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Notation

Symbols

R set of real numbers
k discrete time
p parameter vector
p̂ parameter estimate vector
r input vector
x input vector for the neuro-fuzzy network
y model output
y′ system output
n number of parameters
N number of measurements
Nr number of fuzzy rules
P admissible set of parameters
E ellipsoid
ε disturbances
er residual vector

Abbreviations

N-F Neuro-Fuzzy
LS Least-Squares method
BEA Bounded-Error Approach
OBE Outer Bounding Ellipsoid
LP Linear in Parameters
NLP Non-Linear in Parameters



Chapter 1

INTRODUCTION

Nowadays, diagnostics systems are becoming crucial elements of technical and non-
technical applications. A wide range of technical ventures have no sense without
diagnostic systems due to the necessity of assuring a high level of safety and con-
tinuity of work in industrial applications. It is also hard to imagine contemporary
medicine without specialist diagnostic equipment that helps doctors to make diag-
noses. Industrial systems and medical problems become more and more complicat-
ed in the course of years and, consequently, require more sophisticated diagnostic
systems. In the case of simple technical systems, human inspection was enough but
the increased complexity of inspected systems and the high level of process quality,
reliability and safety requirements required the automation of diagnostics in order
to make it possible to precisely determine the place, reason and time of the fault.
One of the well-known diagnostic methods employs the mathematical model of a
system to diagnose it (Chen et al., 1999; Frank and Ding, 1997; Gertler, 1998; Is-
ermann, 1993; Ljung, 1987; Patton et al., 2000; Witczak, 2003).

A model of a system is usually used to generate symptom signals that describe
the state of the system, and this step of the diagnosis is named fault detection.
Fault detection is essential for correct localization and identification of the fault,
which are the next steps of fault diagnosis (Gertler, 1998; Kościelny, 2004; Patton et
al., 2000; Pau, 1981). Three main types of models can be distinguished: analytical,
empirical and heuristical ones (Korbicz and Bidyuk, 1993; Rutkowski and Cpałka,
2002; Kowal and Korbicz, 2003; Kościelny, 2001; Szulim, 2004; Mendes et al., 2002).

Out of those, empirical models appear very useful in the case of diagnostic
applications. The design of such models does not require knowledge about physical
or mathematical laws that describe the behavior of the system. The empirical
model design is based on system identification algorithms (Ljung, 1987; Söderström
and Stoica, 1997) using available measurements. The identification procedure is
employed to determine the structure of the model and its parameters to copy
the behavior of the system as well as possible. It is quite impossible to build an
accurate model for real industrial plants using analytical methods due to strong
non-linearities and stochastic behavior (Ljung, 1987; Söderström and Stoica, 1997;
Korbicz and Bidyuk, 1993; Nahorski and Mańczak, 1983). Therefore, there is a
great demand for developing and employing for this task alternative solutions,
which will be able to ensure the required accuracy for models of real plants.

In the last decade a particular interest in the analyzed areas has regarded
artificial intelligence methods (Korbicz et al., 2004; Patton and Chen, 1999; Pat-
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ton and Korbicz, 1999; Kościelny, 2001). The attractiveness of such methods in
the context of diagnostics results from great capabilities of artificial intelligence
methods in general (Korbicz et al., 1994; Rutkowska et al., 1997; Rutkowska and
Zadeh, 2000; Rutkowski, 2004b; Osowski, 1996; Tadeusiewicz, 1993). The following
important properties of these methods should be stressed: learning from examples,
the ability to adapt to a changing environment, non-linear mapping (Landajo et
al., 2001), the ability to utilize heuristic knowledge in the design process. One
of significant elements of the artificial intelligence area is the neuro-fuzzy (N-F)
technique (Rutkowska, 1997; Rutkowska, 2003; Rutkowski, 2004b; Czogała and
Łęski, 2000; Korbicz and Kowal, 2001). This method arose through the combina-
tion of the specific properties of neural networks and fuzzy logic. N-F techniques
are widely used in many areas including diagnostics due to fast and intensive devel-
opment of different algorithms for structure design and training of N-F networks.
One of the main advantages of the N-F approach in the context of diagnostics
is the transparency of knowledge coded in the structure of diagnostic systems. It
simplifies greatly the analysis of knowledge that determines the operations of the
system, which is a very important property, especially in diagnostic applications.

The application of hybrid techniques such as N-F networks to fault diagnosis
using a model-based scheme is considered in this work. Practically, there is no
design technique that can generate an ideal model and, therefore, it is important
to assure for a fault detection system robustness against disturbances. Obviously,
this problem concerns N-F models, too. The inaccuracy of modelling is usually
described as model uncertainty and the measure of the uncertainty is defined in
the form of a confidence interval for the model output.

Robust fault detection under model uncertainty is the main requirement for
modern fault detection systems. Robustness in this case is considered as the insen-
sitivity of the fault detection system to model uncertainty. Two main approaches
can be distinguished in robust fault detection: an active one and a passive one.
Methods like parity relations (Gertler and Kowalczuk, 1997) and observers with an
unknown input (Witczak, 2003) represent the active approach. The main idea of
these approaches is the special design method, which should eliminate the influence
of the unknown input on the residual signal, so that the fault detection system can
be robust to disturbances. Unfortunately, the existing techniques can be applied
without problems only to linear objects. In the case of non-linear systems the an-
alyzed methods are applicable for a narrow range of systems. Passive methods are
based on the adaptive threshold method, which is used to describe model uncer-
tainty (Frank and Ding, 1997; Seliger and Frank, 2000). Unfortunately, there exist
some limitations that make such a method difficult to be applied to a wide range of
systems. For example, the known methods require detailed information about the
type and properties of disturbances that corrupt measurements. Such knowledge
is usually unavailable in the case of fault diagnosis of industrial plants. Moreover,
the techniques used to determine uncertainty can be applied effectively only to a
narrow class of models that are linear in parameters (Mańczak, 1976; Walter and
Pronzato, 1997; Rafajłowicz, 1996).

The main objective of this work is to develop new, robust fault detection
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methods under model uncertainty, where the N-F network is used to implement
the model. For this purpose, an effective method of computing the uncertainty
of the N-F model and the development of a new adaptive threshold method are
the main tasks of research. It is also required to develop a new method for N-F
network design that should take into account the uncertainty of the N-F model.

The work is divided into six chapters. Chapter 1 deals with general problems
with N-F model design taking into consideration its application to fault detection.
Some approaches are described and problems with their application are shown.

Chapter 2 gives an overview of hybrid N-F structures and, especially, N-F
networks. Problems with the application of N-F networks to fault detection tasks
are considered in detail.

In Chapter 3, reasons for uncertainty in N-F models are presented. Next, the
use of the statistical method and the bounded-error approach (BEA) for computing
the uncertainty is described. A simplified method that approximates the confidence
region of N-F network parameters is also employed to compute the uncertainty due
to the complexity of the BEA method and limitations of statistical approaches.
A detailed analysis of the presented approaches in the context of fault detection
applications to real plants is given in the final part of the chapter.

Chapter 4 presents the N-F model structure selection problem. The common
methods for structure selection of the N-F network are summarized and the ad-
vantages and disadvantages of these methods are indicated. A new method for the
selection of fuzzy rules that employs the BEA method for detecting approximately
linear parts of the model characteristic is proposed in the final part of that chapter.

Chapter 5 briefly discusses technical diagnostics. Problems with robust fault
detection are considered in detail. A robust fault detection method based on the
adaptive threshold technique and model uncertainty is employed using N-F models.
Additionally, examples of robust fault detection of an electrical engine and some
components of an industrial system from the Lublin Sugar Factory in Poland using
the proposed approaches are described and shown in figures and tables.

The last part of the work includes the summary, conclusions and the list of
original achievements developed and described in the work.



Chapter 2

NEURO-FUZZY NETWORKS

2.1. Introduction

One of the main areas in the process diagnostic field is research concerning an
effective use of artificial intelligence techniques (Korbicz et al., 2004; Kościel-
ny, 2001; Patton and Chen, 1999; Patton and Korbicz, 1999). The interest in this
research area in the fault diagnosis context is the effect of potential capabilities
of artificial intelligence methods (Duch et al., 2000; Korbicz et al., 1994; Osows-
ki, 1996; Tadeusiewicz, 1993; Rutkowska et al., 1997; Rutkowska and Zadeh, 2000).
The main advantages of AI methods are as follows: learning from samples, the
ability to adapt to a changing environment, to realize non-linear mappings, and
to utilize heuristic knowledge in the design process. N-F networks hold an impor-
tant position within AI methods (Rutkowska, 1997; Rutkowska, 2002; Kowal and
Korbicz, 2003; Czogała and Łęski, 2000).

The N-F network technique was created by combining specific properties of
artificial neural networks and fuzzy logic. The intensive development of design
algorithms and learning methods results in many applications of N-F networks in
different areas including fault diagnosis (Chen et al., 1999; Kowal and Korbicz,
2003; Mendes et al., 2002; Kowal and Korbicz, 2002a; Kowal and Korbicz, 2002b;
Kowal, 2001; Calado et al., 2002). N-F networks can be used for system modelling,
fault classification, decision support systems, etc. in fault diagnosis applications.
The main advantage of N-F techniques in the context of fault diagnosis is the
transparency of knowledge coded in the form of fuzzy rules. This simplifies the
analysis of rules that determine the behavior of the model, which is important in
order to ensure reliable fault detection.

Effective applications of N-F methods to fault diagnosis require tackling the
problem of structure selection and tuning the parameters for the N-F model taking
into account its uncertainty.

The main aim of this chapter is to present the theoretical background of
N-F networks as well problems that are encountered when N-F networks are em-
ployed for fault detection. A short introduction to fuzzy systems is presented at the
beginning, and then the common N-F structures are presented. Since this work
concentrates on the N-F network, this technique is described more deeply than
others. Some aspects concerning its use in fault detection are studied in detail.
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2.2. Fuzzy systems

2.2.1. Fuzzy models

Fuzzy systems can be seen as logical models, which establish the relationships
between variables in the form of fuzzy rules:

IF (antecedent proposition) THEN (consequent proposition). (2.1)

Depending on the particular structure of the consequent proposition, three types of
models are distinguished: linguistic, relational and Takagi-Sugeno ones (Babuška,
1998).

2.2.1.1. Linguistic fuzzy model

The linguistic model represents the relationships in the form of the IF ... THEN ...
fuzzy rule, where both the antecedent and the consequent are fuzzy propositions
(Zadeh, 1973; Mamdani, 1977). A general form of the linguistic fuzzy rule is

IF x is A THEN y is B, (2.2)

where x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , ym] are fuzzy variables, which are
represented by fuzzy sets x ∈ F (X) and y ∈ F (Y ). However, in real applications,
the variables x and y are usually numerical variables x ∈ X ⊂ Rn and y ∈ Y ⊂
Rm. The fuzzy sets A and B in Eqn. (2.2) represent linguistic terms defined by
multivariate membership functions µ(x) : X → [0, 1].

An alternative approach considers the input as the vector of single input
variables x1, x2, . . . , xn, thus multivariate fuzzy sets are decomposed to the set
of univariate fuzzy sets A1, A2, . . . , An. Such an approach allows representing by
fuzzy sets the meaning of linguistic terms, which is more difficult in the case of
multidimensional fuzzy sets. The logical operators of conjunction, disjunction and
a negation are used in order to construct a compound proposition from univariate
fuzzy sets. For instance,

IF x1 is A1 OR x2 is A2 AND x3 is NOT A3 . . . THEN y is B. (2.3)

Here, the global antecedent consist of many simple antecedents and the degree
of fulfilment of the global antecedent is computed using the logical operators
AND,OR, NOT , where the logical operators are defined using an appropriate
T-norm, S-norm and negation operator. Moreover, the approach can be simplified
if only a conjunction operator is used to compose the antecedent:

IF x1 is A1 I x2 is A2 AND . . . AND xn is An THEN y is B, (2.4)

β = µA1(x1) ∧ µA2(x2) ∧ . . . ∧ µAn(xn). (2.5)

The expression (2.5) determines the global fulfilment of the rule and is in fact a
multidimensional membership function of the multivariate fuzzy set µA(x) created
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A’ B’A B®

Fig. 2.1 . Generalized modus-ponens inference

by the intersection of the univariate sets A1, A2, . . . , An on the Cartesian product
space X = X1 ×X2 × . . . ×Xn. The shape of the multidimensional membership
function depends on the particular operation which is used to define the conjunc-
tion between the fuzzy sets.

In previous deliberations only a single IF ... THEN ... rule was taken into
account but in real problems a set of fuzzy rules is usually employed to describe
reality and this set is called the rule base:

Rk : IF x1 is Ak1 AND . . . AND xn is Akn THEN y is Bk. (2.6)

A single rule in the rule base is responsible for computing the output, but only
for a certain region of input values in the whole input space. This region is con-
strained by the membership function that describes the antecedent of the rule. The
partitioning of the input space differs depending on the type of antecedent fuzzy
sets. Antecedent multivariate membership functions assure the most general way
of partitioning the input space as there is no restriction on the shape of fuzzy sets.
Various partitions of the antecedent space can be obtained with multidimensional
membership functions generated by intersecting univariate fuzzy sets. The bound-
aries are restricted to a rectangular grid defined by the fuzzy sets of individual
variables. In this case the number of rules needed to cover the entire domain is a
product of the input space dimension with the number of fuzzy sets used for each
variable. Univariate fuzzy sets assure a strong connection between the fuzzy set
and the linguistic term but the approach with multivariate fuzzy sets provides a
more effective representation of partitions in the input space.

An inseparable element of fuzzy systems is the fuzzy inference procedure
(Driankov et al., 1993; Rutkowska, 1997; Rutkowska et al., 1997; Yager and Filev,
1994). Inference is a process of deriving an output fuzzy set for each fuzzy rule,
given the rules and the inputs. In the case of the linguistic fuzzy model the gen-
eralized modus-ponens inference rule is used. Such a rule may be demonstrated
by the scheme shown in Fig. 2.1. The scheme reveals the main difference between
the modus-ponens inference from the traditional 0, 1 logic and generalized modus-
ponens, which is expressed in the ability of the generalized method to generate
inference results for premises that are slightly different from the antecedent of the
rule, thus the conclusion can be a little different than the consequent of the rule.

A fuzzy rule can be regarded as the fuzzy relation R : (X × Y )→ [0, 1]. The
fuzzy relation can be considered as the fuzzy implication A→ B, by means of the
following expression:

µR(x, y) = I(µA(x), µB(y)), (2.7)
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where the operator I describes the type of fuzzy implication. Given the fuzzy rule
in the form of the fuzzy set A′, the output fuzzy set B′ is derived by the following
composition of the premise A′ and the relation R:

B′ = A′ ◦R. (2.8)

The composition is realized by the SUP − T composition between A′ and R. The
membership function of the fuzzy set B′ is obtained from the following equation:

µB′(y) = sup
x
{Tx,y[µA′(x), µR(x, y)]}. (2.9)

The fuzzy linguistic model is simplified in many practical applications. For ex-
ample, input values may not be fuzzy. The inference procedure in this case is
simplified and can be described in three steps. At the beginning, the global fulfil-
ment of the rules is determined (2.5) in order to calculate conclusions using the
T-norm operator. The inference procedure is applied to each rule separately and
the number of conclusions is equal to the number of rules. In order to achieve a
single conclusion, the calculated fuzzy sets are aggregated:

B′ =
N⋃

i=1

B′i, (2.10)

µB′(y) =
N⋃

i=1

µB′
i
(y). (2.11)

For the minimum conjunction operator, the minimum T-norm and aggregation
defined as a maximum, the well-known Mamdani scheme of fuzzy inference is
achieved, which is also called the MAX −MIN inference:

µB′(y) = max
x

min
x,y

(µAi,j (xj), µBi(y)). (2.12)

The shown simplification is usually used in real applications where inputs have
crisp values. Moreover, the results of inference can be transformed from fuzzy sets
into crisp values by a defuzzification algorithm. A lot of different defuzzification
algorithms have been proposed, but it should be noted that all these algorithms
lead to information loss due to a change of a fuzzy value into a single crisp value.

2.2.1.2. Fuzzy relational model

Fuzzy relational models encode associations between linguistic terms defined in
the system’s input domain and represented by the fuzzy sets A1, A2, . . . , An and
linguistic terms defined in the output domain B1, B2, . . . , Bm (Pedrycz, 1984). A
fuzzy relation defined in the input-output linguistic space defines the mapping
R : A → B, where each Ai is related to each Bj as shown in Fig. 2.2. The fuzzy
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Fig. 2.2 . Relational model

relation can be defined using the table

R =




r11 r12 . . . r1m

r21 r22 . . . r2m
...

... . . .
...

rn1 rn2 . . . rmn



m×n

. (2.13)

In fact, the table stores the rule base because each row of this table can be trans-
lated into a fuzzy IF THEN rule:

IF x is Ai THEN y is B1(ri1) AND B2(ri2) AND . . . AND Bm(rim). (2.14)

Fuzzy inference in such a system is made by the composition of the fuzzy set X =
[µA1(x), µA2(x), . . . , µAn(x)], which determines the firing levels of the individual
sets A1, A2, . . . , An, with the relation R. The result of the composition

Y = X ◦R (2.15)

gives the fuzzy set Y = [µB1(y), µB2(y), . . . , µBm(y)]. The last stage of inference
considers the aggregation of conclusions and, finally, the fuzzy set is transformed
into a crisp value using the chosen defuzzification method.

2.2.1.3. Takagi-Sugeno model

Practical industrial applications usually have to operate on crisp measurements
and should give crisp results. Such requirements can be fulfilled by the fuzzy model
proposed in (Takagi and Sugeno, 1985). In the Takagi-Sugeno fuzzy model, rule
consequents are crisp functions of model inputs:

IF x is A THEN y = f(x), (2.16)

where x ∈ Rn is the input variable, y ∈ Rm is the output variable, A is the
multivariate fuzzy set, n and m respectively the numbers of input variables and
output variables. For the sake of simplicity it is assumed that only one output
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variable is given, y ∈ R. Like in a fuzzy linguistic model, a multivariate fuzzy
set in the antecedents can be decomposed into univariate fuzzy sets connected by
logic operators. The Takagi-Sugeno model with univariate fuzzy sets is easier to
analyze due to transparent knowledge - univariate fuzzy sets have direct linguistic
meaning. Rules with univariate fuzzy sets and conjunction operator are usually
used in Takagi-Sugeno models:

IF x1 is A1 AND x2 isA2 AND . . . AND xn is An THEN y = f(x). (2.17)

Consequents, as has been mentioned above, are the functions of inputs and have
the same structure for all rules. The only difference between the rules are the
values of the parameters of these functions. In real applications, consequents are
usually defined in the form of linear functions:

y = aTx+ b, (2.18)

where a is the vector of parameters, b is the bias.
Generally, the Takagi-Sugeno system consists of many rules, and fuzzy an-

tecedents define fuzzy regions of input values for which the corresponding con-
sequents are active. The global output of the Takagi-Sugeno system is the com-
bination of outputs from all defined rules. The main advantage of using linear
functions as consequents of fuzzy rules is the possibility of using for such a Takagi-
Sugeno system a lot of theorems developed for linear system, i.e. stability testing,
tuning the parameters, input variable selection (Driankov et al., 1993; Matia et
al., 2002; Joh et al., 1998).

A fuzzy system that has consequents defined in the form of biases is a special
case of the Takagi-Sugeno system (Rutkowska, 1997):

IF x is A THEN y = b. (2.19)

It is also a special case of a linguistic system where consequents are described by
singleton fuzzy sets.

The inference method used in the Takagi-Sugeno system is very similar to the
Mamadani inference. First, the fulfilment of rules is computed. If antecedents are
defined using a multivariate fuzzy set, the fulfillment is computed directly from the
membership function for the given input value x in contrast to a situation where
univariate antecedents connected by the logical AND operators are used, and to
compute the fulfilment βi Eqn. 2.5 has to be applied. The next step of inference is
required to generate the conclusions yi for all rules using the values βi. The global
output of the Takagi-Sugeno system is achieved using the aggregation procedure
for all conclusions.

