closed-
loop process robustly stable and to minimize a quadratic cost has not yet been
considered in any paper. However, the solution to this problem for a clear discrete
2-D system has been presented in (Guan et al., 2001) therefore it can be the basis
for developing the result in terms of a discrete LRP. Furthermore, due to the fact
that in terms of LRPs, the pass pro¯le vector is simultaneously the output vector,
this leads to some simpli¯cation in relation to a clear 2-D approach. This allows
us to design the dynamic pass pro¯le controller with the use of Lemma 9 what is
novel to the known results (Guan et al., 2001).
Let us consider the following state-space model of discrete LRP

xk+1(p+1)=(A+∆A)xk+1(p)+(B0+∆B0)yk(p)+(B+∆B)uk+1(p)

yk+1(p)=(C+∆C)xk+1(p)+(D0+∆D0)yk(p)+(D+∆D)uk+1(p)
(5.107)

The matrices ∆A, ∆B, ∆B0, ∆C, ∆D, ∆D0 represent admissible uncertainties
to be of the form

[
∆A ∆B0∆B

∆C ∆D0∆D

]
=

[
H1

H2

]
F
[

E1 E2 E3

]
(5.108)
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where H1, H2, E1, E2, E3 are some known constant matrices with compatible
dimensions and F is an unknown constant matrix which satis¯es (4.5).
Associated with the uncertain process (5.107) is the cost function

J =

∞∑

k=0

∞∑

p=0

(
uTk+1(p)Ψuk+1(p)

)
+

∞∑

k=0

∞∑

p=0

([
xk+1(p)
yk(p)

]T [
Q1 0

0 Q2

][
xk+1(p)
yk(p)

])

(5.109)
where Ψ Â 0, Q1 Â 0 and Q2 Â 0 are design matrices to be speci¯ed. This cost
function is bounded for all admissible uncertainties. In physical terms this cost
function can be interpreted as the sum of quadratic costs on the input, state and
pass pro¯le vectors on each pass.
The approach taken in this section is as follows: we ¯rst derive a sufficient

condition which guarantees that the unforced (the control input terms are deleted)
process is stable along the pass with an associated cost function which is boun-
ded for all admissible uncertainties and then this result is extended to design a
guaranteed cost controller in both the static and dynamic version.

Remark 5.8. It is signi¯cant to note that a discrete LRP is de¯ned over the ¯nite
pass length α and, in practice, only a ¯nite number of passes, say k∗, will actually
be completed. Hence, the cost function bound is computed over ¯nite intervals
p ∈ [0, α] and k ∈ [0, k∗]. However, in theoretic operations the in¯nite interval
in both directions (i.e. along a given pass and from pass to pass directions) are
considered - see Remark 5.6.

5.7.2.1. Guaranteed cost bound

Since the process is assumed to be unforced (uk+1(p) = 0) then the associated cost
function (5.117) becomes

J0 =

∞∑

k=0

∞∑

p=0

([
xk+1(p)
yk(p)

]T [
Q1 0

0 Q2

][
xk+1(p)
yk(p)

])
(5.110)

The following theorem gives a sufficient condition for stability along the pass with
a guaranteed cost.

Theorem 5.16. An unforced discrete LRP described by (5.107) is stable along
the pass for all admissible uncertainties if there exist matrices P 1 Â 0, P 2 Â 0
and a scalar ε > 0 such that the following LMI holds




−P 1 0 P 1A P 1B0 P 1H1 P 1H1

0 −P 2 P 2C P 2D0 P 2H2 P 2H2

ATP 1 CTP 2 Q1−P 1+εE
T
1 E1 0 0 0

BT
0 P 1 DT

0 P 2 0 Q2−P 2+εE
T
2 E2 0 0

HT
1 P 1 HT

2 P 2 0 0 −εI 0

HT
1 P 1 HT

2 P 2 0 0 0 −εI



≺0

(5.111)
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Also if this condition holds, the cost function (5.110) satis¯es the upper bound

J0 ≤
k∗∑

k=0

xk+1(0)P 1xk+1(0) +

α∑

p=0

yT0 (p)P 2y0(p) (5.112)

Proof. First, note that the inequality

∆V (k, p) + ζT (k, p)Qζ(k, p) < 0 (5.113)

implies that unforced process (5.107) is stable along the pass where Q=diag(Q1,Q2).
Combining (4.35) and (5.113) yields the following su±cient condition for stability
along the pass

(A1 +∆A1)
TP (A1 +∆A1) + (A2 +∆A2)P (A2 +∆A2)− P +Q ≺ 0 (5.114)

Now suppose that stability along the pass holds and introduce

Υ =
∞∑

k=0

∞∑

p=0

ζT (k, p)Qζ(k, p)

then

Υ≤−
∞∑

k=0

∞∑

p=0

(∆V1(k, p) + ∆V2(k, p))

=−
∞∑

k=0

(
∞∑

p=0

xk+1(p+ 1)
TP 1xk+1(p+ 1)− xTk+1(p)P 1xk+1(p)

)

−
∞∑

p=0

(
∞∑

k=0

yTk+1(p)P 2yk+1(p)− yTk (p)P 2yk(p)

)

=

∞∑

k=0

xTk+1(0)P 1xk+1(0) +

∞∑

p=0

yT0 (p)P 2y0(p)

which ensures that (5.112) holds. Next, application of the Schur complement for-
mula to inequality (5.114) followed by using the result of Lemma 8 yields




−P 1 0 P 1A P 1B0

0 −P 2 P 2C P 2D0

ATP 1 CTP 2 Q1−P 1+εE
T
1 E1 0

BT
0 P 1 DT

0 P 2 0 Q2−P 2+εE
T
2 E2




+ ε−1




0 0 P 1H1 P 1H1

0 0 P 2H2 P 2H2

0 0 0 0

0 0 0 0







0 0 0 0

0 0 0 0

HT
1 P 1 HT

2 P 2 0 0

HT
1 P 1 HT

2 P 2 0 0


 ≺ 0

Finally, application of the Schur complement formula to this last expression gi-
ves (5.111) and the proof is complete. ¥
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Note that it is possible to minimize the upper bound on the cost func-
tion (5.112) using the following optimization procedure

min
P 1Â0,P 2Â0

[
k∗∑

k=0

xTk+1(0)P 1xk+1(0) +

α∑

p=0

yT0 (p)P 2y0(p)

]

subject to (5.89)

5.7.2.2. Guaranteed cost control with a static feedback controller

Here, it is assumed that all states are available for feedbacks then the control law
of the form (4.40) can be applied to a process described by (5.107). Hence the
associated cost function for the resulting closed-loop process is given by

J=

∞∑

k=0

∞∑

p=0

([
xk+1(p)
yk(p)

]T [
Q1+KT

1ΨK1 KT
1ΨK2

KT
2ΨK1 Q2+KT

2ΨK2

] [
xk+1(p)
yk(p)

])
(5.115)

which is of the form of that in Theorem 5.16 and we have the following result.

Theorem 5.17. Suppose that a control law of the form (4.40) is applied to a
discrete LRP described by (5.107). Then the resulting closed-loop process is stable
along the pass for all admissible uncertainties if there exist matrices W 1 Â 0,
W 2 Â 0, N1 and N2 and a scalar ε > 0 such that the following LMI holds



−W 1 + 2εH1H
T
1 2εH2H

T
1 AW 1+BN1 B0W 2+BN2

2εH1H
T
2 −W 2 + 2εH2H

T
2 CW 1+DN1 D0W 2+DN2

W 1A
T+NT

1 BT W 1C
T+NT

1 DT −W 1 0

W 2B
T
0 +NT

2 BT W 2D
T
0 +N2D

T
0 −W 2

0 0 E1W 1+E3N1 0

0 0 0 E2W 2+E3N2

0 0 N1 N2

0 0 W 1 0

0 0 0 W 2

0 0 0 0 0

0 0 0 0 0

W 1E
T
1 +NT

1 ET
3 0 NT

1 W 1 0

0 W 2E
T
2 +NT

2 ET
3 NT

2 0 W 2

−εI 0 0 0 0

0 −εI 0 0 0

0 0 −Ψ−1
0 0

0 0 0 −Q−1
1 0

0 0 0 0 −Q−1
2




≺ 0

(5.116)

Also, if this condition holds, then stabilising control law matrices K1, K2 are
given by (4.20) and the cost function (5.115) of the closed-loop process satis¯es
the following upper bound

J ≤
k∗∑

k=0

xTk+1(0)W
−1
1 xk+1(0) +

α∑

p=0

yT0 (p)W
−1
2 y0(p) (5.117)
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Proof. Based on interpreting (5.89) for the state-space model considered here, we
conclude that the closed-loop process is robustly stabilised by the control law (4.40)
if the following matrix inequality is satis¯ed