2.3. Neuro-fuzzy systems

Neuro-fuzzy systems are a wide class of hybrid systems that combine some elements
of artificial neural networks and fuzzy systems (Rutkowska, 1997; Babuška, 1998;
Czogała and Łęski, 2000). In the literature a lot of structures have been proposed,
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Fig. 2.3 . Parallel combination of a fuzzy system with a neural network

Fig. 2.4 . Cascade combination of a fuzzy system and a neural network

which sometimes are diametrically different (Rutkowska and Zadeh, 2000). One
of the presented approaches seems to be easiest to implement because the idea of
combination assumes using simultaneously a neural network and a fuzzy system
within the framework of a single system. Parallel or cascade structures of neural
networks and fuzzy systems are commonly used in Figs. 2.3 and 2.4. The first
solution is used to store apriori knowledge in the form of fuzzy rules and the
neural network is responsible for system adaptation using learning algorithms.
In the second approach a neural network or a fuzzy system is responsible for
preprocessing the input measurement and then carrying out the main task of the
system. Such N-F systems can be applied, e.g. to pattern recognition.

The next hybrid approach considers the use of neural networks in order to
compute the parameters of the fuzzy system, which is schematically shown in Fig
2.5. In the learning stage the parameters of the neural network are tuned only, next

Fig. 2.5 . Neural networks compute parameters for a fuzzy system
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Fig. 2.6 . Neural networks implement some parts of a fuzzy system

Fig. 2.7 . Neural network process fuzzy values

the parameters are transferred into a fuzzy system and this system is responsible
for the main task; however, the fuzzy system does not have learning abilities and
for this purpose it relies on the neural network.

The other hybrid approaches assume a closer integration of the neural network
with the fuzzy system. Among other things, the realization of some elements of the
fuzzy system using neural networks is considered (Fig. 2.6 ). Different solutions for
such an approach are applicable: membership functions can be realized by neural
networks, the inference process can be carried out by a neural network, or the
defuzzification procedure can be coded in the form of a neural network.

The next approach is based on a modified neural network (Fig. 2.7 ) which is
able to operate using fuzzy numbers, or the weights are fuzzy.

The last approach presents the fuzzy system in the form of a neural net-
work (Fig. 2.8). However, it is not a typical neural network because the individual
elements of the network are fuzzy operators that implement the fuzzy inference
mechanism. Some elements of the network have parameters, and learning algo-
rithms for neural networks can be used to tune these parameters.

å

å

å

å

å

å

Fig. 2.8 . Neuro-fuzzy network
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2.4. Theoretical background of neuro-fuzzy networks

The theory of N-F networks is based on the theory of fuzzy inference (Zadeh,
1973). The difference between fuzzy systems and neuro-fuzzy systems is mainly in
the formal representation of the system structure and the methods of tuning the
parameters. The neuro-fuzzy system is viewed in the form of a topology similar to
the topology of the neural network, there are no equations describing the inference
mechanism and there is no list of rules – these elements of the fuzzy system are
coded in the form of elements of the network (Rutkowska, 1997; Korbicz and
Kowal, 2001). Of course, it is a simple transformation and it does not change the
properties of fuzzy inference, it is only another form of realization for the fuzzy
system. The crucial difference between fuzzy systems and neuro-fuzzy systems is in
the algorithms used to generate the rule base. In the case of N-F systems, learning
algorithms for neural networks can be employed to tune the parameters of the
rules (Duch et al., 2000; Korbicz et al., 1994; Osowski, 1996; Tadeusiewicz, 1993).

Two types of fuzzy rules are commonly used to describe knowledge in N-F
networks:

IF x is A THEN y = aTx+ b, (2.20)

IF x is A THEN y = b. (2.21)

These rules correspond to the Takagi-Sugeno fuzzy system (2.20) and to the sim-
plified linguistic fuzzy system (2.21). The system (2.21) is a special case of the
Takagi-Sugeno system and in the following discussion only systems with rules de-
scribed by Eqn. (2.20) are considered.

Data processing in N-F networks similar to fuzzy systems contains three phas-
es: fuzzification, inference, aggregation and defuzzification. The operation of fuzzi-
fication is not practically necessary because crisp input values are treated like
singleton fuzzy sets:

µ(x) =
{

1 if x = x′,
0 if x 6= x′. (2.22)

However, there exist non-singleton defuzzification methods (Rutkowska, 1997;
Mouzouris and Mendel, 1997), which are more sophisticated than singleton ones,
but are rarely used in practice.

The fuzzy inference process is identical with fuzzy inference in the fuzzy
Takagi-Sugeno system, where at the beginning the fulfilment of the rules βi is
calculated. If antecedents are described by univariate fuzzy sets, the global fulfil-
ment of the rules is given by (2.5). Next the SUP-T composition (2.9) is applied to
compute conclusions for each rule. It should be noted that the SUP-T composition
(2.9) works properly only for fuzzy sets and in the analyzed N-F Takagi-Sugeno
system only antecedents are described by fuzzy sets because consequents operate
on crisp values. To overcome this problem, crisp values of conclusions are treated
like singletons and the whole theory of SUP-T is applicable for the Takagi-Sugeno
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Fig. 2.9 . General structure of the Takagi-Sugeno neuro-fuzzy network

system. The result of inference is the set of singletons, and practically the defuzzi-
fication procedure is not necessary, only the aggregation algorithm is employed to
achieve the global output of the system from the set of conclusions.

The general structure of the Takagi-Sugeno N-F network is shown in Fig. 2.9.
Such a network consists of five layers. The first layer contains elements that realize
membership functions of fuzzy sets which describe antecedents. The elements of
this layer determine the fulfilment of antecedents described by univariate fuzzy
sets. The elements of the next layer denoted by AP realize the logical operator
AND. The operation realized by these elements is defined by the T-norm. The
outputs of the layer give information about the fulfillment of rules. The next
layer implements the inference mechanism using the T-norm or fuzzy implication
operators. The fourth layer works paralelly to the other layers and its task is to
determine crisp values of consequents by computing the value of the function f .
Generally, the set of input variables defined for the first layer is different than the
set of input variables defined for the fourth layer. The last layer of the Takagi-
Sugeno N-F network contains one element that is responsible for the aggregation
procedure. The specific structure of the N-F network strongly depends on the type
of operators used. The typical structure of the Takagi-Sugeno N-F network is shown
in Fig. 2.10, where univariate fuzzy sets are used, fuzzy operators are defined as an
algebraic product, aggregation is realized using the height method and consequents
are defined in the form of linear equations. In practical applications it is often
required to model non-linear dynamic systems:

y′(k) = f(y′(k − 1), . . . , y′(k − ny − 1), u(k), . . . , u(k − nu)), (2.23)

where, for the sake of simplicity, only one input variable u and one output variable
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y′ is considered, f is the unknown function, k is the discrete time, ny and nu
determine the order of dynamics. It is possible to build different dynamic N-F
networks for such a system (Nelles, 2001):

• NARX (Nonlinear AutoRegressive with eXogenous input) model,

• finite impulse response model,

• output error model.

In the case of the NARX model, the N-F network realizes the following mappings:

y(k) = F (y′(k − 1), . . . , y′(k − ny − 1), u(k), . . . , u(k − nu)), (2.24)

where F indicates mappings realized by the N-F network, and y(k) is the predicted
value of the real system output y′(k). Such an N-F dynamic model requires the
following fuzzy rules:

IF u(k) is A1 AND . . . ANDu(k − nu) is Anu AND

y′(k − 1) is Anu+1 AND . . . AND y′(k − ny − 1) is Anu+ny

THEN y(k) = rT (k)p, (2.25)

where p is the vector of consequent parameters and r(k) = [u(k), . . . , u(k −
nu), y′(k − 1), . . . , y′(k − ny − 1)] is the regression vector.
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Fig. 2.10 . Sample Takagi-Sugeno N-F network
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The N-F network in the form of the finite input response model is described
by the following equation:

y(k) = F (u(k), . . . , u(k − nu)), (2.26)

and the model consists of fuzzy rules:

IF u(k) is A1 I . . . AND u(k − nu) jest Anu
THEN y(k) = uT (k)p, (2.27)

where u(k) = [u(k), . . . , u(k − nu)]. The main advantage of such a model is that
its stability is guaranteed; however, it is usually required to use a great value for
nu to ensure an exact model.

The dynamic output error model has a structure similar to that of the NARX
model, but real values of the output variable y′(k) are replaced with output values
computed by the model y(k):

y(k) = F (y(k − 1), . . . , y(k − ny − 1), u(k), . . . , u(k − nu)). (2.28)

Depending on the way the output values are transmitted to the inputs of the N-F
network, two ways of dynamic implementations can be distinguished. The first one
takes the output value from the global output of the N-F model as shown in Fig.
2.11. In this case fuzzy rules have a structure similar to the rule described by the
formula 2.11, only the real output values y′(k) are replaced with y(k). The second

Fig. 2.11 . Dynamic Takagi-Sugeno N-F network
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Fig. 2.12 . Dynamic Takagi-Sugeno N-F network with internal dynamics

approach assumes that each rule transmits its delayed local output yi(k) to its
inputs. A sample structure is shown in Fig. 2.12.

All dynamic N-F models presented in this chapter are input-output models,
but it possible to build an alternative dynamic N-F model in the state space.
Let us assume that a non-linear system is described by the following state space
equations:

x(k + 1) = g(x(k), u(k)),

y(k) = h(x(k)), (2.29)

and its equivalent in the form of an N-F network is defined by the following fuzzy
rules:

IF u(k) is D1 AND x(k) is D2 THEN
{
x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

.(2.30)

The dynamic fuzzy rules mentioned above have a general form, which can be
changed or simplified in practical applications.

2.5. Neuro-fuzzy networks in fault diagnosis

In general, diagnostics are responsible for monitoring characteristic variables which
describe the state of the diagnosed system and the detection of states that are
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abnormal. Input variables, output variables and state variables are usually moni-
tored. The simplest fault diagnosis method consist in observing selected variables
in order to check if they exceed the defined thresholds. Unfortunately, such a sim-
ple solution is not able to detect faults in complex systems, when an abnormal
state is manifested in values of many variables but does not necessarily exceed the
defined thresholds. The detection of such faults requires knowledge about physical
laws that describe the dependencies between variables in the form of mathematical
models. However, it is usually quite impossible to extract such knowledge in the
case of real systems. An alternative approach is based on hardware redundancy,
which uses a few copies of the same plant for a single task. This solution is usually
impractical due to expenses connected with additional equipment. In this case an
attractive solution can be analytical redundancy. The main idea of this approach
consist in building a model of the diagnosed system and performing fault detection
by a comparison of the output signal of the system with the output signal of the
model in order to generate residuals. The residual signal indicates the state of the
system and is usually computed as a difference between the outputs of the system
and the model. In this case the fault-free mode is indicated by residuals equal to
0, and any departure from this rule indicates an abnormal work of the system. Of
course, this approach is effective if an ideal model is given and modelling errors
do not corrupt the residual signal. A suitable procedure of residual evaluation and
then classification is usually applied to identify, localize the fault and to detect the
reasons for it.

A model-based fault detection technique is the subject of intensive research
in the area of diagnostics due to many important properties in the context of fault
detection:

• the ability to detect small-scale faults,

• the ability to detect faults in different working points of the system,

• the solution is relatively cheap because sophisticated equipment is not re-
quired; suitable software and computer are usually enough,

• the installation of the fault diagnosis system does not usually require an
intervention in the existing system; usually the installed sensors can be useful
for data acquisition.

The idea of model-based fault diagnosis is widely used in many industrial applica-
tions. However, there are also a lot of cases where a suitable and accurate model
cannot be obtained. This usually happens because real systems are complex, have
a lot of input variables, and input-output mappings are non-linear. Additional-
ly, systems are usually dynamic. In such cases physical models are not known
or are known only partially, thus such an approximation is not precise enough
to guarantee the appropriate accuracy. The only available knowledge about the
system is given in the form of measurements which describe the behavior of the
input and output variables. This leads directly to an identification problem be-
cause such methods are able to ensure the required accuracy of the model for
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diagnostic tasks. The choice of the identification method depends strongly on
the model structure. Two main approaches can be distinguished among dynamic
system modelling problems: prediction and simulation. In diagnostic applications
simulation is used because prediction can hide faults. The simplest approach us-
es linear models, i.e. input-output models or state space models (Nahorski and
Mańczak, 1983; Söderström and Stoica, 1997).

The general description of the input-output model is given by the following
equation:

y(k) =
B(q)

F (q)A(q)
u(k) +

C(q)
D(q)A(q)

ε(k), (2.31)

where q is a delay operator and B(q)
F (q)A(q) and C(q)

D(q)A(q) is a transfer function for the
input variable u(k), and ε(k) represents disturbances. Making different assump-
tions about the transfer functions A(q), B(q), C(q), D(q), F (q), different structures
of the model can be obtained:

• the ARX model (Auto Regresive with eXogenous input), where C(q) =
1, D(q) = 1 and F (q) = 1,

• the ARMAX model (Auto Regresive Moving Average with eXogenous input),
where D(q) = 1 and F (q) = 1,

• the ARARX model (Auto Regresive Auto Regresive with eXogenous input),
where C(q) = 1 and F (q) = 1,

• the ARARMX model(Auto Regresive Auto Regresive Moving Average with
eXogenous input), where F (q) = 1,

• the output error model, where A(q) = 1, C(q) = 1 i D(q) = 1,

• the Box Jenkins model, where A(q) = 1.

The right choice of the model structure requires some knowledge about the struc-
ture of the system and the type of disturbances that corrupt measurements.

An alternative approach assumes building the model described by the state
space equations

x(k + 1) = Ax(k) +Bu(k) + w(k), (2.32)

y(k + 1) = Cx(k + 1) + v(k + 1). (2.33)

Although the theory of parameter estimation and stability analysis is well devel-
oped for linear systems, their usage is limited due to common non-linearities in real
systems. The described methods are able to linearize the non-linear characteristic
around the working point of the system. Unfortunately, such approaches usually
do not assure the required accuracy, which in the case of diagnostic applications
has a great influence on their efficiency. Better accuracy can be obtained if non-
linear models are applied. As linear approaches, two types of non-linear models
can be distinguished: input-output models and state space models.
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The classical input-output approach is Kolmogorov-Gabor polynomials. Un-
fortunately, their usage is limited by the lack of effective methods of choosing
the order of dynamics, fast growth of the number of tuned parameters when the
number of input variables increases, and wrong interpolation and extrapolation
properties. Hammerstein-Wiener models are another technique for modelling non-
linear dynamic systems. This approach decomposes the non-linear system into a
static non-linear part and a dynamic linear piece (Janczak, 2004). Although the
approach simplifies stability analysis or the choice of the dynamic order, the usage
of this method is limited to a narrow group of real systems.

In the case of non-linear state space models there are no general design meth-
ods. Usually, a rough estimate of physical description is required, which is not
always given.

All problems with the described classical methods in the field of non-linear
modelling inspire research in artificial intelligence areas. The domain of artificial in-
telligence consists of, along others, artificial intelligence, fuzzy systems and neuro-
fuzzy systems (Duch et al., 2000; Korbicz et al., 1994; Osowski, 1996; Rutkowska
et al., 1997).

This work focuses on N-F networks and their usage in fault detection tasks.
The interest in this field results from the abilities of the method for knowledge
representation using fuzzy IF ... THEN .... rules. This is a characteristic property
of fuzzy systems, but the N-F method is based on the neural network technique,
too. It is possible to tune the parameters of fuzzy rules using algorithms known
for neural networks. These properties make the N-F approach very useful for fault
diagnosis, i.e. fault detection using the N-F model. The design procedure for the
N-F model can be based on qualitative knowledge, i.e. in the form of physical
dependencies, expert knowledge or qualitative knowledge in the form of measure-
ments.

Fuzzy representation of knowledge makes it more legible, thus N-F models are
often called grey boxes in contrast to neural models, which are called black boxes
with respect to non-transparent knowledge in the form of weights. Transparent
knowledge is very important in the case of fault diagnosis applications because
they have to be preceded by a detailed analysis of the behavior of the diagnostic
system. The task of knowledge analysis can be much easier if the knowledge is
transparent.

2.6. Summary

A lot of hybrid, N-F approaches have been proposed but, the work focuses on
N-F networks. The integration of neural networks and fuzzy systems in the case
of N-F networks is based on the representation of the fuzzy system in the form of
network topology, which resembles the neural network. Such a representation of
the fuzzy system allows applying for its learning algorithms developed for neural
networks. In such an approach fuzzy knowledge representation is kept. It has to be
noticed that some other N-F methods do not have a transparent representation of
knowledge, thus structure selection and the parameter estimation procedure are
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more complex and such models can be less accurate.
Additionally, the chapter gives an overview of three main types of fuzzy mod-

els: linguistic, relational and Takagi-Sugeno ones. The first and the second method
are based on fuzzy rules where both the antecedent and consequent are fuzzy, thus
such models are suitable to represent qualitative knowledge obtained from human
experts using the natural language and linguistic terms. However, these properties
of fuzzy systems make the formal, analytical analysis more difficult. Knowledge
representation in the Takagi-Sugeno model is less transparent, but a lot of formal
techniques can be employed to analyze it (Joh et al., 1998; Matia et al., 2002; Had-
jili and Wertz, 2002). The work focuses on Takagi-Sugeno systems because they
are more suitable for problems where knowledge about the system is given in the
form of measurements, and such situations are common in the case of industrial
plants. Additionally, it is assumed that consequents in fuzzy rules are crisp linear
functions of N-F model inputs. This allows extending a lot of research and design
methods formulated for linear models to Takagi-Sugeno N-F models.

Despite many advantages coming from the use of Takagi-Sugeno N-F networks
for fault diagnostic purposes, some problems arise and they should be solved in
order to permit an effective usage of Takagi-Sugeno N-F networks. For example,
there is no automatic structure design for the Takagi-Sugeno N-F network, learn-
ing algorithms known for neural networks generate non-transparent knowledge,
knowledge acquisition methods originating from fuzzy systems do not assure the
required accuracy of modelling.

The analyzed fault detection method requires precise modelling of the be-
havior of the system but, as has been mentioned before, there is always a model-
reality mismatch, which cannot be avoided due to disturbances or model inac-
curacy. Therefore, it is very important to estimate the uncertainty of the model
to consider it in the residual evaluation procedure. Model uncertainty is usually
simulated in the form of thresholds defined for residuals. Of course, smaller model
uncertainty generates smaller uncertainty interval for residuals, and thus faults
can be detected at an early stage, which is a very important property for all fault
detection systems. Nevertheless, wrong selection of thresholds for residuals so that
they are not adequate for model uncertainty can disturb the work of the fault
detection system, thus the system will generate a lot of false alarms. Therefore, an
effective method of the estimation of N-F model uncertainty is required in order to
successfully detect faults. Such a requirement is specific for fault diagnosis appli-
cations. Another important requirement states that knowledge coded in the N-F
model structure should be transparent. This requires developing special identifi-
cation procedures and parameter estimation algorithms for N-F techniques. The
solution to these problems should allow employing N-F models for fault detection
even in real industrial applications.



Chapter 3

UNCERTAINTY OF THE NEURO-FUZZY MODEL

3.1. Introduction

The reliability of diagnosis is a very important requirement for diagnostic tools.
This requirement in the case of a model-based fault detection scheme is satisfied if
a sufficiently precise model of the system is available. An accurate model permits
a precise simulation of the system output. Thus residuals are approximately 0 for
nominal conditions, and non-zero residuals indicate the faulty working mode of the
system. Therefore, the fault detection system design procedure should take into
account the fact that residuals should be independent of the input signals of the
model. They should be sensitive to faults only. The fulfilment of these conditions
permits a very fast fault detection, practically without any time delay. Unfortu-
nately, taking into account practical conditions it must be claimed that such an
ideal scenario is not possible in the case of real diagnostic applications. It results
from the fact that our knowledge about the diagnosed system is not complete,
thus the ideal model cannot be built, i.e. the model structure is not adequate to
the system structure, the order of dynamics is not known, input variables are not
determined, etc. Another problem arises from the fact that measurements used for
model design and fault detection are always disturbed, thus the input and output
variables cannot be treated as deterministic variables. The above-mentioned prob-
lems should be considered during model design and then the residual evaluation
procedure in order to minimize the effects of disturbances and model uncertainty.