−P 1 0 P 1A+P 1BK1 P 1B0+P 1BK2

0 −P 2 P 2C+P 2DK1 P 2D0+P 2DK2

ATP 1+KT
1 BTP 1 CTP 2+KT

1 DTP 2 Q1−P 1+KT
1ΨK1 KT

1ΨK2

BT
0 P 1+KT

2 BTP 1 DT
0 P 2+K2D

TP 1 KT
2ΨK1 Q2−P 2+KT

2ΨK2




+




0 0 0 0

0 0 0 0

0 0 ET
1 +KT

1 ET
3 0

0 0 0 ET
2 +KT

2 ET
3







FT
0 0 0

0 FT
0 0

0 0 FT
0

0 0 0 FT







0 0 0 0

0 0 0 0

HT
1 P 1 HT

2 P 2 0 0

HT
1 P 1 HT

2 P 2 0 0




+




0 0 P 1H1 P 1H1

0 0 P 2H2 P 2H2

0 0 0 0

0 0 0 0







F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F







0 0 0 0

0 0 0 0

0 0 E1 +E3K1 0

0 0 0 E2 +E3K2


≺0

Now set W 1 = P−1
1 , W 2 = P−1

2 , U1 = W 1Q1W 1 and U2 = W 2Q2W 2 and
then pre- and post- multiply both sides of this last inequality by diag(W 1, W 2,
W 1, W 2). Next, apply the result of Lemma 8 to obtain




−W 1+2εH1H
T
1 2εH2H

T
1 AW 1+BN1 B0W 2+BN2

2εH1H
T
2 −W 2 + 2εH2H

T
2 CW 1+DN1 D0W 2+DN2

W 1A
T+NT

1 BT W 1C
T+NT

1 DT U1−W 1+NT
1ΨN1 NT

1ΨN2

W 2B
T
0+NT

2 BT W 2D
T
0 +N2D

T NT
2ΨN1 U2−W 2 +NT

2ΨN2




+ε
−1




0 0 0 0

0 0 0 0

0 0 W 1E
T
1+NT

1 ET
3 0

0 0 0 W 2E
T
2+NT

2 ET
3







0 0 0 0

0 0 0 0

0 0 E1W 1+E3N1 0

0 0 0 E2W 2+E3N2


≺0

where N1 = K1W 1 and N2 = K2W 2. Finally, making an obvious application
of the Schur complement formula gives (5.116) and P 1 = W−1

1 and P 2 = W−1
2 ,

(5.112) is converted into (5.117). Finally, the bound on the cost function (5.117)
can be established in an identical manner to that on J0 in the previous result.
Hence the details are omitted here. ¥

The presence of the nonlinear termsW−1
1 andW−1

2 in (5.117) means that it
is not possible to apply a linear objective minimization procedure to minimize the
cost function (5.117). However, a controller which ensures the minimization of the
guaranteed cost can be achieved as follows. First, use the eigenvalue decomposition

(5.102) to compute the matrices Σ
1

2

1 and Σ
1

2

2 (i.e. the matrix square roots) which
satisfy

Σ
1

2

1Σ
1

2

1 =
k∗∑

k=0

xTk+1(0)xk+1(0), Σ
1

2

2Σ
1

2

2 =
α∑

p=0

yT0 (p)y0(p)
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and hence we can write

k∗∑

k=0

xTk+1(0)W
−1
1 xk+1(0) = trace(Σ

T
1 W−1

1 Σ1)

α∑

p=0

yT0 (p)W
−1
2 y0(p) = trace(Σ

T
2 W−1

2 Σ2)

Next, introduce the symmetric matrices Ω1 and Ω2 such that

Σ
1

2

1 W−1
1 Σ

1

2

1 ≺ Ω1, Σ
1

2

2 W−1
2 Σ

1

2

2 ≺ Ω2 (5.118)

Application of the Schur complement formula gives
[
−Ω1 Σ

1

2

1

Σ
1

2

1 −W 1

]
≺ 0 and

[
−Ω2 Σ

1

2

2

Σ
1

2

2 −W 2

]
≺ 0 (5.119)

Finally, the following minimization problem can be formulated as

min
W 1Â0,W 2Â0,N1,N2

trace(Ω1 +Ω2)

subject to (5.116) and (5.119)

which gives a controller that guarantees the cost function is minimized.

5.7.2.3. Guaranteed cost control with a full dynamic pass pro¯le controller

Under the assumption that the process state is completely accessible to feedback,
we developed a static feedback controller that stabilises process (5.107) and gu-
arantees an upper bound for the cost function de¯ned by (5.117). When the pro-
cess state is not available, we can use a dynamic pass pro¯le controller to stabilise
discrete LRPs and guarantee that the cost is bounded.
To simplify notation, the following matrices are introduced

∆Φ =

[
∆A ∆B0

∆C ∆D0

]
=

[
H1

H2

]
F
[
E1 E2

]
,

∆B2 =

[
∆B

∆D

]
=

[
H1

H2

]
F
[

E3

]

where H1, H2, E1, E2, E3 are known real matrices satisfying (5.108) and the
matrix F satis¯es (4.5).
Substituting (5.50) into (5.107) (and assuming Dc = 0) yields the resulting

closed-loop process
[
xk+1(p+ 1)
yk+1(p)

]
=(Ã+∆Ã)

[
xk+1(p)
yk(p)

]

yk+1(p) =C̃

[
xk+1(p)
yk(p)

] (5.120)
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where

Ã+∆Ã =Π

[
Φ B2Cc

BcC2 Ac

]
Π

T +Π

[
∆Φ ∆B2Cc

0 0

]
Π

T

=Π

[
Φ B2Cc

BcC2 Ac

]
Π

T +Π

[
H

0

]
F
[
E E3Cc

]
Π

T

=Ã+HFE,

C̃ =
[

C2 0
]
Π

T

and the matrices H and E are given by (5.61). The associated cost function is

J =

∞∑

k=0

∞∑

p=0

([
xk+1(p)
yk(p)

]T
Π

[
Q 0

0 Y

]
Π

T

[
xk+1(p)
yk(p)

])
(5.121)

where Q = diag(Q1,Q2), Y = CT
c ΨCc and Q1, Q2, Ψ are given matrices of

(5.109).
Now we have the following result which gives the existence condition for gu-

aranteed cost controller of the form (5.50) (with Dc = 0).

Theorem 5.18. Suppose that a control law of the form (5.50) is applied to a
discrete LRP of the form considered here with the associated uncertainty structure.
Then the resulting closed-loop process is stable along the pass if there exist matrices
P 11 Â 0, (P 11 = diag(P h11,P v11)), R11 Â 0, (R11 = diag(Rh11,Rv11)) such
that the LMIs de¯ned by (5.122)–(5.123) hold

[
N 1 0

0 I

]T



Ξ
TP 11Ξ−P 11 Ξ

TP 11H ET Q
1

2

HTP 11Ξ HTP 11H−εI 0 0

E 0 −ε−1I 0

Q
1

2 0 0 −I



[

N 1 0

0 I

]
≺0 (5.122)

[
N 2 0

0 I

]T




ΞR11Ξ
T−R11 ΞR11E

T
0 H ΞR11Q

1

2

ER11Ξ
T −ε−1I+ER11E

T
0 0 ER11Q

1

2

0 0 −I 0 0

HT
0 0 −εI 0

Q
1

2 R11Ξ
T Q

1

2 R11E
T

0 0 −I




[
N 2 0

0 I

]
≺0

(5.123)[
P h11 I

I Rh11

]
Â 0,

[
P v11 I

I Rv11

]
Â 0 (5.124)

where N 1 and N 2 are full column rank matrices whose images satisfy

Im (N 1) = ker(C2), Im (N 2) = ker
([

BT
2 ET

3 Ψ
1

2

])

and ε is a given positive scalar. If these conditions hold, the cost function (5.121)
of the closed-loop process (5.120) satis¯es the following upper bound

J ≤
k∗∑

k=0

α∑

p=0

([
xk+1(p)
yk(p)

]T
Π

[
Q 0

0 Y

]
Π

T

[
xk+1(p)
yk(p)

])
(5.125)
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Proof. Following the steps in the proof of Theorem 4.7 it follows that stability
along the pass condition for the uncertain process (5.120) can be written in the
form 



−P Ã H 0 0

Ã
T −P 0 E

T
S

T

H
T

0 −εI 0 0

0 E 0 −ε−1I 0

0 S 0 0 −I



≺ 0 (5.126)

where Ã, H, E are as before and

S =

[
Q

1

2 0

0 Ψ
1

2 Cc

]
Π

T =

([
Q

1

2 0

0 0

]
+

[
0 0

Ψ
1

2 0

] [
0 Cc

Bc Ac

][
C2 0

0 I

])
Π

T

=Q̂ΠT+Ψ̂ΘC2Π
T

and C2 and Θ (with Dc = 0) are also as before. Next, pre multiply (5.126) by
diag(ΠT ,ΠT , I, I, I), post-multiply it by the transpose of this last matrix, and set
R = ΠTPΠ (see, (5.57)) to rewrite (5.126) as

Ψ+MT
ΘN +NΘTM ≺ 0

where

Ψ=




−R A H 0 0

AT −R 0 ET Q̂
T

HT
0 −εI 0 0

0 E 0 −ε−1I 0

0 Q̂ 0 0 −I



, MT=




B2

0

0

E4

Ψ̂



, N=

[
0 C2 0 0 0

]

and

H =

[
H

0

]
E =

[
E 0

]
E4 =

[
E3 0

]

Since

M =
[

BT
2 0 0 ET

4 Ψ̂
T
]
=

[
BT
2 0 0 0 0 ET

3 0 Ψ
1

2

0 I 0 0 0 0 0 0

]

N =
[
0 C2 0 0 0

]
=

[
0 0 C2 0 0 0 0 0

0 0 0 I 0 0 0 0

]

then the kernels of M and N are the images of

WM =




N 11 0 0 0 0 0

0 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

N 12 0 0 0 0 0

0 0 0 0 0 I

N 13 0 0 0 0 0




WN =




I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 N 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I



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where N 11 = ker(BT
2 ), N 12 = ker(ET

3 ), N 13 = ker(Ψ
1

2 ) and N 2 = ker(C2).
Now invoke Lemma 9 to obtain the following conditions which are equivalent to
(5.126)

WT
MΨWM ≺ 0 and WT

NΨWN ≺ 0
Since some rows of WM and WN are zero then

WM =




I 0 0 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 I 0 0 0 0 0

0 0 0 0 0 0 I

0 0 I 0 0 0 0







N 11 0 0 0 0

N 12 0 0 0 0

N 13 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I




, WN =




I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 N 2 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I




Routine matrix manipulations yield (5.122)–(5.123). Finally, the cost function
bound is established in an identical manner to that of the previous result and hence
the details are omitted here. ¥

The guaranteed cost controller here can be computed as in the previous case,
see for example Section 5.2.3.
The interesting point to note is that the presented result provides the alter-

native computational method for designing the guaranteed cost controller by the
method included in (Guan et al., 2001). To illustrate the e®ectiveness and imple-
mentation simplicity of the proposed LMI condition for controller computation,
the following example is provided.

Example 5.4. Consider the discrete LRP as described by (4.29) and suppose that
the process data are

A=

[
0.4841 0.0599
0.6488 0.5585

]
, B0=

[
0.1574 0.0000
0.1312 0.0262

]
, C=

[
0.0990 0.0455
0.0077 0.0656

]
,

D0=

[
0.8508 0.5133
0.1863 0.4568

]
, B=

[
1.3672 2.5656
2.5893 1.4168

]
, D=

[
2.6984 0.7550
0.9412 1.2990

]

and take the matrices de¯ning the uncertainty model as

H =




0.0326 0.0884
0.0380 0.0457
0.0886 0.0799
0.0761 0.0134


 , E =

[
0.0065 0.0374 0.0969 0.0253
0.0375 0.0484 0.0342 0.0585

]
,

E3 =

[
0.0524 0.0486
0.0163 0.0496

]

and the matrices Q1, Q2 and Ψ in the cost function (5.115) as

Q1 = Q2 =

[
80 0
0 80

]
, Ψ = 40



150 5.8. Concluding remarks

Application of the controller design procedure of Theorem 5.18 for 10 passes and
α = 20 and with the boundary conditions of the form

xk+1(0) =

[
1
1

]
, y0(p) = 1, 0 ≤ p ≤ α

gives the solution matrices

P h11 =10
4

[
8.5599 −3.7049
−3.7049 3.0750

]
, P v11 = 10

5

[
0.5156 −0.8552
−0.8552 1.8093

]
,

Rh11 =

[
0.0059 −0.0020
−0.0020 0.0080

]
, Rv11 =

[
0.0065 −0.0019
−0.0019 0.0062

]

with ε = 800 and hence the following controller matrices are computed

Ac =




−0.1783 −0.8035 0.1885 0.5879
0.1338 0.4647 −0.2754 −0.7546
0.2620 0.0693 −0.4416 −1.2719
−0.1745 −0.2498 −0.0896 −0.2251


 , Bc =




−29.8481 2.9873
−16.4800 −3.5272
−122.5966 56.0848
−36.9975 −89.7781


 ,

Cc =

[
0.0001 0.0007 0.0011 0.0032
0.0007 0.0009 −0.0005 −0.0014

]

Consequently, the guaranteed cost of uncertain closed-loop process satis¯es
J < 1.6515 · 106.

5.8. Concluding remarks

The purpose of this chapter was to demonstrate the use of LMI methods to obtain
new results on the design of control laws for di®erential and discrete LRPs. The
¯rst part develops an H∞ setting for the design of a static control law which,
noting the physical basis of these processes in particular, their links to ILC mean
that it is much more powerful than for 2-D linear systems. These results have then
been extended to the cases when there are uncertainties in the process models. We
also show that all these results can be extended to the use of a dynamic controller
actuated by the previous pass pro¯le which, by the process structure, is available
for use.
In the second part of this chapter a guaranteed cost control problems have

been formulated and solved using LMI methods. These are the ¯rst major results
on control for performance for such processes and again the cost function used is
well grounded in terms of the process dynamics and the requirements of industrial
examples.



Chapter 6

LMI METHODS FOR 2-D SYSTEMS WITH STATE
DELAYS

It is clear from many practical examples (Górecki et al., 1989; Kolmanovskii and
Myshkis, 1999; Malek-Zavarei and Jamshidi, 1987; Niculescu, 2001) that time-
delay systems constitute the important class of control systems. Therefore, analy-
sis and synthesis of time-delay systems have been made by many researches and, in
turn, many results have been presented. Unfortunately, the main focus is on 1-D
systems and there is no result in the area of 2-D(n-D) systems with state delays.
Indeed, there is a large number of applications for 2-D(n-D) systems where state
delays are unavoidable and must be take into account, e.g. during computation in
2-D framework, but to date these systems have not been considered.

According to the lack of results on analysis and synthesis of 2-D systems with
state delays, this chapter provides them. It is shown that analysis and synthesis of
2-D systems with delays become possible because an efficient computer software
based on LMI methods is available.

Here, Lyapunov-like techniques based on Lyapunov-Krasovski functionals (Bo-
ukas and Liu, 2003; Kharitonov and Zhabko, 2003; Mahmoud, 2000) have been
utilized to derive sufficient conditions for the stability of 2-D systems with delays
in terms of LMI. This approach gives an e®ective and implementable way to deal
with uncertainties because other approaches, e.g. through augmentation of the
local state vectors (Mahmoud, 2000; Xu et al., 2001; Young, 2001), usually add
undue complications to an uncertainty structure.

The chapter is organized as follows: First we provide the conditions for 2-D
systems in both single and multiple delay cases. Some connections between delay
systems and n-D delay-free systems will be established. Based on the derived
results, it will be shown how to obtain conditions for stability and stabilisation
under norm-bounded uncertainties.
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6.1. Stability and stabilisation of 2-D system with state delays

The class of 2-D systems with delays under consideration, is represented by FMM
with state delays (see-(2.28)) of the form

x(i+ 1, j + 1) =A1x(i+ 1, j) +A2x(i, j + 1) +A1dx(i+ 1, j − d1)
+A2dx(i− d2, j + 1) +B1u(i+ 1, j) +B2u(i, j + 1)

y(i, j) =Cx(i, j) +Du(i, j)

(6.1)

where x(i, j) ∈ Rn is the local state vector, u(i, j) ∈ Rl is the input vector, y(i, j) ∈
Rm is the output vector and d1, d2 are constant positive scalars representing delays
along the vertical direction and horizontal direction respectively. The boundary
conditions are given by

Xh(d2) ={x(i, j) ∀j ≥ 0; i = −d2,−d2 + 1, . . . , 0}
Xv(d1) ={x(i, j) ∀i ≥ 0; j = −d1,−d1 + 1, . . . , 0}

(6.2)

For our purposes, denote Xr = sup{‖x(i, j)‖ : i + j = r, i, j ∈ Z}, which allows
us to de¯ne the asymptotic stability of the model (6.1).

De¯nition 6.1. The 2-D linear state-delayed system (6.1) is said to be asympto-
tically stable if lim

r→∞
Xr = 0 for zero input u(i, j) = 0 and any bounded boundary

conditions of (6.2).

The following theorem gives us a sufficient condition for system (6.1) to be
asymptotically stable for any d1 ∈ [0,∞) and d2 ∈ [0,∞) (delay independent
stability).