The problems raised are very important in the fault detection context because
model accuracy has a fundamental influence on the reliability of the fault diagnosis
system. The fact of model imperfection and the existence of disturbances cannot be
ignored in order to perform fault detection tasks correctly. The correct work of the
fault detection system in the case of industrial applications influences the safety
of human operators and economic efficiency of the company. Thus unreliable fault
detection systems, which generate false alarms or leave some faults undetected,
are useless in the industrial environment. The avoidance of this problem requires
ideal models of processes, but it is practically impossible to obtain such models
(Chryssolouris et al., 1996; Milanese and Novara, 2004; Papadopoulos et al., 2001).
Another approach assumes the acceptance of model imperfection and the existence
of disturbances, and examines the influence of these facts on fault detection. The
simulation of disturbances in a residual signal is usually performed by the interval
defined around 0, which determines fault-free operations of the process. Thresholds
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defined for such intervals should be tuned properly to avoid false alarms and to
assure fast fault detection.

The present chapter deals with the problem of N-F model imprecision and
the presence of disturbances in measurements in the form of model uncertainty.
Methods of computing the confidence interval for output variables of the N-F model
are developed. Methods used to compute the confidence interval for linear systems
are presented and then, under some assumptions, they are adapted for Takagi-
Sugeno N-F networks. Statistical methods for model uncertainty determination are
presented in the first section of the chapter. Unfortunately, such methods cannot
be widespread due to strong assumptions concerning knowledge about the type of
disturbances present in measurements. Next, the Bounded Error Approach (BEA),
which is usually used to estimate the parameters of linear systems, is adapted to
determine the confidence interval for the output of the N-F model. The proposed
method is compared with the statistical approach. The Outer Bounding Ellipsoid
(OBE) method is presented at the end of the chapter to tackle the problem of
computational complexity of the BEA method.

3.2. Statistical approach for computing neuro-fuzzy network
uncertainty

Given the linear model
y(k) = rT (k)p̂, (3.1)

where y(k) ∈ R is the model output (for the sake of simplicity only one output
variable is considered), r(k) ∈ Rn is the input vector, p̂ ∈ Rn is a parameter
vector. In order to estimate the parameters of the model (3.1), it is assumed that
the output of the process is given in the form of the following equation:

y′(k) = rT (k)p+ ε(k), (3.2)

where p ∈ Rn is the vector of system parameters, ε(k) ∈ R represents disturbances.
Equation (3.2) can be converted to a form which contains all measurements for
k = 1 . . . N in order to simplify further deliberations:

y′ = Rp+ ε, (3.3)

where R is an input matrix which consists of input vectors r(k) for k = 1, . . . , N .
The next section shows a method that can be used to estimate the parameters of
the model defined by Eqn. (3.3).

3.2.1. Least-squares method – static models

The Least-Squares (LS) method is a very popular method of parameter estimation
for linear models. The method assumes that model quality can be evaluated in the
form of the Sum Squares Error (SSE):

J = eTe, (3.4)
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where
e = y′ − y. (3.5)

The minimal value of the SSE (3.4) is obtained by computing the derivative of the
function J(p̂), where the derivation variable is defined as a vector of the parameters
p̂:

∂J

∂p̂
= −2RTy + 2RTRp̂. (3.6)

The result of this operation is a system of equations, which is used to determine
the optimal parameters p̂ according to the following equation:

p̂ = (RTR)−1RTy′. (3.7)

Some assumptions concerning the type of disturbances must be established in order
to obtain real values of the parameters p̂. Disturbances that corrupt measurements
are represented in the form of random variables ε = [ε(1), ε(2), . . . , ε(n)]T . The
influence of the disturbances on the values of the parameters can be shown by
determining the expectation for the parameter vector:

E[p̂] =E[(RTR)−1RTy′] =

=E[(RTR)−1RT (Rp+ ε)] =

=p+ (RTR)−1RTE[ε]. (3.8)

This dependence clearly shows that an unbiased estimator of the real parameters
p can be obtained only when the expectation of the disturbances is 0, E[ε] = 0;
assuming additionally that random variables used to describe disturbances are not
correlated,

cov[ε] = Iσ2, (3.9)

where σ2 is the variance of each element of the vector ε. For the sake of simplicity
it is asssumed that each element of this vector has the same variance. The unbiased
estimator of the parameters determined by the LS method is an optimum estimator
and its covariance matrix takes the following form:

cov[p̂] = E[[p̂−E[p̂]][p̂− E[p̂]T ] = (RTR)−1σ2. (3.10)

The estimates described by Eqn. (3.7) taking into account the above-mentioned
assumptions are the best linear estimates of the parameters. From the point of
view of diagnostics it is important to determine the uncertainty of such a model.
Uncertainty is usually measured by the confidence interval for the output of the
model. The confidence interval includes the real value of the output with defined
probability. Unfortunately, in order to determine the confidence interval, more as-
sumptions on disturbances must be established. The approach considered requires
normally distributed disturbances, thus the model output

y(k) = rT (k)p̂ (3.11)
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is a normally distributed random variable. The expectation for such a variable is
given in the following form:

E[y(k)] = E[rT (k)p̂] = rT (k)E[p̂] = rT (k)p, (3.12)

and a variance

var[y(k)] =E[(y(k)− E[y(k)])(y(k)− E[y(k)])T ] =

=E[rT (k)(p̂− p)(p̂− p)Tr(k)] =

=rT (k)E[(p̂− p)(p̂− p)T ]r(k). (3.13)

Taking into consideration the fact that

E[(p̂− p)(p̂− p)T ] = (RTR)−1σ2, (3.14)

the final version of Eqn. (3.13) can be shown in the following form:

σ2
y = var[y(k)] = rT (k)(RTR)−1r(k)σ2. (3.15)

The output variable y(k) can be viewed as a normally distributed N(0, 1) random
variable

U(k) =
y(k)− E[y(k)]

σy
. (3.16)

Because the variance σ2
y in real applications is usually unknown, it can be replaced

with its unbiased estimator:

σ̂2
y =

1
N − n− 1

eTe. (3.17)

The standard deviation of disturbances in Eqn. (3.16) is replaced with the random
variable σ̂2

y with chi-square distribution and (N −n− 1) degrees of freedom. Thus
a new random variable t with t-Student distribution and (N − n − 1) degrees of
freedom is obtained:

t =
y(k)− rT (k)p√

rT (k)(RTR)−1r(k)σ̂2
y

. (3.18)

The confidence interval for the random variable t with the level of confidence
(1− α) can be determined from the inequality

P (−tα,N−n−1 < tN−n−1 < tα,N−n−1) = 1− α. (3.19)

For given α, the equivalent tα,N−n−1 can be determined and the inequality (3.19)
can be transformed into the form

−tα,N−n−1 <
y(k)− rT (k)p√

rT (k)(RTR)−1r(k)σ̂2
y

< tα,N−n−1, (3.20)
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y(k)− tα,N−n−1

√
rT (k)(RTR)−1r(k)σ̂2

y < r
T (k)p <

y(k) + tα,N−n−1

√
rT (k)(RTR)−1r(k)σ̂2

y. (3.21)

The presented method cannot be directly applied to Takagi-Sugeno N-F networks
due to non-linearities present in such system. However, if some assumptions con-
cerning the structure of the N-F model are established, a modified method can be
proposed.

3.2.2. Uncertainty of the Takagi Sugeno neuro-fuzzy model – statistical
approach

The output of the Takagi-Sugeno N-F model can be viewed as a combination of
the outputs of partial models represented in the form of the consequents of fuzzy
rules:

y(k) =
∑Nr
i=1 µi(k)yi(k)∑Nr

i=1 µi(k)
, (3.22)

where µi(k) is the degree of fulfilment of the i-th rule and k is discrete time.
Applying the following substitution:

φi(k) =
µi(k)∑Nr
j=1 µj(k)

, (3.23)

Eqn. (3.22) takes the form

y(k) = φ1(k)y1(k) + φ2(k)y2(k) + . . .+ φNr (k)yNr (k). (3.24)

In order to apply the methods shown in Section 3.2, it is assumed that the system
is linear in parameters (LP) and is given in the following form:

y′(k) = xT (k)p+ ε(k), (3.25)

where x(k) is an input vector. Next, it has to be assumed that the disturbances
ε(k) are described by a random variable with expectation equal to 0 to allow
determining unbiased LS estimators of the parameters p. Additionally, it has to
be assumed that the disturbances are normally distributed in order to compute
the confidence interval for the model output. Such assumptions allow computing
the confidence interval for the following model:

y(k) = xT (k)p̂. (3.26)

The Takagi-Sugeno N-F model is non-linear in parameters (NLP), so it must be
converted to an LP model under some assumptions. Let the functions φi(k) defined
for fuzzy rules be given. Partial models represented by consequents have input
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variables represented by the following vectors: r1(k), r2(k), . . . , rNr (k), so Eqn.
(3.24) can be rewritten in the form

y(k) = φ1(k)rT1 (k)p̂1 + φ2(k)rT2 (k)p̂2 + . . .+ φNr (k)rTNr (k)p̂Nr . (3.27)

Substituting
xi(k) = φi(k)ri(k), (3.28)

the following expression is achieved:

y(k) = xT1 (k)p̂1 + xT2 (k)p̂2 + . . .+ xTNr (k)p̂Nr , (3.29)

which can be transformed into the following form:

y(k) = xT (k)p̂, (3.30)

where

x(k) =




x1(k)
x2(k)

...
xNr (k)


 , p̂ =




p̂1
p̂2
...
p̂Nr


 .

The vectors ri(k) ∈ Rn describe the inputs of partial models and the vector
x(k) ∈ RnNr describes the same inputs but in the form of a single vector. It has
to be mentioned that the columns of the matrix X cannot be linearly dependent
because otherwise the estimates of the parameters using the LS algorithm cannot
be computed. The confidence interval for such a modified Takagi-Sugeno model
can be evaluated using Eqn. (3.21), substituting the input vector r(k) with the
modified input vector x(k) and replacing the matrix r(k) with the matrix X.

The effectiveness of the presented method in fault diagnosis applications is
strongly limited by detailed assumptions established for disturbances. In practical
problems disturbances are usually not normally distributed and knowledge about
their distribution is not available. Thus the method can be used for a narrow class
of objects only. The use of the method with incompletely fulfilled assumptions
leads to wrong results, which are useless for fault diagnosis systems. The problem
is illustrated by an example. The identification of the LP static system using the
LS method is shown and next the confidence interval for the output of the model
is calculated.

Example 3.1

We are given a system described by the following equation:

y′(k) = e−
(u(k)−0.5)2

2 p1u(k) + e−
(u(k)+0.5)2

2 p2u(k) + ε(k), (3.31)

where p = [2 1]T and ε ∈ U(−0.3, 0.7). The input signal contains 200 samples
randomly generated from the range X and 200 test samples generated using the
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Fig. 3.1 . Ideal system response (–) and the confidence interval for the output of
the system (- -)

following signal:

u(k) =
{
sin(2π(k/250)) for k = 1, . . . , 100
0.8sin(2π(k/250)) + 0.2sin(2π(k/25)) for k = 101, . . . , 200.

The parameters of the model were estimated using the LS method. The fol-
lowing estimates were obtained: p̂ = [2.46 0.63]T . The confidence interval for the
output signal was computed using Eqn. p̂ = [2.46 0.63]T and assuming the con-
fidence level α = 0.01. The results are shown in Fig. 3.1, where the ideal output of
the model y(k) and the confidence interval are presented. The results show that the
confidence interval does not include the ideal response of the model because the
assumptions concerning disturbances are not satisfied. This example proves that
the LS method and the statistical approach cannot be used for computing the
confidence interval if the required assumptions are not satisfied. Such limitations
concern also N-F models, thus it is necessary to develop an alternative method of
estimating the parameters and a new method of computing the confidence interval.
The new methods should not require a detailed knowledge about disturbances.

3.2.3. Dynamic neuro-fuzzy model and uncertainty

Previous discussions concerning model uncertainty did not take into account the
fact that real systems are usually dynamic. This fact introduces a lot of modifica-
tions to the problems shown in the previous sections. Dynamics are introduced into
the N-F model by applying partial linear dynamic models described by difference
equations:

y(k) =− a1y(k − 1)− a2y(k − 2)− . . .− anay(k − na)+

+ bT0 u(k) + bT1 u(k − 1) + . . .+ +bTnbu(k − nb). (3.32)
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Analogously to (3.1), the equation that describes the model is simplified and the
input vector and the vector of parameters are given in the following form:

r(k) = [−y(k − 1), . . . ,−y(k − na),u(k),u(k − 1), . . . ,u(k − nb)], (3.33)

p̂ = [a1, . . . , ana , b0, b1, . . . , bnb ]. (3.34)

Like in the static case, the estimates of parameters can be computed using Eqn.
(3.7). The output values of the system must be treated like random variables due
to random disturbances that corrupt the output signal. The matrix that stores the
input vectors,

R =




rT (1)
rT (2)

...
rT (N)


 ,

is correlated through the output signal y′(k) with all previous disturbances ε(k)
according to (3.32). Although the assumption E[ε] = 0 is satisfied, R and ε are
correlated and in the general case

E[(RTR)−1RTε] 6= 0, (3.35)

thus
E[p̂] 6= p. (3.36)

Model uncertainty can be evaluated if unbiased estimates of parameters are avail-
able. In the case considered, such estimates cannot be determined, thus the analysed
methods of computing model uncertainty are inappropriate for dynamic models.
There exist some methods that allow determining unbiased estimates for dynamic
systems ε, but knowledge about the correlation between X and ε is required, so
the usage of this method is strongly limited.

An alternative approach for computing the parameters of dynamic models is
the instrumental variable (IV) method (Eykhoff, 1980; Nahorski and Mańczak,
1983; Söderström and Stoica, 1997; Ljung, 1987). The method requires extra mea-
surements in the form of instrumental variable matrices Z, which have the same
size as the matrix R. Data in the matrix Z must be asymptotically correlated
with data in the matrix R and asymptotically uncorrelated with disturbances:

P lim
N→∞

(
1
N
ZTε

)
= 0. (3.37)

Moreover, a non-singular matrix must exist:

P lim
N→∞

(
1
N
ZTR

)
= Rzx. (3.38)

The estimates of parameters have the following form:

p̂ = (ZTR)−1ZTy′. (3.39)
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Additionally, the estimates are consistent and so asymptotically unbiased. This
can be proved in the following way:

p̂ = (ZTR)−1ZTy′ =

= (ZTR)−1ZT (Rp+ ε) =

= (ZTR)−1ZTRp+ (ZTR)−1ZTε =

= p+ (ZTR)−1ZTε =

= p+
(

1
N
ZTR

)−1( 1
N
ZTε

)
. (3.40)

Taking into consideration (3.37) and (3.38) it can finally be shown that the esti-
mates are consistent:

P lim
N→∞

p̂ = p+R−1
zx 0 = p. (3.41)

The unbiased estimates of parameters let us determine the confidence interval
analogously to the approaches raised in the previous sections. Nevertheless, it must
be noted that success in this case strongly depends on a suitable selection of the
auxiliary matrix Z (Söderström and Stoica, 1997; Nahorski and Mańczak, 1983).
Another problem arises from the fact that the IV method generates significantly
biased estimates if not enough measurements are used for calculations.

It is clear now that the dynamic Takagi-Sugeno N-F network may cause com-
plications in the estimation procedure and problems with the calculation of the
confidence interval if the above methods will be used for this purpose. Therefore,
the rest of this work focuses on alternative methods, which are able to determine
the confidence interval without a detailed knowledge about disturbances.

3.3. Bounded-error method

As was shown in the example 3.1, the LS method and the statistical approach for
calculating the confidence interval cannot be used for this purpose if disturbances
are not normally distributed or the expectation of disturbances is not 0. This work
deals with the use of N-F models in fault detection in real industrial applications,
so there is a high probability that the required assumptions may not be satisfied.
Therefore, the presented methods have only a theoretical sense and real applica-
tions require alternative solutions. The BEA method does not assume what kind
of disturbances corrupt measurements, and it can be applied to parameter estima-
tion and confidence interval determination (Walter and Pronzato, 1997; Milanese
et al., 1996; Walter and Piet-Lahanier, 1990). The method requires the maximum
values of disturbances to be given; however, there exist some methods that can
estimate even these values (Piet-Lahanier and Walter, 1994; Maksarov and Nor-
ton, 1996).

Let us consider the system

y′(k) = rT (k)p+ ε(k), (3.42)
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where the errors ε(k) are bounded by the following conditions:

εmin(k) ¬ ε(k) ¬ εmax(k). (3.43)

The lower bound εmin(k) and the upper bound εmax(k) are known apriori (i.e.
from the technical specification of the plant) and εmin(k) 6= εmax(k). The main aim
of the method is to determine the area in the parameter space which is compatible
with all accessible measurements and with the defined bounds. The disturbances
can be viewed in the following form:

ε(k) = y′(k)− rT (k)p. (3.44)

The searched area can be represented by the following set of parameters, which is
consistent with the measurements and bounds:

P = {p ∈ Rn | y′(k)− εmax(k) ¬ rT (k)p ¬ y′(k)− εmin(k), k = 1, . . . , N}. (3.45)

The set P is created by the intersection of N sets

P =
N⋂

k=1

U(k), (3.46)

where each set U(k) is formed by two parallel hyperplanes:

H+ = {p ∈ Rn | y′(k)− rT (k)p = εmax(k)},
H− = {p ∈ Rn | y′(k)− rT (k)p = εmin(k)}. (3.47)

Each point inside the set P defines the vector of model parameters and all sets
of parameters determine the group of models consistent with the measurements
and bounds. This means that instead of one model, a set of models with different
parameters is given and the output signal is represented in the form of an interval
which contains all possible model responses. Real applications usually require a
single output value, thus one set of parameters must be chosen. The most common
approach chooses the geometrical center of the area P as the set of parameters that
is used to calculate the output of the model. This sample procedure is shown in
Fig. 3.2. If the maximum and minimum values of the parameters are known,

pmini = arg min
p∈P

pi, (3.48)

pmaxi = arg max
p∈P

pi, (3.49)

the estimates of the parameters can be computed using the following formula:

pi =
pmini + pmaxi

2
, i = 1, . . . , N. (3.50)

The minimum and maximum values for the following parameters are determined
using the linear programming technique (Milanese et al., 1996). The computation
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Fig. 3.2 . Sample set of parameters P

cost for this procedure can be high and can grow very fast if the number of para-
meters n increases or the number of measurements N increases. The relationship
between the number of faces that bounds the set P and the number of measure-
ments, and the number of vertices in the polytope that bounds P is given by the
following formulae:

w(ns, N) =





∑m
j=1

ns
ns−j

(
ns−j
j

)(
j

j−N
)

for N = 2m

∑m
j=1

N+1
ns−j

(
ns−j
j

)(
j

j−N
)

for N = 2m+ 1
.

In order to compare the BEA and the LS method, a sample problem is exam-
ined.

Example 3.2

The identification of the LP static system is made using the BEA and the LS
algorithm. The system is described as follows:

y′(k) = p1 sin(r2(k)) + p2r(k) + ε(k), (3.51)

where p = [1.7 0.6]T , ε(k) = U(−0.3, 0.7). The estimation procedure is based
on 200 samples, which were generated using a random input signal. The BEA
method also requires lower and upper bounds, thus we must be given εmax = 0.8
and εmin = −0.4. Both methods determine the values of the parameters and
compute confidence regions for the parameters. In the case of the LS method,
the F-test was employed to calculate the confidence region for the parameters
(Mańczak, 1976; Rafajłowicz, 1996):

(p̂− p)TRTR(p̂− p) ¬ (n+ 1)σ̂2
yF

n+1
α,N−n−1, (3.52)
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where Fn+1
α,N−n−1 is a quintile of order (1 − α) for a random variable with the F-

Snedecor distribution, and (N − n − 1) and (n + 1) are orders of freedom, σ̂2
y is

the estimate of variance described by the formulae (3.17). The confidence interval
determined by the statistical approach is calculated with the level of confidence
(1 − α) = 0.99. The results of the identification procedure are shown in Fig. 3.3.
The LS method gave the following values of parameters: p̂LS = [1.76 0.72], and
the BEA method p̂BEA = [1.71 0.6]. The results confirm the theoretical assump-
tions stating that the BEA method is able to determine parameters more precisely
than the LS method if the expectation of disturbances is other than 0. Moreover,
if disturbances are not normally distributed, the confidence area determined by
the BEA is more adequate than the confidence set computed using the statistical
approach. The example 3.2 shows that the statistical approach can determine the
confidence set that does not include real parameters if the assumptions about dis-
turbances are not satisfied. The BEA method guarantees that the admissible set of
parameters contains real parameters in opposition to statistical approach, which
guarantees that the admissible set of parameters contains real parameters but with
the chosen confidence level. It is possible to define the high confidence level for the
statistical method, but it results in a huge admissible set of parameters. The ex-
ample confirms the effectiveness of the BEA method in determining the admissible
set of parameters under non-strict assumptions concerning disturbances.