Theorem 6.1. The 2-D state-delayed system (6.1) is asymptotically stable if there
exist matrices P Â 0, Q Â 0, Q1 Â 0, Q2 Â 0 such that the following LMI holds



AT
1

AT
2

AT
1d

AT
2d


P

[
A1 A2 A1d A2d

]
−




P−Q−Q1−Q2 0 0 0

0 Q 0 0

0 0 Q1 0

0 0 0 Q2


≺0 (6.3)

Proof. Let a function V (ζ, ξ) that expresses the energy stored in the point x(i+
ζ, j+ξ) be de¯ned as

V (ζ, ξ) = xT (i+ζ, j+ξ)W ζξx(i+ζ, j + ξ) (6.4)

whereW ζξ Â 0 is given and ζ ≥ −d1, ξ ≥ −d2. To utilise the Lyapunov-Krasovskii
approach in establishing the result, we introduce the Lyapunov function candidates
for the delayed terms as

Vd1
(ζ, ξ) = V (ζ, ξ) +

−1∑

θ=−d1

xT (i+ ζ, j + θ)U ζξx(i+ ζ, j + θ)

Vd2
(ζ, ξ) = V (ζ, ξ) +

−1∑

θ=−d2

xT (i+ θ, j + ξ)U ζξx(i+ θ, j + ξ)

(6.5)
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where U ζξ Â 0 is given. In order to represent the change of the energy in both
sides of (2.28), consider the increment ∆V (i, j) given by

∆V (i, j) = V (1, 1)− Vd1
(1, 0)− Vd2

(0, 1) (6.6)

Substituting (6.4) and (6.5) into (6.6), we obtain

∆V (i, j) = [A1x(i+1, j) +A2x(i, j+1) +A1dx(i+1, j−d1) +A2dx(i−d2, j+1)]
T

×W 11[A1x(i+1, j)+A2x(i, j+1)+A1dx(i+1, j−d1) +A2dx(i−d2, j+1)]

− x
T (i+1, j)W 10x(i+1, j)−

−1∑

θ=−d1

x
T (i+1, j+θ)U10x(i+1, j+θ)

− x
T (i, j+1)W 01x(i, j+1)−

−1∑

θ=−d2

x
T (i+θ, j+1)U01x(i+θ, j+1)

After arranging the terms in the above equation, we have

∆V (i, j)= x̂TΠx̂ (6.7)

where

Π=




AT
1

AT
2

AT
1d

AT
2d

0

0




W 11

[
A1 A2 A1d A2d 0 0

]
+




−W 10 0 0 0 0 0

0 −W 01 0 0 0 0

0 0 −U10 0 0 0

0 0 0 −U01 0 0

0 0 0 0 −Ω10 0

0 0 0 0 0 −Ω01



,

x̂T =
[
xT (i+1, j) xT (i, j+1) xT (i+1, j−d1) xT (i−d2, j+1) xT (i+1, j−1)
· · · xT (i+1, j−d1+1) xT (i−1, j+1) · · · xT (i−d2+1, j+1)

]
,

Ω10 =diag
(
U10, U10, . . . , U10

)
, (d1 terms)

Ω01 =diag
(
U01, U01, . . . , U01

)
, (d2 terms)

In the case when ∆V (i, j) < 0 for x̂ 6= 0, then a 2-D discrete linear system is
asymptotically stable. In order to guarantee this stability condition it is clear that
Π ≺ 0 has to hold. The last two rows and columns (blocks that only consist of
−Ω10 and −Ω01) in (6.7) can be omitted because these terms are always negative
de¯nite. Thus we immediately obtain




AT
1

AT
2

AT
1d

AT
2d


W 11

[
A1 A2 A1d A2d

]
−




W 10 0 0 0

0 W 01 0 0

0 0 U10 0

0 0 0 U01


 ≺ 0

Based on (6.4), the above inequality can be rewritten e®ectively as

V (1, 1) < (V (1, 0) + V (1,−d1)) + (V (0, 1) + V (−d2, 1)) (6.8)
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This means that the energy associated with the quadratic form V(1, 1) at the point
(1, 1) on i + j = 2 is strictly less than those at the adjacent points (1, 0) and
(0, 1) and their delayed points (1,−d1) and (−d2, 1). Notice that (1, 0) and (0, 1)
are located on i + j = 1. Thus, the condition (6.8) guarantees a local dissipative
property. By considering the same e®ect at points along the lines i+j = K+1 and
i+ j = K (see Lemma 2) for any nonnegative integer K and taking into account
the energy transferred to a point at i + j = K is passed to two points along the
line i+ j = K + 1 along two directions (horizontal and vertical) and to one point
along the line i + j = K + 1 + d1 (vertical) and i + j = K + 1 + d2 (horizontal)
respectively, we choose

W 11 = P , W 10 = P −Q−Q1 −Q2, W 01 = Q, U10 = Q1, U01 = Q2

The condition (6.8) further implies that

∑

ζ+ξ=K+1

V (ζ, ξ) ≤
∑

ζ+ξ=K

V (ζ, ξ)

where the equality sign holds only when

∑

ζ+ξ=K

V (ζ, ξ) = 0

Consequently, from (Hinamoto, 1989), we have lim
ζ+ξ→∞

‖x(i+ ζ, j + ξ)‖ = 0. The
asymptotic stability of the system is established and the proof is complete. ¥

It is straightforward to see that the LMI condition (6.3) is simple in computer
implementation and e®ective because the number of decision variables to be com-
puted is 2n(n+1), where n is the dimension of the local state vector (x(i, j) ∈ Rn).

Example 6.1. Consider the following 2-D state-delayed system of type (6.1)

A1=

[
0.1 0.4
0.3 0.2

]
, A2=

[
0.1 −0.3
0.3 0

]
, A1d=

[
0.1 −0.3
0.3 0

]
, A2d=

[
0.1 0
0.1 −0.2

]
(6.9)

In this case, LMI (6.3) is feasible and the matrices are

P =

[
42.6997 −8.8064
−8.8064 49.2817

]
, Q=

[
16.4171 −7.6379
−7.6379 14.6225

]
,

Q1=

[
7.0795 1.2712
1.2712 5.9217

]
, Q2=

[
7.2570 −6.0167
−6.0167 10.6735

]

This means that the system (6.9) is asymptotically stable independent of the delay
sizes according to Theorem 6.1.



6. LMI methods for 2-D systems with state delays 155

6.1.1. Connection between 2-D delay-free systems and 1-D state-delayed sys-
tems

The interesting point to note is that existing computer procedures for stability
checking 2-D(n-D) systems can be immediately used to analyse 1-D systems with
state delays. To see this, notice that Theorem 6.1 generalised the results for 2-D
delay-free systems and 1-D state-delayed systems. Speci¯cally, we consider the
2-D delay-free system

x(i+ 1, j + 1) = A1x(i+ 1, j) +A2x(i, j + 1) (6.10)

and the 1-D state-delayed system

x(k + 1) = A1x(k) +A1dx(k − d) (6.11)

By deleting appropriate rows and columns in (6.3) and considering the redundancy
of certain positive de¯nite variable matrices, we obtain the following corollaries.

Corollary 6.1. The 2-D delay-free system (6.10) is asymptotically stable if there
exist matrices P Â 0 and Q Â 0 such that the following LMI holds:

[
AT
1

AT
2

]
P
[

A1 A2

]
−
[

P−Q 0

0 Q

]
≺ 0 (6.12)

Corollary 6.1 recovers the asymptotic stability result of 2-D delay-free system
given by Lemma 1. It implies that the characteristic polynomial (2.8) has no zeros
inside closed unit bidisc U

2
= {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}.

Corollary 6.2. The 1-D state-delayed system (6.11) is asymptotically stable if
there exist matrices P Â 0 and Q1 Â 0 such that the following LMI holds:

[
AT
1

AT
1d

]
P
[

A1 A1d

]
−
[

P−Q1 0

0 Q1

]
≺ 0 (6.13)

By comparing the two corollaries, it can be observed that the LMIs in (6.12)
and (6.13) are having an identical LMI structure which provides asymptotic stabi-
lity for the two types of systems. In other words, when A1d in the 1-D time-delay
system is identi¯ed with A2 in the 2-D delay-free system, the delayed signal in the
1-D case can be viewed as a signal transmitting through another dimension in the
2-D framework.

Remark 6.1. The asymptotic stability of the 2-D delay-free system (6.10) is equ-
ivalent to having no (z1, z2) in the unit bidisc such that det(I−z1A1−z2A2) = 0.
This clearly implies that there is no z in the unit disc such that det(I − zA1 −
zd+1A2) = 0 for any nonnegative integer d which corresponds to the asymptotic
stability of the 1-D state-delayed system (6.11).
Thus, it can be seen that the asymptotic stability of 2-D delay-free systems

is a fairly strong condition imposing on the system matrices as compared to the
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asymptotic stability of 1-D State-delayed systems. The connection can be extended
to between n-D delay-free systems and 1-D systems with n di®erent time delays.
Other interesting observations related to delay di®erential equations and to 2-D
polynomials can be found in (Agathoklis and Foda, 1989; Chiasson et al., 1985;
Loiseau and Breth¶e, 1997).