It seems that the BEA method can be successfully adapted for tuning the
parameters of the Takagi-Sugeno N-F network and, moreover, the results of this
process can be applied to determine the confidence interval for the network out-
put. This fact is important in the context of fault detection applications using
Takagi-Sugeno N-F models because the admissible set of parameters can be used
to calculate the adaptive threshold of the residual signal. Such an approach makes
robust fault detection under model uncertainty possible and lets the fault be de-
tected at an early stage.

Fig. 3.3 . Parameters and confidence regions determined by the LS method and
the BEA method
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3.3.1. Confidence interval for the model output

The admissible set of parameters P can be used to determine the confidence interval
of the output signal of the model. Let W be the set of all vertices piw, i = 1, . . . , nw
for a polytope that bounds the set P. The confidence interval for the model (3.1)
is given by the following inequalities:

rT (k)pmin(k) ¬ rT (k)p ¬ rT (k)pmax(k), (3.53)

where

pmin(k) = arg min
p∈W

rT (k)p, (3.54)

pmax(k) = arg max
p∈W

rT (k)p. (3.55)

Fig. 3.4 . Confidence interval for the output of the model

If the output signal of the model is bounded by (3.54), then the output of the
corresponding system is bounded by the confidence interval described by means
of the following expression:

rT (k)pmin(k) + εmin(k) ¬ y′(k) ¬ rT (k)pmax(k) + εmax(k). (3.56)

The fact that the output values of the system are bounded by the confidence
interval is useful for fault detection. The procedure of fault detection using the
adaptive threshold is shown in detail in the chapter concerning fault detection
using the N-F model.
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Fig. 3.5 . Confidence interval for the output of the system

3.3.2. Models with uncertain input variables

The application of diagnostic systems to real systems, i.e. industrial plants, must
take into account the fact that practically all real objects must be treated as
dynamic systems. For effective fault detection, dynamics must be simulated in
models used to generate residuals. In the case of Takagi-Sugeno N-F networks,
dynamics can be simulated by including dynamics for partial linear models that
represent the consequents of fuzzy rules. Thus input vectors for partial models
contain delayed values of input variables and delayed values of the output variable.
A single partial model is described by Eqn. (3.32). If input vectors for partial
models do not include delayed outputs, the previous deliberations concerning BEA
estimation are correct for such a situation. However, if this assumption is not
fulfilled, the BEA method must be modified due to the fact that the output variable
is uncertain and its value is used as the input, which increases global uncertainty of
the model. This additional uncertainty must be considered during computing the
confidence interval for the output signal of the model to avoid the model-reality
mismatch.

The real unknown input vector can be seen as the difference between the
known values of inputs and their errors:

r′(k) = r(k)− e(k). (3.57)

Let us assume additionally that the error e(k) is bounded:

emini (k) ¬ ei(k) ¬ emaxi (k), i = 1, . . . , N, (3.58)

therefore the admissible set of parameters P is given by the following inequalities:

P ={p ∈ Rn | y′(k)− εmax(k) + eT (k)p ¬ rT (k)p ¬
¬ y′(k)− εmin(k) + eT (k)p, k = 1, . . . , N}. (3.59)

The constraints that determine the admissible set of parameters depend upon
the unknown vector of parameters P, which makes it difficult to determine the
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estimates of these parameters. Nevertheless, from the practical point of view, the
procedure for calculating the estimates requires only information about the sign
of the expression eT (k)p. For this purpose each parameter is viewed in the form
of the difference of two positive parameters:

pi = p′i − p′′i , p′i, p
′′
i  0. (3.60)

Such a modification of the task lets us replace the expression eT (k)p with an
expression that satisfies the following constraints:

eT (k)p ¬ (emax(k))Tp′ − (emin(k))Tp′′. (3.61)

From this modification there arises a new admissible set of parameters P:

P ={p ∈ Rn | y′(k)− εmax(k)− (emax(k))Tp′ + (emin(k))Tp′′ ¬
¬ rT (k)(p′ − p′′) ¬
¬ y′(k)− εmin(k)− (emax(k))Tp′ + (emin(k))Tp′′, k = 1, . . . , N}. (3.62)

For such an admissible set of parameters the linear programming technique can
be employed analogously to the approach shown in Section 3.3. The difference
is revealed only in constraints defined by measurements, which are not paralel
hyperplanes now and each hyperplane must be considered separately.

The admissible set of parameters P expressed by Eqn. (3.62) allows determin-
ing the confidence interval for the output signal of the model in the form of the
following inequalities:

[r(k)− emax(k)]Tp′min(k)− [r(k)− emin(k)]p′′min(k) ¬ (r′(k))Tp ¬
¬ [r(k)− emin(k)]Tp′max(k)− [r(k)− emax(k)]p′′max(k), (3.63)

where

(p′min(k),p′′min(k)) = arg min
(p′,p′′)∈W

(
[r(k)− emax(k)]Tp′+

− [r(k)− emin(k)]p′′
)
, (3.64)

(p′max(k),p′′max(k)) = arg max
(p′,p′′)∈W

(
[r(k)− emax(k)]Tp′+

− [r(k)− emin(k)]p′′
)
. (3.65)

The confidence interval for the output of the simulated system can be computed
easily if the confidence interval for the output of the model is known:

[r(k)− emax(k)]Tp′min(k)− [r(k)− emin(k)]p′′min(k) + εmin(k) ¬ y′(k) ¬
¬ [r(k)− emin(k)]Tp′max(k)− [r(k)− emax(k)]p′′max(k) + εmax(k). (3.66)
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3.3.3. Bounded-error approach for dynamic systems

A simple example is shown to explain the approach used to compute the estimates
of the parameters and the uncertainty of the dynamic model. We are given the
dynamic model

y(k) =− a1y(k − 1)− a2y(k − 2)− . . .− anay(k − na)+

+ b0u(k) + b1u(k − 1) + . . .+ +bnbu(k − nb), (3.67)

where the input values u(k) are known roughly and are bounded by the following
inequalities:

εminu (k) ¬ uε(k)− u(k) ¬ εmaxu (k), (3.68)

where uε(k) is the known input value corrupted by a disturbance. The output error
is also bounded and the bounds are given in the form of the following inequalities:

εminy (k) ¬ y′(k)− y(k) ¬ εmaxy (k), (3.69)

where y′(k) represents the measured value of the output signal. The analyzed
model is described by the expression (3.70) in order to determine the admissible
set of parameters P for N given measurements in the form of the input and output
values:

y(k) = rT (k)p, (3.70)

where parameters can be viewed as the vector

p = [a1, . . . , ana , b0, b1, . . . , bnb ]. (3.71)

The unknown vector of the inputs,

r(k) = [−y(k − 1), . . . ,−y(k − na), u(k), u(k − 1), . . . , u(k − nb)], (3.72)

is approximated by the vector of measured input values,

r′(k) = [−y′(k − 1), . . . ,−y′(k − na), uε(k), uε(k − 1), . . . , uε(k − nb)]. (3.73)

For the sake of simplicity the constraints put on the input and output variables
are simplified to the following form:

|uε(k)− u(k)| ¬ εu, (3.74)

|y′(k)− y(k)| ¬ εy. (3.75)

For such modified bounds the admissible set of parameters p has the following
form:

P ={p′,p′′ ∈ Rn | − εy −
na∑

i=1

εy(p′i + p′′i )−
na+nb∑

i=na+1

εu(p′i + p′′i ) ¬

¬ y′(k)− r′(k)T (p′ − p′′) ¬

¬ εy +
na∑

i=1

εy(p′i + p′′i ) +
na+nb∑

i=na+1

εu(p′i + p′′i ), k = 1, . . . , N}, (3.76)

where particular parameters are converted according to Eqn. (3.60).
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3.3.4. Bounded-error approach for neuro-fuzzy networks

The application of the BEA algorithm for estimating N-F network parameters
and computing the confidence interval for the output requires establishing some
assumptions concerning the parameters and input variables of the N-F network.
The assumptions mentioned are identical with these established for the LS method
presented in Section 3.2.2. The idea behind this approach is the conversion of the
Takagi-Sugeno N-F network to the LP system; therefore all assumptions concern-
ing the BEA method discussed in previous sections are suitable also for Takagi-
Sugeno systems. The main assumption required to view the Takagi-System as an
LP system is based on the idea that the parameters of membership functions of
fuzzy sets represented by the elements of the 1st layer are known. An appropriate
selection of the values of these parameters has an essential influence on the uncer-
tainty of the whole N-F model. Wrong values of these parameters can significantly
increase model uncertainty, thus the model can be unsuitable for diagnostic tasks.
The problem of tuning the discussed parameters is the main subject of the next
chapter, where details of the proposed methods are presented. The BEA method
considered in this part of the work lets us determine the parameters of linear con-
sequents of fuzzy rules on the basis of measurements. The parameters of linear
consequents are included in the structure of the Takagi-Sugeno N-F network as
the elements of the 5th layer. The BEA method allows determining these parame-
ters for both static and dynamic models, which are employed to represent linear
consequents of fuzzy rules. Moreover, it is possible to determine the confidence
interval for the output of the N-F model using the admissible set of parameters P
determined earlier. This is very important in the context of fault detection because
knowledge about the level of the confidence interval of the output of the model
can be directly used to calculate the adaptive threshold of the residual signal. The
BEA method in opposition to the LS method and the statistical approach does not
require detailed assumptions concerning disturbances for computing the admissi-
ble set of parameters. Therefore, the adaptation of the BEA method for tuning
parameters and determining the uncertainty of N-F models makes it possible to
use it for fault detection in real systems, which in the case of LS methods and sta-
tistical approaches is practically impossible due to strong assumptions concerning
disturbances, which in reality are rarely satisfied. In the case of using the BEA
method for tuning the parameters of N-F networks, problems with computation-
al complexity of BEA algorithms can appear due to high computational costs of
determining the polytope that bounds the admissible set of parameters. It is espe-
cially important when the model consists of many partial models with numerous
input variables, because the time and memory space required for such computa-
tions can exceed the acceptable bounds. Unfortunately, practical tests have shown
that the usage of the BEA method for N-F models with more than 5 parameters
is practically impossible. The problem can be overcome by using a simplified BEA
method presented in the next section. This method is much less complex but, un-
fortunately, also less precise in determining the admissible set of parameters and
the confidence interval. (Bai and Huang, 1999; Walter and Pronzato, 1997).
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3.4. Outer bounding ellipsoid method

Some simplified methods of computing the admissible set of parameters have been
proposed in order to overcome the problem concerning the classical BEA algorithm
mentioned in the previous section. The idea of the new methods is to approximate
the actual set P by an area which has a simplified shape (Broman and Shensa,
1990; Dabbenea et al., 2003; Walter and Pronzato, 1997). The main assumption
concerning the proposed methods is related to enclosing the actual set P in the
new bounded area. The most popular method approximates the actual admissible
set of parameters P by the outer bounded ellipsoid (OBE)(Fig. 3.6):

E = {p ∈ Rn| (p− p̂)TM−1(p− p̂) ¬ σ2}, (3.77)

where p̂ is the vector that defines the center of the ellipsoid, M is a positively
defined matrix which defines the orientation of the ellipsoid in the space, and the
coefficient σ has an impact on the size of the ellipsoid. The BEA algorithm initially

Fig. 3.6 . Ellipsoid approximates the real set P

requires a sufficiently big ellipsoid in order to enclose the real set P:

E(0) = {p ∈ Rn| (p− p̂(0))TM−1(0)(p− p̂(0)) ¬ σ2(0)}, (3.78)

where the following assumptions are made: M−1(0)σ2(0) = cIN , with the value of
the coefficient c big enough, and the center of the ellipsoid defined in the following
form: p̂(0) = 0. For the sake of simplicity, let us assume that the error ε(k) is
bounded in the following form:

| ε(k)| ¬ εg(k). (3.79)

Therefore, the admissible set of parameters P is described by the following inequal-
ities:

P = {p ∈ Rn | y′(k)− εg(k) ¬ rT (k)p ¬ y′(k) + εg(k), k = 1, . . . , N}. (3.80)
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The main idea of the OBE method is to determine iteratively in every step a
smaller and smaller ellipsoid E(k), which is a result of the intersection of the area
U(k) (Fig. 3.7) bounded by the two parallel hyperplanes H+(k) and H−(k) with
the ellipsoid E(k − 1) calculated in the previous step of the algorithm:

E(k − 1) ∩ U(k) ⊂ E(k). (3.81)

The result of the described intersection is an area that encloses the real set P, and
this area can be approximated by the set of the following ellipsoids:

E(k) ={p ∈ Rn| η1(k)(p− p̂(k − 1))TM−1(k − 1)(p− p̂(k − 1))+

+ η2(k)(y′(k)− rT (k)p)2 ¬ η1(k)σ2(k − 1) + η2(k)ε2
g(k)}, (3.82)

where η1(k), η2(k) ∈ [0, 1]. Each ellipsoid that fulfills the presented constraints

Fig. 3.7 . Outer Bounding Ellipsoid algorithm

encloses the area E(k− 1)∩U(k); however, the algorithm needs to determine only
one ellipsoid that minimizes the size of the admissible set of parameters. Three
criterions are commonly used in order to find the optimal ellipsoid (in a geometrical
sense):

• the volume of the ellipsoid,

• the sum of the squares of the semi-axes of the ellipsoid,

• the value of the coefficient σ(k).

The following ellipsoid is obtained using one of the criteria:

E(k) = {p ∈ Rn| (p− p̂(k))TM−1(k)(p− p̂(k)) ¬ σ2(k)}, (3.83)
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where M(k), p̂(k), σ(k) are calculated recursively by means of the following for-
mulae:

M(k) =
1

η1(k)

[
M(k − 1)− η2(k)M(k − 1)r(k)rT (k)M(k − 1)

η1(k) + η2(k)rT (k)M(k − 1)r(k)

]
, (3.84)

p̂(k) = p̂(k − 1) + η2(k)M(k)r(k)
(
y′(k)− rT (k)p̂(k − 1)

)
, (3.85)

σ2(k) = η1(k)σ2(k−1)+η2(k)ε2
g(k)− η1(k)η2(k)[y′(k)− rT (k)p̂(k − 1)]2

η1(k) + η2(k)rT (k)M(k − 1)r(k)
, (3.86)

where for the first and second criteria

η1(k) =
1

σ2(k − 1)
, (3.87)

η2(k) =
λ(k)
ε2
g(k)

, (3.88)

and for the third criteria
η1(k) = 1− λ(k), (3.89)

η2(k) = λ(k). (3.90)

The coefficient λ(k) is calculated according to the chosen criteria. If the vol-
ume of the ellipsoid decides about the chosen ellipsoid,

volE(k) = Ωn
√
det
(
σ2(k)M(k)

)
, (3.91)

where Ωn is the volume of the unit sphere, then the following cost function is
minimized:

Jdet(k) = det(σ2(k)M(k)). (3.92)

For such a procedure, the coefficient λ(k) is obtained through solving the following
quadratic equation:

a1λ
2(k) + a2λ(k) + a3 = 0, (3.93)

where

a1 =(n− 1)σ4(k − 1)[rT (k)M(k − 1)r(k)]2

a2 =
(

(2n− 1)ε2
g(k)− σ2(k − 1)rT (k)M(k − 1)r(k)+

+
(
y′(k)− rT (k)p̂(k − 1)

)2)
σ2(k − 1)rT (k)M(k − 1)r(k)

a3 =
[
n
[
ε2
g(k)− (y′(k)− rT (k)p̂(k − 1)

)2]−

− σ2(k − 1)rT (k)M(k − 1)r(k)
]
ε2
g(k). (3.94)
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Finally, the optimal value of λ(k) is given by the following equation:

λ(k) =

{
0 if a3  0,
−a2+

√
a2

2−4a1a3

2a1
if a3 < 0.

(3.95)

The disadvantage of the presented criteria is the fact that the volume of the
final ellipsoid may be small enough, but very wide along one of the axes. It means
that the confidence interval for some parameters can be very big although the
admissible set of parameters is generally small. The second criterion in the form
of the sum of the squares of the semi-axes is free of the above-mentioned problem.
The task of minimizing the width of semi-axes is equivalent to minimizing the
trace of the matrix σ2(k)M(k). In this case the coefficient λ(k) is calculated by
solving the following equation:

λ3(k) + b1λ
2(k) + b2λ(k) + b3 = 0, (3.96)

where

b1 =
3ε2
g(k)

σ2(k − 1)h(k)
,

b2 =
[
ε2
g(k)h(k)[Jtr(k − 1)(ε2

g(k)− g2(k))− σ4(k − 1)γ(k)]+

+ 2ε2
g(k)[ε2

g(k)h(k)Jtr(k − 1)− σ2(k − 1)γ(k)(ε2
g(k)− g(k))]

]
/ψ(k),

b3 =ε4
g(k)[(ε2

g(k)− g2(k))Jtr(k − 1)− σ4(k − 1)γ(k)]/(σ2(k − 1)ψ(k)), (3.97)

and

h(k) = rT (k)M(k − 1)r(k),

g(k) = y′(k)− rT (k)p̂(k − 1),

γ(k) = rT (k)M2(k − 1)r(k),

ψ(k) = σ4(k − 1)h2(k)[h(k)Jtr(k − 1)− σ2(k − 1)γ(k)],

Jtr(k) = trace(σ2(k)M(k)). (3.98)

The value of λ(k) is determined using the following procedure:

λ(k) =
{

0 jeżeli b3  0,
λ∗(k) jeżeli b3 < 0,

(3.99)

where λ∗(k) is the positive real root of Eqn. (3.96).
The third approach for minimizing the size of the ellipsoid concerns minimiz-

ing the value of the coefficient σ2(k) (Dasgupta and Huang, 1987). The following
constraints are introduced in order to calculate the parameter λ(k):

0 ¬ λ(k) ¬ ϑ < 1, (3.100)
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where the variable ϑ is introduced to ensure the boundedness of the matrix M(k).
For such conditions, λ(k) is described by the expression

λ(k) =
{

0 if γ(k)  0,
λ∗(k) if γ(k) < 0,

(3.101)

where
λ∗(k) = min(ϑ, ε(k)). (3.102)

In the previous formulae the following variables were introduced:

γ(k) =
ε2
g(k)− σ2(k − 1)

g2(k)
, (3.103)

ε(k) =





ϑ if g(k) = 0,
1−γ(k)

2 if h(k) = 1,
ϑ if γ(k)(h(k)− 1) + 1 ¬ 0,

1
1−h(k)

(
1−

√
h(k)

γ(k)(h(k)−1)+1

)
if γ(k)(h(k)− 1) + 1 > 0,

(3.104)

and the variables g(k) and h(k) were defined by Eqn. (3.98).
The shown variant of the BEA algorithm is also called the degenerate minimal

volume algorithm because the procedure is not able to find the minimal ellipsoid
but successively finds ellipsoids with a smaller volume.