6.1.2. Multiple state-delayed case

Consider the 2-D multiple state-delayed system represented by

x(i+ 1, j + 1) =A1x(i+1, j) +A2x(i, j+1) +

s1∑

k=1

A1kdx(i+ 1, j − d1k)

+

s2∑

l=1

A2ldx(i−d2l, j+1) +B1u(i+1, j) +B2u(i, j+1)

(6.14)

where A1, A2, A1kd, k = 1, . . . , s1, A2ld, l = 1, . . . , s2, and B1, B2 are known
constant matrices, s1, s2 denote the number of delayed terms in each direction.
Additionally we assume that d11 < d12 < · · · < d1s1 and d21 < d22 < · · · < d2s2 .
In this case the boundary conditions are de¯ned as

Xh(d2s2) ={x(i, j) ∀j ≥ 0; i = −d2s2 ,−d2s2 + 1, . . . , 0}
Xv(d1s1) ={x(i, j) ∀i ≥ 0; j = −d1s1 ,−d1s1 + 1, . . . , 0}

(6.15)

Theorem 6.2. The 2-D multiple state-delayed system (6.14) is asymptotically sta-
ble if there exist matrices P Â 0, Q Â 0, U 11, . . . ,U1s1 Â 0 and U21, . . . ,U2s2 Â 0
such that the following LMI holds




AT
1

AT
2

Λ
T
1d

Λ
T
2d


P

[
A1 A2 Λ1d Λ2d

]
−




P−Q−Φ1−Φ2 0 0 0

0 Q 0 0

0 0 Ω1 0

0 0 0 Ω2


≺0 (6.16)

where

Λ1d =
[
A11d, A12d, . . . , A1s1d

]
, Λ2d =

[
A21d, A22d, . . . , A2s2d

]
,

Ω1 = diag
(
Q11, Q12, . . . , Q1s1

)
, Ω2 = diag

(
Q21, Q22, . . . , Q2s2

)
,

Q1k=

s1−k+1∑

θ=1

U1θ, Q2l=

s2−l+1∑

θ=1

U2θ, Φ1 =

s1∑

k=1

Q1k, Φ2 =

s2∑

l=1

Q2l
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Proof. It can be established in the same manner as in Theorem 6.1 with

Vd1
(ζ, ξ) =xT (i+ ζ, j + ξ)W ζξx(i+ ζ, j + ξ)

+
s1∑

k=1

−1∑

θ=−d1k

xT (i+ ζ, j + θ)U1kx(i+ ζ, j + θ)

Vd2
(ζ, ξ) =xT (i+ ζ, j + ξ)W ζξx(i+ ζ, j + ξ)

+

s2∑

l=1

−1∑

θ=−d2l

xT (i+ θ, j + ξ)U 2lx(i+ θ, j + ξ)

The LMI then follows according to the choice of matrices as

W 11=P , Q1k=

s1−k+1∑

θ=1

U1θ, Q2l=

s2−l+1∑

θ=1

U2θ, W 01=Q,

W 10 = P−Q−Q11−. . .−Q1k−Q21−. . .−Q2l

¥

6.1.3. Commensurate delays case

One potential problem with the computing of the condition (6.16), however, is
the fact that the dimensions of the matrices involved in the LMI based conditions
could well be very large and hence numerical difficulties could arise. This can
occur, for example, when the system dimensionality is large (nÀ 1) and/or many
delays are present.
It turns out that in case of commensurate delays in Theorem 6.2 the number of

decision variables can be reduced. To proceed, the following de¯nition is required

De¯nition 6.2. (Niculescu, 2001) Delays h1, · · · , hq are termed noncommensu-

rate if ∃ no integers l1, · · · , lq (not all of them zero) such that
q∑

i=1

lihi = 0. The

underlying delay di®erential system is termed commensurate if q = 1.

It is shown that if all delays present in (6.16) are commensurate, then in-
vestigation of the stability properties of a 2-D delay system can be treated equ-
ivalently as the stability investigation of a 4-D delay free system. The key to
establishing this fact is the Elementary Operation Algorithm (EOA) developed by
Gałkowski (Gałkowski, 2001a). The basic idea behind this algorithm is the subse-
quent use of elementary operations over multivariable polynomials and the matrix
size augmentation which preserves the matrix determinant, to obtain the requ-
ired state-space realization. To see the application of EOA, consider the following
example.

Example 6.2. In general case, the notation associated with this area is very
cumbersome and therefore ease of presentation we only consider the particular
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case of a 2-D linear system of the form (6.14) with two delays in each direction,
i.e. we restrict attention to m1 = m2 = 2. In which case it is clear that the
associated characteristic polynomial for stability is given by the determinant of the
following 2-D polynomial matrix

I −A1z
−1
1 −A2z

−1
2 −A3z

−h1k
1 −A4z

−h2k
1 −A5z

−p1l
2 −A6z

−p2l
1 (6.17)

where real scalars k,l are positive and h1, h2, p1, p2 are natural numbers. Now
introduce the new variables zk1 = z3, z

l
2 = z4 and then rewrite (6.17) as

I −A1z
−1
1 −A2z

−1
2 −A3z

−h1

3 −A4z
−h2

3 −A5z
−p1

4 −A6z
−p2

4

Assume also that h1 = 1, h2 = 2, p1 = 1, p2 = 2 which yields

I −A1z
−1
1 −A2z

−1
2 −A3z

−1
3 −A4z

−2
3 −A5z

−1
4 −A6z

−2
4 (6.18)

Application of the EOA to this last 4-D polynomial matrix now gives



I 0 z−14 A5

0 I z−13 A4

z−14 I z−13 I I−A1z
−1
1 −A2z

−1
2 −A3z

−1
3 −A6z

−1
4


 (6.19)

which is equivalent to

I − Â1z
−1
1 − Â2z

−1
2 − Â3z

−1
3 − Â4z

−1
4 (6.20)

where

Â1=



0 0 0

0 0 0

0 0 A1


 , Â2=



0 0 0

0 0 0

0 0 A2


 , Â3=



0 0 0

0 0 −A4

0 −I A3


 , Â4=



0 0 −A5

0 0 0

−I 0 A6




(6.21)
Here only elementary operations that preserve the matrix determinant are used,
hence it is straightforward to see that (6.18) and (6.20) have the same determinant
and the stability property for both system descriptions is the same. Indeed, the
system with the characteristic polynomial represented by (6.17) is stable if there
exist P Â 0, Q Â 0, Q1 Â 0, Q2 Â 0 such that the following LMI holds



Â
T

1

Â
T

2

Â
T

3

Â
T

4




P
[

Â1 Â2 Â3 Â4

]
−




P−Q−Q1−Q2 0 0 0

0 Q 0 0

0 0 Q1 0

0 0 0 Q2


 ≺ 0

where the matrices Â1, Â2, Â3, Â4 are de¯ned in (6.21).

It is clear that the above result is easily extended to the partially commen-
surate case. In particular, assume that each delay d1v, v = 1, . . . ,m1 is a mul-
tiple of one of the basic noncommensurate delays k1, k2, . . . , kt1 and similarly for
d1h, h = 1, . . . ,m2 of l1, l2, . . . , lt2 . Then the previous method exploiting this fact
requires the investigation of an n-D linear system, where n = t1 + t2 + 2 whereas
the method of Theorem 1 here requires the investigation of an m-D linear system
with m = m1 +m2 + 2.
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6.1.4. Stabilisation of 2-D systems with delays

Consider the 2-D state-delayed system (2.28) and assume that the following state
feedback control law is used

u(i, j) =Kx(i, j) (6.22)

The corresponding closed-loop system is

x(i+ 1, j + 1) = (A1 +B1K)x(i+ 1, j) + (A2 +B2K)x(i, j + 1)

+A1dx(i+ 1, j − d1) +A2dx(i− d2, j + 1)
(6.23)

If thereK exists so that (6.23) is asymptotically stable, then the 2-D state-delayed
system (2.28) is said to be stabilisable.

Theorem 6.3. The 2-D state-delayed system (2.28) is stabilisable with control
law (6.22) if there exist matrices W Â 0, Z Â 0, Z1 Â 0, Z2 Â 0 and N such
that




−W A1W+B1N A2W+B2N A1dW A2dW

WAT
1 +NTBT

1 W−Z−Z1−Z2 0 0 0

WAT
2 +NTBT

2 0 −Z 0 0

WAT
1d 0 0 −Z1 0

WAT
2d 0 0 0 −Z2



≺0 (6.24)

In this case, a stabilising matrix K is given by NW−1.

Proof. Based on (6.3) and (6.22), the closed-loop system is asymptotically stable
if there exist P Â 0, Q Â 0, Q1 Â 0, Q2 Â 0, such that



(A1+B1K)
T

(A2+B2K)
T

AT

1d

AT

2d


P
[
A1+B1K A2+B2K A1d A2d

]
−




P−Q−Q1−Q2 0 0 0

0 Q 0 0

0 0 Q1 0

0 0 0 Q2


≺0

Applying the Schur complement formula to the above inequality followed by pre-
and post-multiplying diag(P , I, I, I, I) and its transpose, we obtain




−P PA1+PB1K PA2+PB2K PA1d PA2d

AT
1 P+KTBT

1 P −P+Q+Q1+Q2 0 0 0

AT
2 P+KTBT

2 P 0 −Q 0 0

AT
1dP 0 0 −Q1 0

AT
2dP 0 0 0 −Q2



≺ 0

Note that this last condition is bilinear in matrix variables P and K and therefore
it may be considered as a BMI problem (3.4), which is not amenable for e®ective
computations (recall that BMI problems belong to the class of NP-hard problems).
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However, this can be reformulated as an LMI problem and hence solved in poly-
nomial time. To see this, let us de¯ne a new variable W = P−1 and pre- and
post-multiplying by diag (W ,W ,W ,W ,W ) to yield




−W A1W+B1KW A2W+B2KW A1dW A2dW

WAT
1+WKTBT

1 Υ 0 0 0

WAT
2+WKTBT

2 0 −WQW 0 0

WAT
1d 0 0 −WQ1W 0

WAT
2d 0 0 0 −WQ2W



≺0

where

Υ = −W+WQW+WQ1W+WQ2W

and let Z = WQW , Z1 = WQ1W , Z2 = WQ2W , N = KW we obtain the
¯nal form as in (6.24). ¥

6.2. Robust stability and robust stabilisation of 2-D systems with
state delays

In this section, for brevity, we consider a 2-D uncertain system with single delays
described by

x(i+1, j+1) =(A1+∆A1)x(i+1, j)+(A1+∆A1)x(i, j+1)

+(A1+∆A1)x(i+1, j−d1)+(A1d+∆A2d)x(i−d2, j+1)
+(B1+∆B1)u(i+1, j)+(B2+∆B2)u(i, j+1)

(6.25)

Suppose the uncertain matrix ∆A be de¯ned in the norm-bounded (Khargonekar
et al., 1990; Mahmoud, 2000) form as

∆A =
[
∆A1 ∆A2 ∆A1d ∆A2d

]
=
[
HFE1 HFE2 HFE1d HFE2d

]
(6.26)

whereH , E1, E2, E1d, E2d are known constant matrices with compatible dimen-
sions and F satis¯es (4.5).
For further consideration we rewrite the uncertainty structure of (6.26) as

∆A=
[
H H H H

]



F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F







E1 0 0 0

0 E2 0 0

0 0 E1d 0

0 0 0 E2d


 ≡ H̃F̃ Ẽ (6.27)

6.2.1. Robust stability

Theorem 6.4. A 2-D state-delayed system (6.25) with uncertainty modelled by
(4.5) and (6.27) is asymptotically stable if there exist matrices P Â 0, Q Â 0,
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Q1 Â 0, Q2 Â 0 and a scalar ε > 0 such that the following LMI holds



−P PA1 PA2 PA1d PA2d PH

AT
1 P Υ 0 0 0 0

AT
2 P 0 −Q+εET

2 E2 0 0 0

AT
1dP 0 0 −Q1+εE

T
1dE1d 0 0

AT
2dP 0 0 0 −Q2+εE

T
2dE2d 0

HTP 0 0 0 0 −0.25εI



≺0 (6.28)

where

Υ = −P+Q+Q1+Q2+εE
T
1 E1

Proof. Based on Theorem 6.1, a su±cient condition for asymptotic stability of
the 2-D state-delayed system (6.3) can be rewritten in the form to contain the
uncertainty modelled by (4.5) and (6.27) as

[
AT +∆AT

]
P
[

A+∆A
]
+ S ≺ 0 (6.29)

where

A =
[
A1 A1d A2 A2d

]
, S =




−P+Q+Q1+Q2 0 0 0

0 −Q 0 0

0 0 −Q1 0

0 0 0 −Q2




By applying the Schur complement to (6.29), we obtain

[
−P−1 A+∆A

AT +∆AT S

]
=

[
−P−1 A

AT S

]
+

[
0 H̃F̃ Ẽ

Ẽ
T
F̃

T
H̃

T
0

]

By using Lemma 8, (6.29) is implied by




−P−1+4ε−1HHT A1 A1d A2 A2d

AT
1 Υ 0 0 0

AT
1d 0 −Q+εET

1dE1d 0 0

AT
2 0 0 −Q1+εE

T
2 E2 0

AT
2d 0 0 0 −Q2+εE

T
2dE2d



≺ 0

which is BMI form due to occurrence of the terms P and P−1. However, by pre-
and post-multiplying diag(P , I, I, I, I) and its transpose and considering the Schur
complement, we obtain the LMI (6.28). ¥

Remark 6.2. The extension to the multiple delay case follows in a similar way
as in Theorem 6.2.
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6.2.2. Robust stabilisation

Consider the uncertain 2-D state-delayed system described by (6.25). The un-
certainties associated with the state matrices are modelled by (4.5), (6.27) and
additionally we have

[
∆B1 ∆B2

]
=
[

HFE1b HFE2b

]
(6.30)

With the same type of control law as (6.22), the corresponding closed-loop system
is given by

x(i+ 1, j + 1) = ((A1+∆A1)+(B1 +∆B1)K)x(i+1, j)

+((A1+∆A1)+(B2+∆B2)K)x(i, j + 1)

+(A1+∆A1)x(i+1, j−d1)+(A1d+∆A2d)x(i−d2, j+1)
(6.31)

A matrix K is said to be robustly stabilising if (6.31) is asymptotically stable for
all uncertainties in (6.25) satisfying (4.5), (6.27) and (6.30). The system (6.25) is
said to be robustly stabilisable with K.

Theorem 6.5. The 2-D uncertain state-delayed system (6.25) is robustly stabi-
lisable with control law (6.22) if there exist matrices W Â 0, Z Â 0, Z1 Â 0,
Z2 Â 0, N and a scalar ε > 0 such that the following LMI holds:

[
Υ11 Υ12

Υ
T
12 Υ22

]
≺ 0 (6.32)

where

Υ11=




−W+4εHHT A1W+B1N A2W+B2N A1dW A2dW

WAT
1+NTBT

1 −W+Z+Z1+Z2 0 0 0

WAT
2+NTBT

2 0 −Z 0 0

WAT
1d 0 0 −Z1 0

WAT
2d 0 0 0 −Z2



(6.33)

Υ12=




0 0 0 0

0 0 0 0

(E1W +E1bN)
T

0 0 0

0 (E2W +E2bN)
T

0 0

0 0 WET
1d 0

0 0 0 WET
2d




(6.34)

Υ22 = diag
(
−εI, −εI, −εI, −εI

)
(6.35)

In this case, a robustly stabilising matrix K is given by NW−1.
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Proof. By incorporating the norm-bounded uncertainties to (6.24), we obtain




−W A1W +B1N A2W +B2N A1dW A2dW

WAT
1 +NTBT

1 −W +Z +Z1 +Z2 0 0 0

WAT
2 +NTBT

2 0 −Z 0 0

WAT

1d 0 0 −Z1 0

WAT

2d 0 0 0 −Z2




+




0 ∆A1W+∆B1N ∆A2W+∆B2N ∆A1dW ∆A2dW

W∆AT
1 +NT∆BT

1 0 0 0 0

W∆AT
2 +NT∆BT

2 0 0 0 0

W∆AT

1d 0 0 0 0

W∆AT

2d 0 0 0 0



≺0

The second term in the above inequality can be represented using the following
expression

[
H H H H

]



F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F







E1W +E1bN 0 0 0

0 E2W +E2bN 0 0

0 0 E1dW 0

0 0 0 E2dW




By carrying out the same operation as previously presented for (6.29), we can write




0 ∆A1W+∆B1N ∆A2W+∆B2N ∆A1dW ∆A2dW

W∆AT
1 +NT∆BT

1 0 0 0 0

W∆AT
2 +NT∆BT

2 0 0 0 0

W∆AT
1d 0 0 0 0

W∆AT
2d 0 0 0 0




¹diag
(
4εHHT , ε−1(E1W +E1bN)T (E1W +E1bN),

ε−1(E2W +E2bN)T (E2W +E2bN), ε−1WET
1dE1dW , ε−1WET

2dE2dW
)

The result then follows by observing that

Υ11 −Υ12Υ
−1
22 Υ

T
12 ≺ 0

is a Schur complement of (6.32) where Υ11, Υ12, Υ22 are described by (6.33)-
(6.35). ¥

Example 6.3. To illustrate the results of Theorem 6.5, let us consider a system
described by (6.25) with the following matrices

A1=

[
−0.2450 0.0307
−0.1444 0.0008

]
, A2=

[
0.2860 0.1800

−0.1435 −0.4601

]
, A1d=

[
0.1453 0.1489
0.0824 0.0536

]
,

A2d=

[
0.0880 0.1367
0.1867 0.0425

]
, B1=

[
0.8392 0.1338
0.6288 0.2071

]
, B2=

[
1.0322 0.6298
1.0708 0.9778

]
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with uncertainty modelled by (4.5), (6.27) and represented by