3.4.1. Calculating model uncertainty using the Outer Bounding Ellipsoid
algorithm

In the previous section the approach for calculating the parameters of the model
using the OBE algorithm was shown; however, in the context of fault detection
a very important task is to determine the confidence interval for the output of
the model based on known admissible set of parameters defined for that model.
In the previous sections it was shown that the Takagi-Sugeno N-F network can
be viewed in the form of the LP system, thus all deliberations conducted here
for such systems are also true for Takagi-Sugeno models. The confidence interval
for the output of the model with parameters determined by the OBE method is
calculated similarly to the approach used in the case of the BEA algorithm. Two
worst cases are chosen in the form of parameter vectors belonging to the ellipsoid
which generate correspondingly the smallest possible and the biggest possible value
of the model output:

rT (k)p̂−
√
rT (k)Mr(k) ¬ rT (k)p ¬ rT (k)p̂+

√
rT (k)Mr(k), (3.105)

where M is the matrix determining the orientation of the ellipsoid, p̂ is the vector
defining the center of the ellipsoid. The above-mentioned formulae result from the
analysis of the size of the ellipsoid, as is shown in Fig. 3.8.
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Fig. 3.8 . Determining the confidence interval by analyzing the size of the ellipsoid

For such a confidence interval defined for the model, the corresponding con-
fidence interval for the system is defined by means of the following inequalities:

rT (k)p̂−
√
rT (k)Mr(k)− εg(k) ¬ y′(k) ¬

rT (k)p̂+
√
rT (k)Mr(k) + εg(k), (3.106)

where εg(k) is a constraint introduced in the formulae (3.79)
This work deals with the problem of fault detection in real industrial systems

using N-F models, so it must be assumed that input signals are uncertain, like
output signals of the model. Such an assumption requires some modifications in
the above procedure for calculating the confidence interval. Similarly like for the
BEA algorithm, let us assume that the errors of particular inputs are bounded:

−egi (k) ¬ ei(k) ¬ egi (k). (3.107)

For such constraints, the confidence interval for the output is given by means of
the following inequalities:

(r′(k))T p̂+
n∑

i=1

sgn(p̂i)p̂ie
g
i (k)−

√
(r̂′(k))TMr̂′(k)) ¬ rT (k)p ¬

(r′(k))T p̂+
n∑

i=1

sgn(p̂i)p̂ie
g
i (k) +

√
(r̂′(k))TMr̂′(k)), (3.108)

where
r̂′i(k) = r′i(k) + sgn(r′i(k))egi (k). (3.109)

The presented constraints depend on the sign of the parameters and the sign of the
parameters is unknown, thus it is required to replace each parameter with the dif-
ference of two positive parameters, as was done for the BEA algorithm (3.60). This
approach allows using the discussed method to determine the confidence interval
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for the output of the Takagi-Sugeno N-F network. The only required modification
regards the replacing of the original input variables with modified input variables,
as was described in Section 3.2.2. In order to use the method for calculating the
confidence interval for dynamic systems, the approach presented in Section 3.3.4
must be considered.

3.5. Summary

A lot of different algorithms for estimating the parameters of models using the
available measurements are widely presented in scientific literature. However, these
methods rarely ensure the high level of reliability required in the case of diagnostic
problems. Reliability may be defined in the form of robustness against disturbances
that corrupt measurements. Therefore, a robust fault detection system should be
able to tolerate disturbances in order to avoid the generation of false alarms. The
well-known approach that ensures robustness against disturbances is based on the
estimation of the confidence interval for the output of the model, which should
include the correct value of the model output. Obviously, the confidence interval is
calculated using the available knowledge about the range of disturbances which are
the reasons for model uncertainty. From the diagnostic point of view the confidence
interval should be calculated in such a way that it could represent the worst
scenario corresponding to the highest level of disturbances. This approach makes
the avoidance of false alarms possible but at the same time it reduces the sensitivity
of the system to real faults due to the wide confidence interval. In order to overcome
this problem, all available knowledge about disturbances must be used to minimize
the confidence interval to an acceptable size. The problem of determining the
confidence interval is strongly related to the problem of parameter estimation due
to the fact that parameters are estimated using corrupted measurements.

This chapter presents two approaches to tackle the problem of N-F model
uncertainty and the estimation of its parameters. The first approach is based on
the statistical method, which can be used to estimate the uncertainty of the mod-
el obtained using the LS method, and the second approach is based on the BEA
method, which can be used to estimate model parameters and to calculate mod-
el uncertainty as well. Both methods are applicable only to LP systems, and in
the case of non-linear systems linearization around the working point is required.
Unfortunately, this approach can introduce some unprecision into the confidence
interval, thus the required reliability of fault detection may be deteriorated. There-
fore in this work an alternative approach is proposed to overcome the problem. A
non-linear system in the form of the Takagi-Sugeno N-F network is converted to
an LP system assuming that the consequents of fuzzy rules have the form of linear
models and the parameters of fuzzy sets are known because they are determined
earlier with another estimation procedure.

The practical usefulness of the methods of parameter estimation or model un-
certainty determination is very important in the context of fault detection for real
systems. Unfortunately, the LS method and the statistical approach do not satisfy
these criteria due to the fact that severe assumptions concerning disturbances have
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to be fulfilled in order to make the use of those methods possible. These assump-
tions restrict the use of the methods to systems that are corrupted by disturbances,
which are very rarely met in reality (normal distribution and expectation equal to
0). The application of these methods without fulfilled assumptions usually leads
to strongly inaccurate models, which in the case of diagnostics is unacceptable.
The solution to these problems is the BEA method, which requires only a range
of disturbances to work properly. The simplest approach states that the output of
the model is the only uncertain variable, but from the practical point of view the
inputs of the model must be usually treated like uncertain variables as well. This
case is taken into account in the modified BEA method also presented in this chap-
ter. Dynamic autoregressive systems are special cases of systems with uncertain
input and output variables. A special algorithm that calculates on-line the range
of errors in input variables must be employed for such systems. Unfortunately,
the computational cost of BEA methods is very high, especially the requirement
concerning the memory space is very hard to satisfy, thus the method is applicable
only to simple models. The problem can be overcome in the case of N-F models by
replacing the BEA method with the much less complicated OBE algorithm. The
computational cost of the OBE method is smaller because it only approximates
the exact admissible set of parameters (polytope) with the ellipsoid. However, the
confidence interval calculated using the admissible set of parameters and bounded
by the ellipsoid is usually more pessimistic than the real confidence interval due
to the fact that the ellipsoid encloses the real admissible set of parameters. The
important advantage of the BEA method is the fact that data required for calcu-
lating the uncertainty admissible set of parameters can be determined during the
estimation of model parameters.

The main problem concerning the presented methods is the fact that the pa-
rameters of fuzzy sets have to be known in order to recive the Takagi-Sugeno N-F
model as the LP system and to make use of the BEA or the OBE algorithm possi-
ble. The next chapter deals with this problem by proposing methods of estimating
the parameters of fuzzy sets included in the N-F model.



Chapter 4

NEURO-FUZZY NETWORK DESIGN

4.1. Introduction

The procedure of N-F network design, similarly to the other techniques, consists of
the structure identification stage and the parameter estimation stage (Rutkowska,
1997; Rutkowska, 2002). The pessimistic scenario assumes the construction of the
N-F network only on the basis of the available measurements. The main problem
is to obtain the required accuracy and transparency of the rule base in such a
situation. A lot of different methods have already been developed both for structure
selection and parameter estimation of the N-F network, but there is a demand for
better, more effective algorithms and active research is still conducted in this
area (Diez et al., 2002; Rutkowski, 2004a; Rutkowska et al., 2000; Guven and
Passino, 2001; Hadjili and Wertz, 2002; Hong and Harris, 2001; Juang and Lin,
1999; Korbicz and Kowal, 2001).

The application of N-F networks in diagnostic areas creates a demand for
suitable design procedures which would take into account the specificity of the fault
diagnosis task. An important problem from the diagnostic point of view is residual
confidence interval minimization because it makes it possible to detect a fault
appropriately early. It has to be stressed that the value of the confidence interval for
residuals depends directly on the uncertainty of the model which is used to generate
the residuals. If the confidence interval is not consistent with model uncertainty,
the fault detection system can trigger off a lot of false alarms. It is obvious in
such a situation that model uncertainty has to be considered in fault detection
threshold calculations (Patton and Chen, 1999; Witczak, 2003; Mrugalski, 2003).
It is also important to minimize model uncertainty in order to obtain a reliable
fault detection system that would be able to detect a fault fast and at an early
stage, so special procedures for N-F model design must be developed.

The present chapter deals with the problem of N-F model design for fault de-
tection applications. A general overview of the known algorithms for N-F network
structure design and parameter estimation is given. Some problems connected with
the presented algorithms in the context of their construction for fault detection
applications are indicated. A new effective algorithm for N-F network design is
developed.
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4.2. Neuro-fuzzy network design and knowledge transparency

The N-F network design procedure, similarly to neural network design algorithms,
relies mainly on quantitative knowledge in the form of the available measurements.
It is obvious in such a situation that algorithms known for neural networks can be
adapted for N-F networks due to a similar topology (Duch et al., 2000; Rutkowska,
1997). However, it should be mentioned that neural networks are treated like
black boxes, thus knowledge included in their parameters is not transparent for
the user and cannot be easily understood or analyzed. In contrast to that, N-F
networks represent knowledge in the form of fuzzy rules and so it can be understood
by the user. Systems that represent knowledge in the form of fuzzy rules are
usually called grey boxes due to the properties mentioned above. Algorithms for
neural network design do not take into consideration the criteria of knowledge
transparency, so their direct applications to N-F networks usually lead to the
construction of obscure structures (Piegat, 2003). Nevertheless, such an approach is
commonly used in practical applications because it ensures the required accuracy.
Unfortunately, it also reduces the N-F network to a black box system, so the main
advantage of the approach is lost and probably similar accuracy can be obtained
using neural networks. Algorithms for neural network design must be adjusted
to the specificity of N-F techniques in order to take advantage of the important
property, i.e. the transparency of knowledge (Lin and Cunningham, 1991; Kowal
et al., 2002; Kowal and Korbicz, 2002a; Kowal and Korbicz, 2002b; Kowal and
Korbicz, 2001).

N-F networks, similarly to fuzzy systems, store knowledge in the form of fuzzy
rules. A single fuzzy rule is responsible for a certain sector of the analysed space,
where the consequent of the rule is active. The bounds of activity areas are realized
by antecedents, which are described by fuzzy sets. The degree of the activity of the
rule can be different for different points in the area which it represents, and depend
on the shape of the membership function of the fuzzy set. Taking into account the
above facts, it can be claimed that the transparency of knowledge depends on the
way fuzzy rules partition the input-output space. The following conditions should
be satisfied to ensure the transparency of knowledge coded using fuzzy rules:

• the way the space is partitioned should be clear, the number of rules should
come from a natural division of the space considered,

• a single rule should group points from the input-output space that are in the
neighborhood and are similar taking into consideration significant properties,

• the granulity of the space should not be too high because it leads to small
significance of a single rule,

• the rule base should be complete,

• the rule base should be consistent.
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The specified conditions can be satisfied by introducing appropriate con-
straints during the structure selection and parameter estimation stage. Neverthe-
less, the design procedure without constraints makes it possible to build accurate
N-F systems, but the obtained knowledge is abstract and difficult to interpret
(Piegat, 2003; Babuška, 1998). Such an effect is manifested in the form of areas
in the space considered where the sum of rule fulfilments is higher than 1 due
to strong activities of several rules in the same region of the space. An opposite
situation occurs if fuzzy rules are located far away from each other and the sum of
the fulfilments of the rules is lower than 1 or even equal to 0. The situation when
the sum of fulfilments is higher than 1 can be interpreted by the inconsistency
of the rules. Few rules for the same point in the input-output space have a high
degree of fulfillment and the consequents of these rules do not describe properly
the local properties of the analysed area of the space, so the transparency of these
rules is lost. The situation when the sum of fulfillments is lower than 1 means that
the obtained conclusion is justified insufficiently, so the rule base is not complete.

The following advantages arise from transparent knowledge:

• the analysis of knowledge is simplified,

• the process of N-F network design can be automated,

• the structure of the N-F network is clear,

• the parameter tuning process is simplified and shortened,

• the system is more robust against disturbances.

It is important for fuzzy rules to catch natural local dependencies in the input-
output space in order to increase the probability that the parameters of fuzzy
rules will have physical interpretation. This fact can be very useful in practical
applications, where systems built using automatic algorithms must be verified
before their implementation in order to ensure maximal reliability of the system.
Transparent knowledge makes this task easier and faster. An important condition
required for knowledge transparency states that fuzzy rules partition the input-
output space in such a way that similar regions of the space are grouped and
described by a single rule. Taking into account this fact, the design process can be
automated using clustering algorithms and adjusting the granulity of information
for the expected accuracy of the system (Abonyi et al., 2002; Babuška, 1998; Chen
et al., 1998). If the designed system does not satisfy the accuracy considered, the
system can be easily analyzed in order to find the reasons for the error, and the
accuracy can be improved by increasing the granulity of information. It is also
possible to use data-mining techniques to extract the local behavior of the process
in order to initialize the parameters of the N-F network (Geva, 1999; Jin, 2000;
Setnes, 2000). Such an initialization usually significantly shortens the time required
for parameter tuning and ensures the transparency of knowledge.
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4.3. Methods of neuro-fuzzy network design

Takagi-Sugeno N-F networks can be viewed as multi-model systems which consist
of some rules, and each rule defines a single model as the consequent of the rule
(Babuška, 1998; Kowal and Korbicz, 2003; Kowal and Korbicz, 2002a; Kowal and
Korbicz, 2002b). The global N-F system is a set of Nr partial models, where Nr
determines the number of fuzzy rules. The output of the global system is calculated
as a mixture of partial model outputs. The rule fulfillment is determined by fuzzy
sets. In order to ensure the desired accuracy of the N-F system, the membership
functions of fuzzy sets must be placed properly in the input space, the number of
rules must be appropriate and the parameters of partial models must be chosen to
minimize the defined error. Two main strategies for placing fuzzy sets in the input
space can be distinguished: the first one proposes to minimize the output error of
the global model (Leith and Leithead, 1999), and the other one is based on partial
models that model the local behavior of the system (Rice and Xu, 1996; Abonyi et
al., 2002). A typical property of the first approach is to arrange fuzzy sets in the
input space in such a way that all partial models are active in the whole domain
of input variables. In this case, the accuracy of the global model is guaranteed
by the proper mixture of partial model outputs. The alternative approach does
not examine the global accuracy of the model but concentrates on partial models,
which should tune in to the local behavior of the system. In the case considered,
where the consequents of fuzzy rules are defined in the form of linear partial models
and their parameters are determined using the BEA algorithm, only the second
approach may be effectively applied to tune fuzzy sets because computation costs
of the first approach are very high due to the fact that the parameters of all
consequents must be determined in each iteration of the hypothetical algorithm.

4.3.1. Rule base declaration

The problem of rule base declaration reduces to the determination of the number of
rules required for precise description of the problem to be solved. It can be viewed
as the process of choosing the right granulity of information which is processed by
the N-F network. The analysed step of N-F model design is fundamental regarding
the accuracy of the model, its generalization properties and robustness against
disturbances. Unfortunately, there does not exist an analytical criterion which can
help to determine the optimal number of rules if only measurements are available
to build the N-F network. This is so because it is hard to estimate the influence of
rule base selection on the accuracy of the whole N-F model at this stage of model
design. Only general directions concerning structure selection are known, which
recommend to find a certain compromise between structure complexity and the
accuracy of operation (Osowski, 1996; Duch et al., 2000). It is important not to
pursuit the accuracy of the model at all costs because the generalization properties
of the model are lost, the structure of the model is very complex and the model is
not robust against disturbances.
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4.3.1.1. Grid methods

The simplest method used to determine the number of rules is based on generating
a uniformly distributed grid of rules in the input space (Fig. 4.1). The usage of such
an approach is limited only to simple systems with a small number of inputs. The
approach does not work well for more complicated systems because it generates
a combinatorial explosion of rules, which make this method useless. Practically,
the described method does not help the designer to choose the right number of
rules but only limits the number of all possible configurations of rules by using
the uniformly distributed grid, so the indicated problem is still open. A certain
rationalization of the method introduces the approach which proposes to partition
the input space into a great number of small areas with a single rule generated
for each area. Next, adjacent rules are tested to determine the similarity between
them using the chosen criterion (Yen and Wang, 1999; Pomares et al., 2000). A
sample similarity criterion is expressed by the following formula:

S(A,B) =
M(A ∩B)

M(A) +M(B)−M(A ∩B)
, (4.1)

where A and B are adjacent multidimensional fuzzy sets and the expression M(A)
determines the size of the fuzzy set A:

M(A) =
∫
· · ·
∫

D

A(x1, . . . , xn) dx1 . . . dxn. (4.2)

Unfortunately, this method requires to check the accuracy of the N-F network
after each step of the algorithm, so all stages of N-F network design must be
completed and the procedure is time consuming. The algorithm can be simplified
by introducing the value γ, and if all values Si are smaller than γ, the algorithm
can be stopped. However, the procedure is simplified, but there is no certainty
that the assumed accuracy of the N-F network will be obtained, and it is hard to
determine the right value of γ.

Fig. 4.1 . Grid partition method



4. Neuro-fuzzy network design 59

4.3.1.2. Clustering algorithms

Fuzzy clustering algorithms are another technique which is often used for fuzzy
rule generation (Bezdek, 1981; Kaymak and Setnes, 2002; Kirshnapuram and Kim,
1999; Chen et al., 1998; Chiu, 1994; Babuška, 1998). The idea of this approach
is to find natural groups of data in order to apply to each group one fuzzy rule
(Babuška, 1998). Generally, clustering algorithms can be divided into two main
classes, i.e. hard clustering and fuzzy clustering. It seems to be natural to use fuzzy
clustering algorithms in the case of N-F networks. The task of fuzzy clustering is
usually reduced to finding the local minimum of the nonlinear cost function, defined
by the following expression:

J(X;U ,V ) =
c∑

i=1

N∑

k=1

µmikD
2
ik, (4.3)

where the matrix U contains the membership degrees of data points from the
matrix to the defined clusters X, V = [v1,v2, . . . ,vc],vi ∈ Rn is a matrix which
defines the centers of the clusters, Dik is a metric used to determine the distance
between data points and cluster centers:

D2
ik = ‖xk − vi‖2 = (xk − vi)TA(xk − vi), (4.4)

and the parameter m takes values from 1 to ∞ and determines the degree of
fuzziness of clusters. The cost function (4.3) can be viewed as a total variance of
the data xk with respect to the cluster centers vi. The matrix A which occurs in the
expression (4.4) is used to tune the shape and orientation of clusters in the space.
In the simplest approach, the matrix A is unitary, thus the distance measure Dik

is an Euclidean norm. The fuzzy clustering algorithm which uses such a norm to
calculate the distance between data points and cluster centers is called the Fuzzy C-
Mean (FCM) (Bezdek, 1981). The procedure used to find the minimum of the cost
function (4.3) usually employs the Picard iteration through first-order conditions
for stationary points of the cost function. A family of clustering algorithms can
be derived from the basic FCM by developing new approaches for calculating the
matrix A. The family of such fuzzy clustering algorithms can be divided into two
classes:

• adaptive distance measure Dik algorithms (i.e. the Gustafson-Kessel algo-
rithm, the Gath and Geva algorithm) (Gath and Geva, 1989; Gustaffson
and Kessel, 1975),

• algorithms which use cluster prototypes in the form of linear or nonlinear
subspaces of data space (i.e. Fuzzy C-Varieties (FCV), Fuzzy C-Elliptotypes
(FCE), Fuzzy C-Regression Models (FCRM))(Babuška, 1998).

The main disadvantage of the FCM algorithm is the fact that the algorithm
strongly prefers spherical clusters due to a fixed distance norm. The algorithm
detects spherical clusters even if such clusters do not exist. A remedy for such a
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drawback is the adaptive distance measure. Similarly to the FCM, the Gustafson-
Kessel algorithm uses the matrices U and V as optimization variables in the cost
functional (4.3), but in opposition to the standard FCM scheme also the matrices
Ai are treated as optimization variables. The presented modifications make it
possible to detect clusters of different geometrical shapes because each cluster
has its own norm inducing the matrix Ai. Unfortunately, the Gustafson-Kessel
algorithm is able to detect clusters of similar sizes only. In order to overcome this
problem, the Gath and Geva algorithm generates the distance measure Dik using
the fuzzy maximum likelihood estimates proposed in (Bezdek and Dunn, 1975),
and is able to detect clusters of varying shapes, volumes and densities.

Another approach which makes it possible to detect clusters different than
spherical ones states that a cluster can be described by its center but also by the
function that determines its shape. The simplest method from the family of such
clustering methods is the FCV algorithm. The main idea behind this algorithm is
to measure the distance of data from r-dimensional linear varieties. The distance
measure is defined in the form of a squared orthogonal distance from the data
point to linear variety:

Dik = ‖xk − vi‖2 −
r∑

j=1

(xk − (vi, sij))2, (4.5)

where vi is a point which the variety passes, si1, si2, . . . , sir is an r-tuple of lin-
early independent vectors which spans the hyperplane, and (, ) denotes the scalar
product. Thanks to such an approach the algorithm is able to detect clusters lying
in r-dimensional linear subspaces of Rn. Nevertheless, the algorithm has a draw-
back, i.e. linear varieties are not limited in size so the algorithm tends to connect
similar linear clusters which are physically well separated.

The FCE algorithm, which is a combination of the FCM and FCV, has been
developed in order to tackle the above-mentioned problem. A new coefficient in
the form of the center of gravity of the cluster vi is used to describe the cluster.
The distance measure employed in the FCE algorithm is a mixture of distance
measures known for FCM and FCV:

Dik = αDFCM
ik + (1− α)DFCV

ik , (4.6)

where the coefficient α decides about the shape of clusters.
The main disadvantage of the presented methods in the context of N-F net-

work design is the fact that these algorithms do not take into account the accuracy
of the N-F network in the cost function. In some sense this problem is solved by the
FCRM clustering algorithm. The algorithm partitions the data space and simul-
taneously estimates the parameters of regression models associated with clusters.
The prediction error defined for regression models has the following form:

Eik(θi) = [yk − fi(xk; θi)]2, (4.7)

where θi is a vector of model parameters. The introduced error is employed to de-
fine the distance measure used to calculate the distance between data and clusters,
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thus the cost functional is given by

J(X;U , {θi}) =
c∑

i=1

N∑

k=1

µmikEik(θi). (4.8)

The algorithm inherits from the FCV algorithm a specific inconvenience, i.e.
the clusters are not limited in size. Sometimes this fact can cause wrong parti-
tioning of the data space by the algorithm. The main advantage of the algorithm
in the context of N-F network design is the possibility to derive the parameters
of linear consequents from regression models used to describe clusters. However,
such models ensure precise behavior of individual rules only and do not take into
account the global behavior of the N-F model (but other techniques do not take
into account this fact at all).

The presented algorithms have one main disadvantage if they are used for
rule base declaration because they are not able to determine the proper number of
clusters which should be used to partition the data space. Unappropriate selection
of clusters is manifested in weak cluster separation and weak cluster concentration,
therefore the rule base extracted from clusters is not correct. Two main strategies
for estimating the optimal number of clusters can be distinguished. The first one is
based on repeating the clustering procedure for different numbers of clusters, and
then the best configuration in some sense is chosen (Babuška, 1998; Kothari and
Pitts, 1999). The following criteria employed to evaluate the quality of clustering
are commonly used:

• fuzzy hypervolume:

Vh =
c∑

i=1

[det(F i)]
1
2 , (4.9)

where F i is a cluster covariance matrix; a properly partitioned data space is
characterized by small values of Vh;

• average cluster density:

DA =
1
c

c∑

i=1

Si

[det(F i)]
1
2
, (4.10)

where Si =
∑
k µik, ∀k such that (xk−vi)TF−1

i (xk−vi); good clustering
is indicated by large values of DA;

• cluster density:

DP =
∑c
i=1 Si
Vh

, (4.11)

where, similarly to the previous criterion, a larger value of DP indicates
better clustering results;
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• within-cluster distance (Kirshnapuram and Freg, 1992):

WT =
c∑

i=1

N∑

k=1

µikD
2
ik, (4.12)

• average within-cluster distance (Kirshnapuram and Freg, 1992):

WA =
1
c

c∑

i=1

∑N
k=1 µikD

2
ik∑N

k=1 µik
, (4.13)

• average cluster flatness (Babuška and Verbruggen, 1995):

FA =
1
c

c∑

i=1

λimin
λimax

, (4.14)

where λimin and λimax are the minimum and the maximum eigenvalue of the
fuzzy covariance matrix F i, respectively. The criterion considered is used
together with the sum of square errors:

E =
1
N

N∑

k=1

(yk − ŷk)2, (4.15)

where yk and ŷk are true data and the predicted output, respectively, and N
is the number of data items. The performance criterion is obtained by the
combination of (4.14) with (4.15):

EF = FAE. (4.16)

The criterion given prefers solutions with a small number of flat clusters
over partitioning using a large number of clusters if both solutions lead to a
similar error E.

The presented techniques, which help to determine the number of clusters,
state that the whole procedure is repeated for different cluster configurations c.
Sometimes the procedure must be repeated for the same number of clusters due to
a problem with the optimization algorithm, which can get stuck in local minima.
For each iteration of the algorithm the value of the chosen criterion is calculated
and the best configuration of clusters is determined. The problem of the presented
method is a high computational cost of the algorithm and the necessity to define
empirically thresholds for measures in order to stop the searching procedure. It
should be noticed that the proposed measures do not minimize the modelling error
or the uncertainty of the model, which in the case of diagnostic applications is a
very important issue.

The second strategy for detecting the optimal number of clusters proposes to
generate a large number of clusters in order to minimize the number of clusters
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by merging compatible ones (Babuška, 1998). The algorithm requires the criteria
to measure the similarity of clusters (Kaymak and Babuška, 1995). The following
similarity measures are commonly used:

s1
ij = |φTi φj |  k1, (4.17)

s2
ij = ‖v′i − v

′
j‖ ¬ k2, (4.18)

where φi i φj are unit eigenvectors for the fuzzy covariance matrices F i and F j ,
v
′
i and v

′
j are normalized cluster centers:

v
′
k =

vk − v̄
σk

. (4.19)

The presented approach is computationally less complex than the previous one,
which tested different cluster configurations, but again the problem with defining
suitable thresholds controlling the merging procedure arises. It is hard to determine
if the clusters are compatible enough to be joined. The problem is crucial due to the
fact that the value of the merging threshold decides indirectly about the number
of clusters.

Among the different clustering algorithms there exist a group of grid-type
clustering algorithms, which can be used to declare the rule base. The mountain
method is a sample algorithm from this class (Yager and Filev, 1994; Yager and
Filev, 1994). It does not require knowledge about the number of clusters and this
value is determined automatically by the clustering procedure. However, the num-
ber of the found clusters strongly depends on the values of coefficients, which must
be defined by the designer at the beginning of the procedure, so the application of
the algorithm is difficult.

The discussed clustering methods despite their numerous disadvantages are
used in practical applications to build, e.g. N-F networks. An example is the tool-
box ANFIS (Adaptive Network Based Fuzzy Inference System) from MATLAB
(Jang, 1993), which uses subtractive clustering to determine the number of rules
and to initialize the parameters of the rules.

4.3.1.3. Maximal error method

The idea of the maximal error method is to estimate roughly the system considered
with a single fuzzy rule (Higgins and Goodman, 1994). Next, the N-F network is
built and the output error for all samples is calculated:

ei = (yi − ŷi)2. (4.20)

The data point for which N-F networks make the maximal error is determined
and it becomes the center of a new fuzzy rule. The procedure is repeated until the
expected level of the error is reached (4.15). The method is simple but has a lot
of disadvantages: it is not robust against disturbances, in some cases it generates
a lot of rules, the parameters of fuzzy rules do not have physical interpretation. A
modification of the method was proposed in (Piegat, 2003), where rules modelling
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the error are added in each step of the algorithm. The output of the rules which
models the error is subtracted from the output of the main N-F model. Unfor-
tunately, this method can lead to complicated structures of N-F networks and is
rarely used in practice.

4.3.1.4. Search algorithms

The idea of the method is to build a tree which contains nodes. Each node stores
information about the structure of the N-F network. Next, a search algorithm is
used to find the optimal structure of the N-F network (Doering et al., 1997). There
exist two main strategies for searching for the solution: an uninformed search and
an informed search. The uninformed search is very easy to implement but the
computational costs are too high, thus only informed strategies can be effectively
applied to build the N-F network. A special algorithm LOLIMOT (Local Linear
Model Tree) for this purpose was proposed in (Nelles et al., 2000). The procedure
begins by defining the hypercube in the input space. A simple N-F model with
one rule is built to cover the area bounded by the hypercube. Next, the hypercube
is partitioned into smaller hypercubes and for each hypercube one fuzzy rule is
generated. From the set of possible hypercubes, the hypercube that is responsible
for the highest error is always chosen for the partition procedure. A sample tree
obtained during the search for the structure of the N-F network is shown in Fig.
4.2. The procedure is repeated until the desired accuracy of the model is obtained.
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Fig. 4.2 . Sample partition procedure

4.3.2. Parameter tuning

Parameter tuning is the last stage of the N-F network design procedure. The main
aim of this stage is to achieve the desired precision of the N-F network by choosing
suitable values of parameters (Rutkowska, 1997; Rutkowska et al., 1997; Shi and
Mizumoto, 2000; Wang and Mendel, 1992). In the case of the Takagi-Sugeno N-F
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network two types of parameters can be distinguished: parameters of fuzzy sets and
parameters of consequents. The former are stored in the nodes from the 1st layer
of the N-F structure, which is shown in Fig. 2.9. Each node stores the same set of
parameters which describe a single fuzzy set. If Gaussian membership functions
are used to describe the fuzzy set,

µA(x) = e−( x−cd )2
, (4.21)

each node has two parameters c and d, where c is the center of the Gaussian
function and d is the width. Of course, other membership functions can have
different parameters. In the case of parameters stored in consequents, they can be
treated like weights of artificial neurons due to the fact that each element of the
4th layer has on the input a single weight, which is used to multiply an adequate
input signal. If the consequents have a linear form,

y =
n∑

i=0

wixi, (4.22)

then the nodes from the 4th layer can be treated like linear neurons with a set
of weights w = [w0, w1, ..., wn], where w0 is a bias. The parameters from the 1st
layer and from the 4th layer have different physical interpretation thus different
algorithms can be employed for their tuning. The following approaches are used:

• parameters from the 1st layer are tuned using gradient descent algorithms
and parameters of linear neurons from the 4th layer are determined using
the LS algorithm

• parameters from the 1st layer are tuned using evolutionary algorithms and
parameters of linear neurons are tuned using the LS algorithm,

• parameters from the 1st layer are determined using the clustering algorithm
and parameters of linear neurons are tuned using the LS algorithm.

It is also possible to apply the same optimization algorithms for both types of pa-
rameters, i.e. the gradient descent approach or the evolutionary algorithm. Some-
times clustering algorithms are used to initialize the parameters and then the
gradient descent approach or the evolutionary algorithm are used to tune them
precisely. The main problem of the presented strategies is a lack of analysis con-
cerning their influence on model uncertainty. Such an analysis is indispensable if
the N-F network is applied to build a diagnostic system.

4.4. Bounded-error approach for rule base generation

The N-F network has a structure which may be easily converted to a set of fuzzy
rules. This fact is often used to determine the structure of the N-F network because
it is enough to known fuzzy rules in order to define the number of nodes in the
1st, the 2nd and the 5th layer. Moreover, information about membership functions
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and fuzzy operators can be also extracted from fuzzy rules. The identification of
the N-F network can be viewed as a two-stage procedure, which first determines
fuzzy rules and next the parameters of the fuzzy rules are tuned to minimize the
criterion

J(y′,y(s, p̂)), (4.23)

where y′ represents the output of the system, y(s, p̂) is the output of the N-F
network, s is an index that describes the chosen structure, and p̂ is the vector of
parameter estimates. Let us assume for the sake of simplicity that the N-F network
has only one output. Then the criterion (4.23) takes the following form:

J(y′,y(s, p̂)) =
N∑

k=1

(
y′(k)− y(s, p̂)(k)

)2
. (4.24)

The identification procedure is to find such a structure of the N-F network and
such parameters that the following condition is satisfied:

J(y′,y(s, p̂)) ¬ e, (4.25)

where e is a bound put on the modelling error.
In order to test generalization properties of the structure, the available data

are divided into a learning and a testing set. The structure and parameters are
determined using the learning set and the quality of the model is tested using the
rest of the data.

The criterion (4.24) is most commonly used for the evaluation of N-F network
accuracy in the case of modelling applications. Nevertheless, specific requirements
of diagnostic applications force a modification of the criterion. The minimization
of model uncertainty in the form of the confidence interval is more important than
the minimization of sum square errors from the diagnostic point of view. Such a
fact is considered in the following criterion:

J(ymax(s, p̂),ymin(s, p̂)) =
N∑

k=1

(
ymax(s, p̂)(k)− ymin(s, p̂)(k)

)
, (4.26)

where ymax(s, p̂)(k) and ymin(s, p̂)(k) are bounds that define the confidence in-
terval for the output of the model.

Although the criterion is known, the problem of structure selection of the N-F
model is not trivial. There are no algorithms which would be able, based on the
available measurements, to determine in one step the optimal structure smin of
the N-F network. The proposed methods can be divided into two groups: discrete
optimization methods and data exploration methods. The first approach proposes
to search for the solution in the space of possible structures S. The procedure
contains also the parameter estimation stage in order to test in each iteration of the
algorithm the quality of the model. The task of searching for the optimal structure
is usually performed by informed search strategies or evolutionary algorithms.
Unfortunately, the complexity of the procedure is huge due to a large number of
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possible structures and the requirement of parameter estimation in each iteration
of the algorithm. Moreover, methods of parameter estimation can get stuck in local
minima so they must be run many times in one iteration of the main algorithm.

Taking into account the problems mentioned above, data exploration algo-
rithms seem to be less problematic than the previous approach. They usually
separate the procedure of structure identification from the parameter estimation
task. In the approach considered, data exploration algorithms should be under-
stood as a procedure which searches for natural groups of data in the data space
in order to generate for each group one rule that is able to describe important
properties of the found group. It is often advisable to use clustering algorithms
in order to detect the groups of data. In the case of Takagi-Sugeno N-F networks
with linear consequences, the task is changed into a search for approximately linear
dependencies in the data space. The number of rules with linear consequences can
be estimated based on information about the number of the found approximately
linear dependencies. Additionally, it is possible to estimate the parameters of fuzzy
sets and linear consequences based on information about the size and location of
the found approximately linear dependencies. However, the calculated parameters
usually cannot ensure the desired accuracy but they can be used as a starting
point for other methods of parameter estimation. A lot of research works in this
area confirm the effectiveness of such an approach for N-F networks structure iden-
tification (Babuška, 1998). The main advantage of the approach is the fact that
the method is not computationally complex and generates transparent knowledge.
The disadvantage of the approach is that the method is not able to guarantee the
accuracy of the generated model and the designer must have experience and a
deep knowledge about clustering algorithms in order to define the parameters of
the clustering to partition the data space properly.

4.4.1. Detection of linear dependencies

The procedure of rule base declaration using the BEA method, similarly to the
data exploration algorithm, is based on the detection of approximately linear de-
pendencies in the data space in order to generate a single fuzzy rule for each found
linear dependency. The developed approach assumes that a non-linear system can
be described by a mixture of linear partial models:

yi(k) = rT (k)pi. (4.27)

It is assumed that the number of partial models and their parameters pi are
unknown. Practically, it is impossible to ideally model the behavior of the nonlinear
system by a finite number of linear partial models, thus it is required to define
for each partial model an acceptable level of its uncertainty. Uncertainty can be
described by the maximal error which is generated by such a model. The exact
value of the error must be defined by the designer in order to meet the demanded
accuracy of the model. The value of the mentioned coefficient has a direct impact
on the number of partial models which will be generated. It should be supposed
that a very small value of the error may cause the generation of a large number
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of partial models, while in the opposite situation the suitable accuracy of the
model can be threatened. The designer must find a certain compromise between
the accuracy of the model and its complexity, choosing an adequate value of the
coefficient ε.

The analytical form of system characteristics is usually unknown in practical
applications so it must be represented by the available measurements. In order to
represent the characteristics of the system properly, a suitable experiment must
be performed and the system must be actuated to make it possible to catch its
behavior at many working points. The result of the experiment has the form of a
set of N data points:

R =



r(1)

...
r(N)


 ,y′ =




y′(1)
...

y′(N)


 .

The obtained measurements represent the characteristics of the system and are
used to detect approximately linear dependencies within system characteristics.
Let us simplify for the moment the problem and assume that a single approxi-
mately linear dependency must be detected in a given data set. The main idea of
the developed algorithm is to bound the error made by the single partial model:

ε ¬ rT (k)p− y′(k) ¬ ε. (4.28)

The output of the system in the approximately linear part of its characteristics
can be given by the following equation:

y′i(k) = rT (k)pi + ε, (4.29)

where ε describes the permitted deviation for linear behavior of the system in the
defined interval of the characteristics. In such a case the task can be formulated
as the search for the set of data points which compose the approximately linear
dependency in the data space. Additionally, it must be assumed that points that
form linearity have to lay in the neighborhood. The developed procedure consists
of the following steps:

• from the set of N measurements, a single data point is selected (in the first
step of the algorithm the point which represents the beginning of system
characteristics is selected),

• for the selected data point and defined ε, a feasible set of parameters is
determined using the BEA algorithm:

S1 = {p ∈ Rn | y′(1)− ε ¬ rT (1)p ¬ y′(1) + ε}, (4.30)

• the next data point that lays nearby the previous point is selected,

• the feasible set of parameters S2 is determined using the BEA algorithm,
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• if the product of the set S1 and S2 is non-empty, a new set is generated: S =
S1∩S2. The new set S is used to check the consistency of the remaining data
points with already tested ones. If the product of the discussed sets is empty,
the algorithm is stopped because the current data point is not consistent
with the previous data points, thus it cannot compose an approximately
linear dependency.

• the procedure is repeated for the remaining data points until the conditions
presented above are satisfied.

The sample four steps of the procedure are presented in Fig. 4.3.
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Fig. 4.3 . Set S in the successive iterations of the algorithm

The presented algorithm can be used to detect a single linear dependency
starting from the beginning of system characteristics. In order to determine the
N-F model structure it is required to detect all approximately linear dependencies
within system characteristics. For this purpose a modified algorithm, which is
based on the discussed approach, has been developed (Fig. 4.4). The following
notation is introduced in the presented scheme: X – sorted set of data points, L –
set of data points which form an approximately linear dependency, s – single data
point tested for consistency with data points from the set L, S – feasible set of
parameters determined for the data point s, P – polytope which determines the
feasible set of parameters for data points from the set L, e – acceptable error of
the partial model.

In the first step of the algorithm all data points are sorted with respect to the
defined starting point. Next, a hypercube large enough is defined in the parameter
space, which is used to test the consistency of data points. The error e is chosen
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Fig. 4.4 . Algorithm for rule base declaration

by the designer to ensure the accuracy of all partial models. The successive data
points are drawn from the sorted table, which stores all data points. The main
idea of the approach is to compute for each data point two hyperplanes which
determine the feasible set of parameters. Such information is next used to decide
if the chosen data points form with the previously tested points an approximately
linear dependency. If the data point is not consistent with the previously tested
points with the assumed error e, the search procedure is stopped and the fuzzy
rule is generated using data points which are consistent with each other. The
point which interrupts the procedure becomes the starting point and the whole
procedure is repeated in order to find the next approximately linear dependency.
The algorithm is repeated until the table with the available measurements is empty.
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It is also possible that the algorithm stops but the table with measurements is not
empty. In such a situation the whole procedure must be repeated for a bigger
value of e because at least one data point is not consistent with the other data
points. The algorithm is able to detect such problems and inform about them the
designer, who must change the initial configuration of the algorithm. Finally, the
results generated by the algorithm are used to declare the rule base, which next is
used to build the N-F model. In order to illustrate the functioning of the algorithm
the example 4.1 is presented.

Example 4.1

The following function is given:

y =





x+ 1 for x ∈ [0; 5],
−x+ 11 for x ∈ (5; 10],
0.5x− 4 for x ∈ (10; 15].

Measurements are disturbed by the uniformly distributed U(0, 1) random variable.
The acceptable level of error defined for partial models has the value ε = 0.4.
The algorithm detects three approximately linear dependencies for such an initial
configuration. Based on this, three fuzzy rules are generated and then used to build
the N-F model. The results obtained for the designed N-F model are presented in
Fig. 4.5.
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4.5. Summary

The problem of structure selection is a very important step in the context of
the N-F model design procedure. Unfortunately, there do not exist algorithms
which would be able to choose an optimal structure of the N-F model. The work
concentrates on the problem of rule selection, which should ensure the desired
accuracy of the N-F model. Taking into account diagnostic tasks, an algorithm
which helps the designer to choose a suitable structure of the N-F model was
formulated. It is based on the BEA algorithm and its main task is to determine
the number of approximately linear dependencies present in the characteristics
of the system. Next, for each found local linear dependency a single fuzzy rule
is generated. Moreover, the procedure is able to determine the spacing of fuzzy
sets which represent antecedents, and the BEA algorithm is used to estimate the
parameters of partial models which represent linear consequents of rules. The main
problem of the algorithm was to define the concept of the approximately linear
dependency. This is done by introducing the maximal error for the linear partial
model, which is used to evaluate the quality of linear approximation. Next, data
points are tested in order to check if they form an approximately linear dependency
using the defined error. The procedure is repeated for all available measurements.
However, it must be pointed out that the procedure can end unsuccessfully if at
least one data point is not associated with an approximately linear dependency. It
is an effect of the situation when the designer defines too small a value of the error
ε. In this case the whole procedure should be repeated for a larger value of the error
ε. The main task of the designer is to find a trade-off between model accuracy and
complexity by choosing a proper value of the error ε. The developed algorithm has
one main advantage in relation to alternative approaches, i.e. clustering algorithms,
because only one parameter ε must be defined to start the algorithm. Moreover, the
value of this parameter has a direct impact on the accuracy of the obtained model.
In the case of clustering algorithms usually few initial parameters must be defined,
thus the designer should have a deep knowledge about and experience in using such
algorithms. An extra advantage of the proposed algorithm is the fact that the
parameters of partial models can be directly obtained form the results generated
by the method. If such parameters do not guarantee the required accuracy of the
global model, then simple tuning of these parameters usually makes it possible to
meet the required global accuracy.