E1b=
[
0.1366 0.0186

]
, E2b=

[
0.0071 0.1225

]
,

E1d=

[
0.3043 0.0082
0.0079 0.0950

]
, E2d=

[
0.2935 0.1838
0.0288 0.3157

]

E1 =
[
0.0272 0.3127

]
, E2 =

[
0.0129 0.3840

]
, H =

[
0.2257
0.0219

]

In this case, LMI (6.32) is feasible and the matrices are

W =

[
2.7354 −0.7082

−0.7082 2.1651

]
, Z =

[
0.7730 −0.1974

−0.1974 0.7353

]
,

Z1=

[
0.7966 −0.2018

−0.2018 0.4507

]
,Z2=

[
0.7883 −0.1620

−0.1620 0.5530

]
,N=

[
1.0029 −0.5007

−1.5858 1.1028

]

and scalar ε = 2.3197 which yields the stabilising matrix K equal to

K =

[
0.3351 −0.1216

−0.4893 0.3493

]

The resulting system is asymptotically stable independent of the delay sizes accor-
ding to Theorem 6.4 with the following matrices

P =

[
2.3227 0.6053
0.6053 3.0341

]
, Q=

[
0.7478 0.3073
0.3073 0.9924

]
,

Q1=

[
0.6179 0.1094
0.1094 0.6936

]
, Q2=

[
0.6605 0.1537
0.1537 0.7948

]

and ε = 1.3709 computed.

Remark 6.3. In passing, the robust stability and stabilisation results given in this
section can be extended naturally to the multiple delay case in a similar way as in
Theorem 6.2.

6.3. Concluding remarks

Time delays are usually result in unsatisfactory performance and are frequently
a source of instability. Therefore their presence must be considered in realistic
control design procedures for both 1-D and 2-D(n-D) systems. Due to the lack
of results for 2-D systems with delays, this chapter provides the preliminary de-
velopments in this area. In particular, the implementable and computationally
e®ective conditions for stability, robust stability and stabilisation of 2-D state-
delayed systems are presented. Furthermore, it is shown that numerical procedu-
res for asymptotic stability of n-D delay-free systems can be used for a stability
investigation of 1-D multiple delay systems. However, the dimension of the ma-
trices involved in the LMI based conditions could well be very large and therefore
numerical difficulties could arise. This can occur, for example, when the system
dimensionality is large (nÀ 1) and/or many delays are present. To overcome this
potential problem, the approach based on EOA has been presented.



Chapter 7

CONCLUSIONS AND FUTURE WORKS

Several modern engineering ¯elds such as image enhancement, signal and data
processing or digital ¯ltering, use 2-D(n-D) system theory due to the n-D character
of considered processes and systems. Unfortunately, application of the classical
(i.e. spectral) methods to analyse and synthesise n-D systems is a source of many
computational problems, which make known computer-aided methods inefficient.
Indeed, the number of system poles (variables) in the case of n-D systems can be
in¯nite and no method exists to deal with such a big number of variables. Therefore
the stability problem of n-D systems can be put into the class of undecidable
problems and there is a need in the n-D system community for an appropriate
theoretical framework which leads to easily implementable numerical methods to
analyse and design n-D systems.
It turns out that among numerical techniques, convex and quasi-convex opti-

mization methods which involve LMIs are the most promising, powerful tools for
the analysis and design of control for 1-D systems. It is mainly because problems
formulated in terms of LMI can be solved efficiently using a computer and they
o®er a framework for the formulation of problems arising in control.
In view of the described situation, the main purpose of this dissertation is to

provide alternate problem formulations and the alternative, or sometimes only exi-
sting solutions to some theoretical problems for linear n-D and their class of great
practical importance i.e. LRPs. The proposed approach is based on combining
state-space representations of the considered class of n-D systems with the Lyapu-
nov framework to derive the problem formulation in terms of BMI, which has been
proven to be NP-hard problems. However, some of the BMI problem formulations
can be transformed into LMIs due to their ”hidden” convexity properties. This is
done using several techniques and further leads to exact or approximate solutions
to the original problem.
Due to the fact that little or no work has yet been reported on di®erential

LRPs, the great emphasis is put upon solving the problems of analysis and syn-
thesis for this class of 2-D systems. The development of the presented method
results in a computer numerical package which can assist with the analysis and
design of considered classes of systems. Availability of such a software makes not
only analysis and design for LRPs and n-D systems automated processes, but can
overcome potentially difficult control problems for which traditional methods of
analysis and synthesis may be limited. This is especially valid for systems where
delays and/or parameter uncertainty appear.
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The major developments presented in this dissertation can be summarized as
follows:

• This dissertation provides computer implementable formulation of the follo-
wing problems arising in analysis and synthesis 2-D systems and their classes
i.e. LRPs.

– The ¯rst results on robust stability and stabilisation of both di®erential
and discrete LRPs allow us to consider the e®ect of uncertainty which
occurred in system state-space models. It is shown that stability and
stabilisation conditions which involve LMIs become easy to check with
a computer. Further, it can be seen that it is possible to formulate
optimization procedures which can be used to attenuate the e®ects of
the uncertainty.

– The numerical solution to the H∞ control problems for LRPs are provi-
ded. The LMI formulation of such problems allows not only to provide
numerical algorithms for controller design but also makes it possible to
optimize some parameters of the design process. Moreover, the solution
to the problem of the H∞ output controller designing, where nominal
computational complexity is very high, is given.

– Derives the solution to the robust H∞ control problems for LRPs. It
is shown that LMI methods allow us to formulate and solve the H∞
control problems for LRPs with parameter uncertainties.

– Formulation and solving the H2 control problem for di®erential LRPs
in spirit of LMI methods. It is proven that LMI techniques allow us to
design the control laws which guarantee stability of the process and the
maximum possible H2 disturbance attenuation.

– Derives the solution to the guaranteed cost control problem. It is shown
that control cost can be minimized with provided LMI conditions.

– The last result shows that LMI methods can be applied to analyse and
synthesise 2-D systems with delays. Moreover, it is proven that this
result can be extended to deal with uncertain 2-D systems with delays.

• Application presented result to analyse and design two processes from com-
puter engineering.

• Development of aMatlab-based tool which is a collection of Matlab func-
tions to analyse and design considered systems and processes.

It should be pointed out that there are many research directions which should
be pursued in order to improve and extend the result presented in this dissertation.
In particular, the following research directions must be considered

• multi-objective H2/H∞ control of LRPs and n-D systems,

• further development of LMI methods for systems with state and input delays,
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• attempts to apply LMIs to the analysis of systems with state-dependent
delays,

• application of LMI methods to ¯ltering problems,

• generalizations for processes with nonlinearities and combinations with sto-
chastic approaches.

It should be pointed out that it is possible to apply LMI methods to deal with a
polynomial of two variables. As it is shown in (Henrion et al., 2001) the stability
test of a 2-D polynomial matrix in various regions of the complex plane can be
cast as a non-convex rank-one LMI feasibility problem. Convex LMI relaxations
can readily be derived from this formulation.
Another important issue to be addressed is the further development of the

Matlab-based tool. This should be optimized to improve its efficiency, and exten-
ded to support a wider class of repetitive processes e.g. non-unit memory LRPs
and (n-D) systems.



Streszczenie

Rozprawa dotyczy rozwiązywania problemów analizy i syntezy liniowych układów
wielowymiarowych (ang. multidimensional – n-D), a w szczególności ich podklasy
tj. liniowych procesów powtarzalnych (ang. linear repetitive processes – LRPs) z
zastosowaniem współczesnych metod komputerowej analizy numerycznej.
Układy wielowymiarowe charakteryzują się występowaniem więcej niż jednej

zmiennej niezależnej jako wyniku:

• występowania więcej niż jednej zmiennej przestrzennej,
• występowania wpływu przestrzeni i czasu,
• efektu czasowej/przestrzennej zmiennej oraz indeksu reprezentującego ko-
lejną iterację, pas lub krok uczenia.