Chapter 5

APPLICATION OF NEURO-FUZZY NETWORKS
TO DIAGNOSTICS

5.1. Introduction

The reliability, safety and availability of industrial plants play an important role in
operational use. It is important especially nowadays when industrial installations
and control algorithms are becoming more and more sophisticated, and economy
presses us to reduce the downtime of plants and to shorten the time necessary
to create a product. Simple technical systems can be inspected by the human
expert but complex industrial systems require automated diagnostics in order to
determine the location of and reason for the fault fast and precisely. (Calado et
al., 2003; Kowal and Korbicz, 2000b; Kowal and Korbicz, 2000c; Kowal, 2000; Koś-
cielny, 2001). The model-based fault detection strategy is the subject of intensive
research in the area of diagnostics due to many important properties:

• the ability to detect small-scale faults,

• the solution is relatively cheap because sophisticated equipment is not re-
quired; suitable software and computer is usually enough,

• the installation of the fault diagnosis system usually does not require inter-
vention in the existed system; the installed sensors can usually be used for
data acquisition.

The method is based on residual generation by comparing the estimates of the
measured signals with their originals. Then the residuals are used to detect and
isolate faults. The most common approach to form residuals is based on the dif-
ference between the estimate and the original signal, thus prompt fault detection
requires accurate models of processes and leads directly to the problem of system
identification. Real processes are usually dynamic, non-linear and stochastic, and
analytical approaches to identification are not suitable for them. An alternative
approach proposes to use artificial intelligence methods like neural networks, fuzzy
systems, neuro-fuzzy systems and expert systems (Korbicz et al., 2004; Obuchow-
icz, 2003; Chan et al., 1999; Chen and Linkens, 2001). The present work focuses on
N-F networks. The attractiveness of N-F methods arises from the fact that they can
be employed when there are no phenomenological models available. In such a case,
N-F models can be identified using simultaneously quantitative and qualitative
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knowledge, i.e. a human expert may code his/her knowledge in the form of fuzzy
rules, which are then introduced into the N-F system (Rutkowska, 2003; Rutkows-
ka, 1997). The N-F model can be also identified using the available data and meth-
ods of learning known for neural networks, e.g. gradient descent methods. Two
types of N-F networks are commonly used for the modelling purpose: the Mam-
dani N-F network and the Takagi-Sugeno N-F network. Generally, Takagi-Sugeno
structures have better performance qualities in modelling than other structures
due to their possibility to decompose non-linear systems into a collection of local
linear models.

In real situations, regardless of the kind of identification method used, there
is always a model-reality mismatch, which arises usually from wrong assumptions
about the structure of the model or the type of disturbances which corrupt mea-
surements. The uncertainty of the model can dramatically decrease the reliability
of fault detection, thus robust fault detection systems under model uncertainty
are required (Dinca et al., 1999). Two main approaches can be used to overcome
the problem: the active approach, which is based on robust observers, and the
passive approach, which is based on the adaptive threshold technique (Patton and
Chen, 1999). In the present work the adaptive threshold technique is employed to
implement a robust model-based fault detection system. This technique is based on
knowledge about the uncertainty of the model. Unfortunately, there do not exist
effective methods that would allow determining the uncertainty of non-linear sys-
tems. The existing methods like the statistical approach or the BEA method can
be effectively applied only to linear systems. Several different approaches for neural
models were proposed in order to overcome the problem. Linearization around the
working point and applying the BEA algorithm to calculate uncertainty were pro-
posed in (Witczak and Mrugalski, 2003). An interesting approach, which does not
require linearization, was proposed in (Mrugalski, 2003), where GMDH networks
are used to build robust model-based fault detection systems.

The Takagi-Sugeno N-F network is a suitable method for building models for
fault detection systems due to many positive properties mentioned above. Unfor-
tunately, there do not exist methods that would allow estimating the uncertainty
of such a model in terms of quantity. Therefore, the application of N-F models
was limited because it was hard to assure robustness against model uncertainty,
which in the case of fault detection is very important. The present work proposes a
solution to this problem in the form of an algorithm that uses the BEA or the OBE
algorithm to calculate the uncertainty of the Takagi-Sugeno N-F model. A robust
fault detection system is obtained using knowledge about N-F model uncertainty
to calculate the adaptive threshold.

The present chapter presents fundamental information about model-based
fault detection, and then the adaptive threshold technique is described. In order
to prove the effectiveness of the developed algorithms, they are applied to fault
detection of a valve that is part of a technical installation in the Lublin sugar
factory, and to fault detection of a laboratory electrical engine. The experimental
results are presented and described in the final part of the chapter.
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5.2. Diagnostics of technical processes

The main aim of diagnostic systems is to evaluate the state of the technical system
or its process of exploitation in order to investigate the model-reality mismatch.
The first approach is based on the inspection of the entire process and the second
one assumes separate inspection of individual components of the process. Four
main groups of elements can be distinguished in industrial processes: controllers,
actuators, sensors and other plants of the installation. Specific sorts of faults are
associated with every group of elements. Besides faults, the fault detection system
must deal with the problem of disturbances that corrupt measurements, and model
uncertainty. However, these problems are not a direct danger for the process,
although they can lead to incorrect detections and false alarms. The main property
of a correct fault detection system is being sensitive to faults and robust against
disturbances as much as possible.

The fault diagnosis task can be divided into three steps (Fig. 5.1): detection,
localization and identification (Isermann and Ball, 1997; Korbicz et al., 2004).
Fault detection is to signal the fact of fault appearance in the process. The main
task of localization is to determine the place and time of fault appearance, whereas
the identification procedure is used to evaluate the size, character of and reason for
the fault. The fault detection step is responsible for generating symptoms which
describe the fault. This procedure is very important because only correct symptoms
permit appropriate localization and identification. Model-based fault detection is
used to generate the residual signal, which indicates the state of the process (Fig.
5.2). The residual evaluation step covers the conversion of quantitative residual
signals into qualitative diagnostic signals, while simultaneously the decision about
fault appearance must be made. Residuals are usually defined in the form of the

Detection

Localization

Identification

symptoms

Fig. 5.1 . Three steps of the fault diagnosis procedure
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difference between the output of the process y′(k) and the output of the model
y(k):

er(k) = y′(k)− y(k). (5.1)

fd

PROCESS

Residual
generator

Residual
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u y’

Model
y e s

Fault detection

Fig. 5.2 . Model-based fault detection

The residual signal should be close to 0 for the fault-free mode and consider-
ably different from 0 in the case of the faulty mode. Therefore, it is very important
to build an accurate model of the process in order to avoid false alarms generat-
ed by residuals different from 0 although the process works in nominal conditions.
Unfortunately, in reality, models are uncertain, so model-based fault detection sys-
tems can work incorrectly. For this reason robustness against model uncertainty is
a very advisable property for the fault detection system. Such robustness can be
obtained by using the adaptive threshold technique for the residual signal.

5.3. Fault detection with the adaptive threshold method

The main task of the fault detection system is to signal the fault and generate
the symptoms of the fault. The fault detection procedure using the model-based
scheme reduces to residual calculation and evaluation. The residual evaluation
procedure is critical for correct fault detection because it is responsible for alarm
activation. In order to avoid false alarms, thresholds are used to define the interval
which determines the values of residuals that correspond to the fault-free mode.
The evaluation algorithm is based on the fact that residual signals exceed the
defined interval in the case of a fault and should be inside the interval in the
fault-free mode.

The residual signal is affected by model uncertainty and disturbances. The
uncertainty of the residual signal can change with time but the constant values
of thresholds must take into account the worst scenario with the highest possible
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uncertainty. This usually produces unacceptably big values of thresholds, thus the
sensitivity of detection is too low. Of course, thresholds can be attenuated in order
to increase sensitivity but such a solution leads to false alarms, and the reliability
of the fault detection system is lost. The adaptive threshold technique can be used
to overcome this problem (Frank and Ding, 1997; Seliger and Frank, 2000). The
adaptive approach proposes to calculate thresholds online for each moment in time
and the values of the thresholds depend on model uncertainty and disturbances at
the moment. The technique of the constant threshold is presented schematically
in Fig. 5.3. The fault is detected at the moment 295 for the constant threshold.
The speed of detection can be improved by using lower thresholds, but in this case
false alarms appear in the interval 0−200. The adaptive threshold allows detecting
the fault at the moment 200 and false alarms are not generated, so the method is
robust against disturbances. Correct fault detection is also very important in the
context of fault localization and identification. In the diagnostic system considered,
the model is implemented using the Takagi Sugeno N-F network. The uncertainty
of such a model must be calculated in order to determine the value of the adaptive
threshold. Uncertainty is represented by the interval defined for the output of the
N-F model and the interval is calculated using the approach developed in Section
3. The Takagi-Sugeno N-F network must be viewed in the form of the LP system
according to the assumptions established for the developed algorithm:

y(k) = xT (k)p, (5.2)

where the vector x(k) includes all input variables defined for all linear consequences
and multiplied by firing levels of fuzzy rules.

Fault
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discrete time
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Fig. 5.3 . Constant and adaptive threshold
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Let us assume that µi(rfs(k),pfsi ) define the firing level of the ith rule, and
φi is equal to the value µi(rfs(k),pfsi ) divided by the sum of firing levels for all
rules:

φi =
µi(rfs(k),pfsi )∑N
j=1 µj(r

fs(k),pfsj )
, (5.3)

where rfs(k) is a vector of inputs for the first layer of the N-F network , and pfsi
is a set of parameters that describe the antecedent of the ith fuzzy rule. In this
case the vector x(k) has the following form:

x(k) =




φ1r1(k)
...

φ1rn(k)
φ2r1(k)

...
φ2rn(k)

...
φNr1(k)

...
φNrn(k)




,

where r(k) = [r1(k), r2(k), . . . , rn(k)]T is a vector of input variables defined for
linear models, which represent the consequences of fuzzy rules. If the residual
signal is defined by means of the expression

er(k) = y′(k)− y(k), (5.4)

and the confidence interval determined for y′(k) using the OBE algorithm is given
by the following inequalities:

xT (k)pmin(k) + εmin(k) ¬ y′(k) ¬ xT (k)pmax(k) + εmax(k), (5.5)

then the residual er(k) must satisfy the following inequalities:

xT (k)pmin(k) + εmin(k)− y(k) ¬ er(k) ¬ xT (k)pmax(k) + εmax(k)− y(k). (5.6)

A sample fault detection procedure using the approach with the adaptive
threshold is shown in Fig. 5.4. The situation when the residual signal exceeds the
range defined by thresholds is interpreted as a fault and the alarm is activated.

In the case of the confidence interval calculated for the N-F model using the
OBE algorithm, the inequalities 5.6 are converted to the following form:

xT (k)p̂−
√
xT (k)Mx(k) ¬ xT (k)p ¬ xT (k)p̂+

√
xT (k)Mx(k), (5.7)

where M is a matrix that describes the orientation of the ellipsoid, and p̂ defines
the center of the ellipsoid.
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Fig. 5.4 . Adaptive threshold for the residual signal

The adaptive threshold for models with uncertain input variables is calculated
analogously to the method shown above. The only difference appears in the point
concerning the calculation of the confidence interval. For the OBE method, Eqn.
(3.108) is used for this purpose, and for the BEA method, Eqn. (3.66) is used.

5.4. Fault detection system for an electrical engine

Electrical DC (Direct Current) and AC (Alternating Current) engines are very
often used in many industrial applications (Leonhard, 1996). The changing con-
ditions of operation and intensive exploitation result in systematic wearing off of
individual parts of engines. This phenomenon can be interpreted as an incipient
fault, which in the final phase changes to an abrupt fault and causes big damages
in the engine. It is very important in this case to detect the fault at an early stage
and apply a special procedure to avoid the fault so that the worn off elements
can be replaced. The faults considered manifest themselves at an early stage by
a decreased efficiency, but finally, if the fault is not detected some parts of the
engine can be damaged. Thus it is important to develop a reliable fault detection
algorithm which should detect even small changes in system behavior. The tra-
ditional methods of monitoring engines require a direct inspection, so the whole
process must be stopped for the time of the inspection. Such an approach is usu-
ally time consuming and causes financial loses for the company. Another approach
uses online identification of engine parameters. Fault detection in this case is done
by monitoring the values of the parameters. Unfortunately, this method requires
a detailed mathematical model of the engine and the expert that interprets the



80 5.4. Fault detection system for an electrical engine

results must have a deep knowledge about the engine and experience in evaluating
the behavior of the engine.

An interesting alternative for the above approaches is to use soft computing
methods to build a model-based fault detection system (Liang et al., 2002; Gao
and Ovaska, 2001). N-F models seem to be a good choice to build the model of
the engine due to the possibility of using heuristic knowledge gathered from the
operator and measurements, which can be obtained during the normal operation
of the engine. Such an approach allows building accurate models, which can be
used to detect incipient faults. However, it is still possible to improve the effective-
ness and reliability of fault detection systems, i.e. the methods developed in this
work concerning model uncertainty and adaptive thresholds can help to diagnose
incipient faults more effectively.

The effectiveness of the robust fault detection method using the Takagi-
Sugeno N-F network and adaptive thresholds has been examined using a laboratory
stand of the Institute of Control and Computation Engineering of the University
of Zielona Góra – AMIRA. The laboratory stand can be used to control the rota-
tional speed of a DC engine with a changing load (Fig. 5.5). The main part of the
stand is the DC engine, and during the experiments the engine was used as the
diagnosed object.

Fig. 5.5 . Laboratory stand with a DC engine

5.4.1. System specification

The laboratory object considered consists of five main elements:

• DC engine M1,

• DC engine M2,

• two engine-speed indicators,

• clutch K.
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The input signal for the engine M1 is an armature current. Its value is deter-
mined by a cascade control loop. The servo-amplifier of the current controller works
in four modes, thus the current direction can be chosen appropriately according
to the demanded direction of rotation. The output of the object is the rotational
speed of the engine. The rotational speed can be measured using two sensors: a
tachometer or an optical sensor, which generates impulses that correspond to the
rotations of the engine. The shaft of the engine M1 is connected with the identical
engine M2 by the clutch K. The engine M2 works in the generator mode and
the generated current is controlled by another controller. The basic technical data
concerning the laboratory system are shown in Table 5.1.

Table 5.1. Laboratory system technical data
variable value

Engine
rated voltage 24 V
rated current 2 A
rated power 30 W
rated speed 3000 ob/min

rated moment 0.096 Nm
moment of inertia 17.7 ∗ 10−6 Kgm2

resistance 3.13 Ω
Tachometer

output voltage 5 mV
ob/min

moment of inertia 10.6 ∗ 10−6 Kgm2

Clutch
moment of inertia 33.0 ∗ 10−6 Kgm2

The engine M1 is controlled using the servo-amplifier, where the control signal
has the form of the voltage from the range -10V–+10V with the amplification
0.4 A/V. The engine M2 is also controlled using the the servo-amplifier, where
the control signal has the form of the voltage from the range -10V–+10V with
the amplification 0.237 A/V. The tachometer serves to measure indirectly the
rotational speed of the engine M1. The output range of the tachometer is -10V–
+10V.

5.4.2. Fault detection using the Takagi-Sugeno N-F model

The model of the engine M1 must be designed in order to build a fault detection
system for the engine. The engine considered is a dynamic object, thus dynamics
have to be included in the N-F network in the form of dynamic consequences.
Experiments with different structures of dynamic consequences show that the best
results can be obtained using the following linear consequences for fuzzy rules:

yi(k) = a1yi(k− 1) + b1u(k− 1) + b2u(k− 2) + b3u(k− 3) + b4u(k− 4) + b0, (5.8)
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where yi(k) is the output of the ith rule, which should be interpreted as the
rotational speed. The input variable u(k) is a voltage responsible for controlling
the rotational speed. The N-F model built has only one global input variable u(k).

In order to identify the structure of the N-F model and its parameters, the
input-output data were generated using the prepared input signal. The experiment
was done using an open-loop control scheme. The obtained measurements are
presented in Fig. 5.6. All variables were normalized to the range -1–+1.
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Fig. 5.6 . Measurements: open loop control

The generated data were used to detect the structure of the Takagi-Sugeno
N-F model using the algorithm developed in Section 4. It was assumed that a
single linear model that describes the consequence of the fuzzy rule can produce
the maximum error on the level 0.04. For such a value of the error the algorithm
generated nine fuzzy rules, which were then included in the N-F model. The be-
havior of the model was tested using the data that was not used during the design
procedure. The model was tested in the open-loop control environment (Fig. 5.7)
and in the closed-loop control environment (Fig. 5.8). A set of potential faults is
defined for the engine considered. The set includes seven faults, and information
about faults is summarized in Table 5.2. The faults were simulated artificially us-

Table 5.2. Types of faults
No Description S M B I

f1 Tachometer fault • • • •
f2 Mechanical fault of the engine • • •
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Fig. 5.7 . Test: open loop control
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Fig. 5.8 . Test: closed loop control

ing the elements of the laboratory system. It was impossible to generate real faults
in the laboratory environment. The faults are divided into two groups: tachometer
faults and mechanical faults of the engine M1, which manifest themselves as a de-
creasing efficiency of the engine. Tachometer faults were simulated by disturbing
its output signal using different types of noise. Such disturbed samples given by
the tachometer were used to calculate the control signal in the closed-loop control
scheme. In order to generate the second fault, the engine M2 connected with the
engine M1 via the clutch K was used to simulate an additional faulty load. The
aim of such an approach was to simulate the incipient mechanical fault in the
engine M1, i.e. a worn-off bearing. It was assumed that faults can be incipient (I)
or abrupt, and abrupt faults are divided into small (S), medium (M) and big (B)
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Fig. 5.9 . Process and model output: small fault f1
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Fig. 5.10 . Residuals: small fault f1

faults. The effectiveness of the designed fault detection system was tested using
data generated during fault simulations. Faulty data were prepared for all designed
scenarios. The sample results, which present the output of the real object, model
output and residuals, are presented in the figures. Sampling time equal to 0.1 s is
used for all figures. The data for a small fault of the tachometer is presented in
Fig. 5.9 and Fig. 5.10. The fault is simulated at the moment 90, and is manifested
as small random noise that corrupts the tachometer output. The fault is detected
at the moment 115 because the residual signal exceeds the interval determined
by adaptive thresholds. It is important to detect not only abrupt, big faults, but
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Fig. 5.11 . Process and model output: incipient fault f1
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Fig. 5.12 . Residuals: incipient fault f1

also incipient fault from the point of view of effective diagnostics. Such faults are
caused by the slow and progressive process of the wearing off of the parts of the
engine so that faults are incipient and their scale is increasing with time, thus it
is hard to detect them at an early stage. In order to illustrate the effectiveness of
the developed methods for fault detection of incipient faults, experimental results
obtained for the incipient fault f1 are presented in Fig. 5.11 and Fig. 5.12. Fault
detection of the incipient fault f2 is illustrated by the data presented in Fig. 5.13
and Fig. 5.14. Both simulated faults were detected after 2 s and 2.5 s, respectively.
The fault detection system built is able to detect all simulated faults. The speed
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of fault detection is different for different faults only. Fault detection of incipient
faults is a fundamental ability of the designed system because it keeps to minimum
losses caused by damages. The essential speed-up of fault detection was possible
due to the use of the adaptive threshold, which is based on knowledge about model
uncertainty. The conducted experiments allow claiming that the developed method
can be applied to other industrial plants and electric drives.
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Fig. 5.13 . Process and model output: incipient fault f2
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Fig. 5.14 . Residuals: incipient fault f2
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5.5. Fault detection system for the valve

An element of the evaporation station of the Lublin sugar factory is the second
object to which the proposed methods of fault detection were applied (Kościelny et
al., 2004). The analyzed benchmark for testing different diagnostic algorithms was
created through the cooperation of the Lublin sugar factory and the international
training network Development and Application of Methods for Actuator Diagnosis
in Industrial Control Systems (DAMADICS). The main aim of the DAMADICS
(2002-2004) project was to develop a diagnostic system for modern actuators.
A special simulator for testing the effectiveness and robustness of different diag-
nostic procedures was developed in the framework of the project. Moreover, real
data from the sugar factory were available. The detailed information about the
object, simulator and measurements is available on the website of the project
(DAMADICS, 2002).