Generalnie układy wielowymiarowe, a w tym liniowe procesy powtarzalne zna-
lazły zastosowanie w opisie wielu zjawisk i procesów występujących w licznych
dziedzinach współczesnej techniki. Szczególnie interesującymi zastosowaniami są
procesy iteracyjnego sterowania z uczeniem, iteracyjnego sterowania suboptymal-
nego bazującego na zasadzie maksimum, procesy przetwarzania równoległego i roz-
proszonego oraz sterowanie maszynami w górnictwie, hutnictwie, papiernictwie
i rolnictwie. Wśród licznych zastosowań układów wielowymiarowych i ich klas
znajdujemy również układy wielowymiarowego przetwarzania sygnałów i obrazów,
kodowania i dekodowania oraz ¯ltracji sygnałów, które często są używane w gra¯ce
komputerowej.
Należy jednak podkreślić, że zastosowanie modeli wielowymiarowych jest bar-

dzo ograniczone, głównie ze względu na brak dobrze rozwiniętej teorii układów
wielowymiarowych, która dostarczyłaby odpowiedniego formalizmu matematycz-
nego, umożliwiającego zapisanie wielu problemów analizy i syntezy w postaci pre-
destynującej do zastosowania szerokiego wachlarza efektywnych metod numerycz-
nych. Efektywność jest tutaj rozumiana jako praktyczna możliwość rozwiązania
rozważanego problemu w czasie wielomianowym tj. czas potrzebny do rozwią-
zania problemu jest ograniczony przez funkcję, która jest wielomianem zmiennej
określającej wielkość zasobów potrzebnych do zde¯niowania problemu. Problem
posiadający taką własność zaliczany jest do klasy problemów P-trudnych.
W przypadku układów 1-D pokazano, iż wiele problemów analizy i syntezy

może być sprowadzonych do postaci problemów badania własności pewnych wie-
lomianów lub macierzy. Innymi słowy, problemy analizy i syntezy sprowadza się
głównie do problemów związanych z wyznaczaniem i lokowaniem biegunów układu.
Z kolei te problemy, mogą być rozwiązane przy użyciu algorytmów wielomiano-
wych. Przykładem problemu, dla którego udowodniono istnienie algorytmu wie-
lomianowego do jego rozwiązania jest problem stabilności. Istotnie, rozwiązanie
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problemu stabilności może być sprowadzone do wyznaczenia wartości własnych
macierzy systemowej i sprawdzenia czy wszystkie one mają moduły mniejsze od 1
(w przypadku układów dyskretnych) lub leżą w lewej półpłaszczyźnie zespolonej
(dla układów ciągłych). Z kolei, wartości własne macierzy zawsze mogą być obli-
czone w czasie wielomianowym, dlatego problem stabilności należy do klasy pro-
blemów P-trudnych. Należy tutaj zaznaczyć, że alternatywną metodą określania
stabilności układu jest użycie kryterium Routh’a, które zawsze daje odpowiedź
czasie wielomianowym. Oznacza to również, że istnienie wielomianowego algo-
rytmu rozwiązującego problem analizy (stabilność) daje potencjalną możliwość
rozwiązania problemu syntezy (stabilizacja). Co więcej, w przypadku układów
1-D, dla dużej liczby problemów zaliczanych do klasy problemów NP-trudnych
(czyli takich dla których nie udowodniono istnienia algorytmu wielomianowego)
zostało przedstawionych wiele metod heurystycznych umożliwiających uzyskanie
zadowalającego rozwiązania danego problemu.

Naturalnym jest postawienie pytania, czy problemy analizy i syntezy ukła-
dów wielowymiarowych mogą być równie efektywnie rozwiązane jak to ma miejsce
w przypadku układów jednowymiarowych. Niestety, okazuje się, że zastosowanie
znanych (tj. stosowanych w teorii układów 1-D) i efektywnych metod do rozwiązy-
wania problemów analizy i syntezy układów wielowymiarowych jest bardzo ogra-
niczone, a często nawet niemożliwe. Trudności te są przede wszystkim związane
z brakiem lub wysokim stopniem komplikacji istniejącego formalizmu matema-
tycznego, uniemożliwiającym zastosowanie efektywnych metod w celu rozwiązania
problemu zapisanego z użyciem tego właśnie formalizmu.

Najbardziej istotnym faktem, związanym z zastosowaniem metod opartych
na manipulowaniu biegunami układu wielowymiarowego, jest możliwość istnienia
nieskończenie wielu biegunów układu. Dlatego też, w kontekście złożoności ob-
liczeniowej, problem analizy tychże układów zaliczany jest do klasy problemów
NP-trudnych lub nawet nierozstrzygalnych, gdyż trudno jest testować położenie
każdego bieguna układu (gdy ich liczba dąży do nieskończoności), co jest odpowied-
nikiem tradycyjnego spektralnego warunku stabilności układu. Dodatkowo należy
pamiętać, że w przypadku układów 1-D położenie biegunów całkowicie określa
dynamikę układu i wiemy w jakie miejsca płaszczyzny zespolonej przesuwać bie-
guny, aby zapewnić sobie określoną dynamikę. Dla układów wielowymiarowych
nie dysponujemy taką wiedzą, możemy tylko, podobnie jak dla przypadku 1-D,
scharakteryzować stabilność i ewentualnie marginesy stabilności w terminach bie-
gunów.

Ważnymi kwestiami, dominującymi ostatnio w teorii sterowania, są odporność
układów na niepewności i zakłócenia oraz sterowanie optymalne przy zadanych
wskaźnikach jakości. Dlatego konieczne stało się również rozważanie tych kwestii
dla układów wielowymiarowych, a w szczególności dla liniowych procesów powta-
rzalnych, dla których odczuwalny jest brak wyników w tym zakresie. Jednakże,
okazało się, że badanie odporności układów i procesów w przypadkach występo-
wania niepewności parametrów oraz zakłóceń jest zadaniem trudnym z punktu
widzenia informatyki. Trudności te wynikają z bardzo dużej złożoności obliczenio-
wej tychże problemów (zakłada się, że są to problemy NP-trudne). Dlatego wciąż
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próbuje się sprowadzić większość problemów analizy i syntezy do postaci umoż-
liwiającej zastosowanie efektywnych algorytmów, które pozwoliłyby na podanie
jakichkolwiek rozwiązań (gdy występuje ich brak) lub umożliwienie zredukowania
konserwatyzmu istniejących już wyników.
Ze względu na dużą liczbę potencjalnych zastosowań liniowych procesów po-

wtarzalnych oraz układów n-D, możliwość sprowadzenia problemów analizy i syn-
tezy tychże układów, w szczególności dla przypadków kiedy występują niepewno-
ści, zakłócenia i opóźnienia, do postaci pozwalającej na zastosowanie efektywnych
i znanych procedur numerycznych, stała się istotnym zagadnieniem.
Głównym celem pracy jest zatem zastosowanie liniowych nierówności ma-

cierzowych (ang. linear matrix inequalities – LMI) do sformułowania i rozwią-
zania wielu problemów z zakresu sterowania układów wielowymiarowych i ich
klas tj. liniowych procesów powtarzalnych celem ich komputerowej analizy i syn-
tezy. Atrakcyjność proponowanego podejścia związana jest z istnieniem tzw. al-
gorytmów punktu wewnętrznego, posiadających złożoność wielomianową, które
służą do rozwiązania problemów optymalizacyjnych z ograniczeniami w postaci
liniowych nierówności macierzowych. Dodatkowym atutem takiego postępowania
jest możliwość przezwyciężenia wielu problemów występujących przy zastosowaniu
klasycznych metod analizy i syntezy dla modeli zawierających niepewności oraz
opóźnienia, gdyż unikamy bezpośredniego wyznaczania i manipulowania biegu-
nami układu wielowymiarowego. Choć otrzymane warunki istnienia rozwiązania
są tylko warunkami wystarczającymi, to jednak najczęściej stanowią one jedyne
znane rozwiązanie. Kwestia ta ma szczególne znaczenie dla liniowych różnicz-
kowych procesów powtarzalnych, dla których tylko niewielka liczba rezultatów
została opublikowana.
W celu sformułowania rozważanych problemów analizy i syntezy układów

wielowymiarowych w formie liniowych nierówności macierzowych, w pracy zasto-
sowano następujące podejście. Po pierwsze, użyto metod Lapunowa uzyskując
problem w postaci nierówności macierzowej, gdzie występują znane i poszukiwane
macierze. Nierówności te, najczęściej są nieliniowe względem poszukiwanych pa-
rametrów, co implikuje brak efektywnych algorytmów do ich rozwiązania. Należy
jednak podkreślić, że w wielu przypadkach możliwa jest eksploracja pewnych wła-
sności otrzymanych nierówności w celu otrzymania postaci liniowej nierówności
macierzowej. Szczególną uwagę poświęcono problemom analizy i syntezy układów
z niepewnościami parametrów, których większość zaliczana jest do klasy proble-
mów NP-trudnych. Jednakże, możliwe jest uzyskanie przybliżonego rozwiązania
takiego problemu przy zastosowaniu metod liniowych nierówności macierzowych.
Wszystkie warunki istnienia rozwiązania rozważanych w pracy problemów zo-

stały zaprezentowanie w formie liniowych nierówności macierzowych, umożliwiając
implementację i rozwiązanie z użyciem dostępnego oprogramowania. Przykłady
procedur, stanowiących część opracowanego pakietu numerycznego zostały rów-
nież zawarte w pracy. Dodatkowo, opracowane i zaimplementowane procedury
numeryczne zostały zastosowane do analizy praktycznych problemów znajdują-
cych się w obszarze zainteresowań informatyki.
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