5.5.1. System specification

The evaporation station consists of seven inter-connected evaporators. The main
technological task of the evaporation station is to thicken sugar-beet juice. Evapo-
ration stations are grouped into five sections (Sections I,VI,V consist of one evap-
orator each and Sections II and III consist of two evaporators each). The first five
evaporators work with natural juice circulation and the last two have a different
construction and work with juice circulation forced by pumps. The juice conden-
sation process is performed using steam and vapour, which are the same quantities
from the physical point of view but have different sources. Steam is produced by
the water-steam-boiler and is mainly delivered to Section I of the evaporation sta-
tion, whereas vapour, as a recyclable medium, is produced in each evaporator and
the heat accumulator. Vapour is used as a heating medium in other technological
stations. An additional task of the evaporation station is to produce condensate,
which is then delivered to the steam boiler. The process of evaporation is con-
trolled by many different control loops, i.e. temperature control, pressure control,
juice level control. The juice level control is implemented for each evaporation sta-
tion and the level is actuated using the valve, which is placed at the front of each
evaporation station.

The main subsystems of the evaporation process are evaporation stations.
A scheme of the 7th evaporation station is presented in Fig. 5.15. The essential
influence on the operation of the station comes from the valve FC57 03, presented
in Fig. 5.16. The valve works as an actuator and controls the juice outflow from
the evaporation station.

Actuators widely widespread in industry are installed usually in a harsh envi-
ronment, i.e. they are affected by high temperature, pressure, humidity, pollution,
chemical solvents, aggressive media, vibrations etc., so their liftime can be signif-
icantly shorter. The malfunction or failure of actuators cause long-term process
disturbances or sometimes even force the installation shutdown. Moreover, actua-
tors are usually affected by incipient faults, which change process behavior slowly
and may stay undetected for a long time. Therefore, sensitive fault detection sys-
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Fig. 5.15 . Evaporation station

Fig. 5.16 . Valve actuator

tems are demanded in such cases in order to detect faults early so that actuators
can be repaired and damages of other components can be avoided.

A detailed scheme of the chosen actuator is shown in Fig. 5.17. The plant
consists of a control valve, a spring-and-diaphragm pneumatic servomotor and a
positioner. The following notations are introduced for the scheme: Z1, Z2, Z3 –
bypass valves, ACQ – data acquisition unit, CPU – positioner central process-
ing unit, F/E – electro-pneumatic transducer, PC – pressure transducer, PP –
displacement transducer, PS – volume flow rate transducer. A list of variables
measured for the process (Fig. 5.17) is presented in Table 5.3. The set of poten-
tial faults was defined for the actuator considered. The set consists of 19 different
faults, and information about them is presented in Table 5.4.
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Fig. 5.17 . Scheme of the valve actuator

Table 5.3. Variables measured for the actuator
Name Symbol Description Range Unit

F FC57 03 Flow 0-100 m3/h
X FC57 03X Servomotor rod displacement 0-100 %
CV 57 03X Control value 0-100 %
T1 57 03X Juice temperature 0-150 C
P1 P57 03 Juice pressure (inlet) 0-1000 kPa
P2 P57 04 Juice pressure (outlet) 0-1000 kPa

In the framework of the DAMADICS project some experiments were conduct-
ed using a real valve from the technical installation of the Lublin sugar factory.
The measurements were collected during 19 days in Novemeber 2002. The faults
were artificially simulated using the available variables in order to generate da-
ta for faulty scenarios. Data for four faulty scenarios, f16, f17, f18 and f19, were
obtained.

Data for only few faults were generated during the above-mentioned experi-
ments. In order to test the fault detection system, it is necessary to obtain data
for all faults indicated in Table 5.4. Nevertheless, it is impossible to simulate all
possible faults in a real environment for safety reasons. In order to overcome this
problem, a simulator of the actuator (Fig. 5.17) was created in the framework of the
DAMADICS project using the MATLAB Simulink program. The designed simu-
lator allows simulating all processes going on in the actuator and makes it possible
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Table 5.4. Types of faults
No. Description S M B I

Control valve faults
f1 Valve clogging • • •
f2 Valve plug or valve seat sedimentation • •
f3 Valve plug or valve seat erosion •
f4 Increased of valve or bushing friction •
f5 External leakage •
f6 Internal leakage •
f7 Medium evaporation or critical flow • • •

Pneumatic servo-motor faults
f8 Twisted servo-motor’s piston rod • • •
f9 Servo-motor’s housing or terminals tightness •
f10 Servo-motor’s diaphragm perforation • • •
f11 Servo-motor’s spring fault • •

Positioner faults
f12 Electro-pneumatic transducer fault • • •
f13 Rod displacement sensor fault • • • •
f14 Pressure sensor fault • • •
f15 Positioner feedback fault •

General faults
f16 Positioner supply presser drop • • •
f17 Unexpected pressure change across the valve • •
f18 Fully or partly opened bypass valves • • • •
f19 Flow rate sensor fault • • •

to simulate all the defined faulty scenarios. Additionally, it is possible to define
the scale of the fault and its speed. It is assumed that faults can be abrupt (A)
and incipient (I). Abrupt faults are divided into three groups: small (S), medium
(M), and big (B) faults. Taking into account those facts, it is possible to generate
44 different faulty scenarios using the MATLAB Simulink environment.

5.5.2. Fault detection using the N-F model

The fault detection system was prepared for the described actuator in order to
verify the effectiveness of the developed methods for designing N-F models for fault
detection. The proposed algorithm detects faults by residual signal evaluation, and
the residuals are generated as a difference between the object and the Takagi-
Sugeno N-F model. The analysis of the evaporation process and expert knowledge
allows formulating two relationships between variables in the actuator considered
(Edelmayer, 2000; Kościelny et al., 2000):

F = fF (X,P1, P2, T1), (5.9)

X = fX(CV , P1, P2, T1). (5.10)
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Such knowledge is used to build two Takagi-Sugeno N-F models. The results ob-
tained during the identification procedure indicate that the variable X is the most
significant variable for the model fF . This fact is used to simplify the structure
of this model by reducing the number of its global inputs to one variable X. The
full set of input variables is used only by linear models, which represent the con-
sequents of fuzzy sets. A similar situation occurs for the second model, where the
most significant input variable CV is used to describe the global input of the N-F
model. The following structures of the Takagi-Sugeno N-F model were obtained
during the identification procedure using real measurements and data generated
by the simulator:

Table 5.5. Structures of the Takagi-Sugeno N-F models
fsF fsX frF frX

global inputs X CV X CV
local inputs X,P1, P2, T1 CV , P1, P2, T1 X,P1, P2, T1 CV , P1, P2, T1t

number of rules 7 3 7 2

The following notation is introduced in Table 5.5: fsF – model (5.9) built using
data generated by the simulator, fsX – model (5.10) built using data generated by
the simulator, frF – model (5.9) built using real data, and frX – model (5.10)
built using real data. The performance of the designed fault detection system is
verified for the nominal work of the actuator and for all defined faults. Sample
results obtained for the model frF during the nominal work of the actuator are
shown in Fig. 5.18, where the output of the process and the model as well as the
confidence interval for the output of the process are presented. Figure 5.19 presents
the residual signal and adaptive thresholds calculated for the data from Fig. 5.18.
The results presented on these Figs. were obtained for real data. However, due
to the fact that only few faults can be simulated using real data, the remaining
experiments were conducted using data generated by the simulator in MATLAB
Simulink.

Data for all possible faulty scenarios were prepared. The results obtained for
the prepared tests are presented in Table 5.6, where the symbol Y means that a
fault can be detected by the designed system and the symbol N means that a fault
is not detected by the system. Sample results, which contain the output of the
process, model and residuals, are presented for some chosen faults. The sampling
rate for all presented results is the same and equals 1 s The data presented in Fig.
5.20 and 5.21 describe the behavior of the process, model output and residuals
for a big valve fault, i.e. valve clogging. The fault was simulated at the moment
250 and the fault detection system signaled the fault with the delay of 5 s The
fault detection system does not have any trouble detecting the fault due to the
fact that the residual signal crucially exceeds the interval determined by adaptive
thresholds. The results obtained for the next simulated fault are illustrated by
Figs. 5.22 and 5.23. Again, valve clogging is generated but now the size of the
fault is small. The fault appears at the moment 350 and now the fault detection
system needs 23 s to activate the alarm.
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Fig. 5.18 . Behavior of the model frF and the actuator for real data
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Fig. 5.19 . Residuals and adaptive thresholds



5. Application of neuro-fuzzy networks to diagnostics 93

Table 5.6. Results
No Description S M B I

Control valve faults
f1 Valve clogging Y Y Y
f2 Valve plug or valve seat sedimentation Y Y
f3 Valve plug or valve seat erosion Y
f4 Increased of valve or bushing friction Y
f5 External leakage N
f6 Internal leakage Y
f7 Medium evaporation or critical flow Y Y Y

Pneumatic servo-motor faults
f8 Twisted servo-motor’s piston rod N N Y
f9 Servo-motor’s housing or terminals tightness N
f10 Servo-motor’s diaphragm perforation Y Y Y
f11 Servo-motor’s spring fault Y Y

Positioner faults
f12 Electro-pneumatic transducer fault N N N
f13 Rod displacement sensor fault Y Y Y Y
f14 Pressure sensor fault N N N
f15 Positioner feedback fault Y

General faults
f16 Positioner supply presser drop Y Y Y
f17 Unexpected pressure change across the valve Y Y
f18 Fully or partly opened bypass valves Y Y Y Y
f19 Flow rate sensor fault F Y Y Y

The presented results prove that the developed fault detection system is able
to detect abrupt faults, which give rise to jumps in process parameters, resulting in
a significant deviation from the normal system behavior. However, it is fundamen-
tal for effective fault detection to detect faults which affect process behavior slowly
without significant deviations. Such faults are caused by worn-off elements, which
may function properly but their parameters are changing in time and finally the
element can break down. It is hard to detect such faults at an early stage because
symptoms that characterize incipient faults are very similar to symptoms that de-
scribe the nominal work of the element. Thus only very sensitive fault detection
systems can detect such faults. However, the performance of the sensitive fault
detection system can be disturbed by disturbances that corrupt measurements
so an ideal fault detection system must be also robust against such undesirable
disturbances. In order to illustrate the effectiveness of the developed methods for
fault detection of incipient faults, some results obtained for the incipient fault f4

(bushing frictions)(Fig. 5.24 and 5.25 ) and the fault (f11) (servo-motor’s spring
fault) are shown (Figs. 5.26 and 5.27).

The results of the conducted experiments, which are summarized in Table
5.6, show that the developed fault detection system is not able to detect the faults
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Fig. 5.20 . Big fault f1: process and model output
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Fig. 5.21 . Big fault f1: residuals and adaptive thresholds

f5, f9, f12, and f14. The fault f8 (twisted servo-motor’s piston rod) is detectable
only by the model fsX and only in the case of a big fault. The specified faults
are not detectable due to the fact that they affect the behavior of the residual



5. Application of neuro-fuzzy networks to diagnostics 95

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

discrete time

flo
w

process
model
confidence interval

Fig. 5.22 . Small fault f1: process and model output
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Fig. 5.23 . Small fault f1: residuals and adaptive thresholds

signal to a lower degree than disturbances. As was expected, big faults are usually
detected earlier than medium and small faults. An example of such a situation is
shown for the experiment conducted for the fault f1. The residual signal exceeds



96 5.5. Fault detection system for the valve

1200 1300 1400 1500 1600 1700 1800 1900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

discrete time

flo
w

process
model
confidence interval

Fig. 5.24 . Incipient fault f4: process and model output
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Fig. 5.25 . Incipient fault f4: residuals and adaptive thresholds

considerably the intervals defined by thresholds in the case of a big fault (Fig.
5.23), but for a small fault residuals exceed the calculated interval only slightly
(Fig. 5.21). An interesting problem is connected with fault detection of incipient
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Fig. 5.26 . Incipient fault f11: process and model output
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Fig. 5.27 . Incipient fault f11: residuals and adaptive thresholds

faults in the control valve, such as f2 – valve plug or valve seat sedimentation,
f3 – valve plug or valve seat erosion or f4 – increased valve or bushing friction.
Such types of faults affect the process slowly during their exploatation. So it is
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important to detect such faults before the incipient fault changes into an abrupt
one and damages other elements of the process, i.e. the incipient fault valve seat
erosion can turn into the twisted servo-motor’s piston rod. The developed fault
detection system has the ability to detect the incipient fault f2 at an early stage,
whereas the incipient fault f4 is detected only when the fault is big. The incipient
fault valve seat erosion f3 is detectable by the fault detection system based on the
model fsF and is not detectable by the system with the model fsX . Therefore, it is
worth designing fault detection systems that consist of many models in order to
ensure a detailed knowledge about the state of the process.

5.6. Summary

The present chapter deals with the problem of fault detection using Takagi-Sugeno
N-F networks. The main problems of fault detection are considered in the intro-
duction. The problem of robust fault detection is considered in particular and
studied thoroughly. Robustness is understood here as the unsensitivity of the fault
detection system to model uncertainty and other disturbances. A method of robust
fault detection under model uncertainty is developed using the adaptive threshold
approach. The effectiveness of the proposed approach is tested using an actuator,
an element of the evaporation station, and a DC engine. The methods developed in
Section 4 to design the Takagi-Sugeno N-F model were employed to build models
required for the fault detection system. In order to calculate the adaptive thresh-
old, the algorithms proposed in Section 3 were used to determine the uncertainty
of N-F models. Experimental results confirm the effectiveness of the proposed so-
lutions. The ability to promptly detect incipient faults is particularly important
because such faults affect process behavior slowly and it may take a long time
before they are detected by a simple method based on level or trend monitoring.
The adaptive threshold technique makes it possible to detect such faults early in
the incipient phase and to avoid huge damages and losses.



Chapter 6

CONCLUSIONS

The growing complexity of modern technological processes force the development
of sophisticated diagnostics techniques. The model-based approach is one of the
most important and well-developed areas of diagnostic. The large grade of the
complexity of real processes and the resulting problem with the design of accurate
analytical models focus deliberations of scientists on models which can be built
using artificial intelligence techniques. Recently, special attention has been paid to
hybrid techniques, which connect the features of fuzzy systems and artificial neural
networks. Such hybrid models obtained using special identification procedures are
commonly employed to fault detection tasks, and they are an interesting alter-
native when other techniques fail to reach the desired accuracy. Although hybrid
techniques possess many advantages, which are very useful in fault detection appli-
cations, there are still many unresolved problems connected with them. Structure
selection of the N-F model, which ensures the selected accuracy, is a sample fun-
damental problem. In order to overcome it, a procedure which helps the designer
to select the proper structure is developed in this work. The proposed method uses
the OBE algorithm in order to estimate the number of approximately linear parts
of process input-output characteristics. Next, such knowledge is used to determine
the number of fuzzy rules which should be included in the N-F model, and it is
possible to estimate the parameters of fuzzy antecedents and linear consequents
as well. The developed method of N-F model design usually allows obtaining good
accuracy, but the final model is never perfect and some kind of model uncertainty
always exists. The main property of a good diagnostic system is robustness against
model uncertainty or other disturbances and, simultaneously, the preservation of
strong sensitivity of the system to faults. In order to satisfy these requirements,
it was necessary to develop a method which would allow estimating the uncer-
tainty of the N-F model. The method is based on the fact that the N-F model
can be viewed in the form of an LP system if some assumptions concerning an-
tecedents are established. The uncertainty of the N-F model is represented in the
form of the confidence interval for the output signal. The confidence interval is de-
termined using a feasible set of consequent parameters, which is computed by the
BEA algorithm. Knowledge about the confidence interval of the model output al-
lows developing a robust fault detection system which uses the adaptive threshold
technique to detect faults.

The original results presented in this work can be summarized as follows:
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• a method developed in order to determine the uncertainty of the N-F model
using the BEA or the OBE algorithm,

• robust fault detection under N-F model uncertainty using the adaptive thresh-
old method, which is based on knowledge about the confidence interval de-
termined for the model output,

• an algorithm for structure selection and parameter estimation of the N-F
model, which is based on the detection of approximately linear dependencies
using the BEA algorithm,

• the application of the developed methods to the identification task and robust
fault detection for the electrical engine and the actuator which are elements
of the Lublin sugar factory technological installation.



Streszczenie

Rosnąca złożoność współczesnych procesów technicznych wymusza konieczność
opracowywania nowoczesnych technik diagnostycznych. Jednym z dynamicznie
rozwijających się obszarów diagnostyki są metody wykorzystujące modele diagno-
zowanego obiektu. Duży stopień skomplikowania diagnozowanych procesów i wią-
żąca się z nią trudność pozyskiwania odpowiednich modeli analitycznych, kieruje
uwagę projektantów w kierunku modeli opartych o techniki sztucznej inteligen-
cji. W ostatnich latach szczególne zainteresowanie uzyskały techniki hybrydowe
łączące cechy systemów rozmytych oraz sieci neuronowych a nazywane rozmyty-
mi sieciami neuronowymi (RSN). Modele te otrzymywane w procesie identyfikacji
stanowią interesującą alternatywę i chętnie są wykorzystywane podczas projekto-
wania układów detekcji uszkodzeń. Mimo wielu zalet takiego rozwiązania, istnieje
również szereg ciągle nierozwiązanych problemów. Jednym z nich jest problem
doboru odpowiedniej struktury sieci umożliwiającej uzyskanie modelu o zadanej
dokładności. W tym celu opracowano metodę wspierającą projektanta w proce-
durze określania struktury RSN. Metoda ta bazuje na algorytmie estymacji przy
ograniczonych wartościach błędów EOWB i pozwala oszacować liczbę w przybli-
żeniu liniowych części charakterystyki modelowanego obiektu. Na podstawie tej
wiedzy możliwe okazało się określenie liczby reguł jakie należy zakodować w struk-
turze RSN oraz uzyskano możliwość oszacowania parametrów zbiorów rozmytych
odpowiedzialnych za przełączanie liniowych modeli cząstkowych. Mimo, że zapro-
ponowane metody projektowania RSN uzyskują zadawalające efekty w procedu-
rze identyfikacji modelu, to otrzymany model jest zawsze obarczony niepewnością.
Ponieważ jedną z istotniejszych cech niezawodnego systemu diagnostycznego jest
odporność na niepewność modelu oraz inne czynniki mogące prowadzić do błęd-
nej diagnozy, przy jednoczesnym zachowaniu wrażliwości na uszkodzenia, bardzo
ważnym zadaniem stało się opracowanie metody pozwalającej budować odporne
układy detekcji uszkodzeń z wykorzystaniem RSN.

Idea zaproponowanego podejścia zakłada wykorzystanie techniki adaptacyj-
nych progów decyzyjnych dla sygnału residuum wyznaczonego jako różnica odpo-
wiedzi modelu i diagnozowanego obiektu. Zadaniem progów decyzyjnych jest okre-
ślenie przedziału wartości sygnału residuum, który odpowiada poprawnej pracy
obiektu. Detekcja uszkodzeń w takim przypadku odbywa się poprzez wykrywanie
zdarzeń polegających na wykraczaniu sygnału residuum poza wyznaczony prze-
dział ufności. Adaptacyjne progi decyzyjne wyznacza się na podstawie wiedzy o
niepewności modelu wykorzystywanego do generacji residuów. Niepewność modelu
reprezentowana jest poprzez przedział ufności określany dla sygnały wyjściowego
modelu a przedział ten wyznacza się bazując na wiedzy o zbiorze parametrów
dopuszczalnych dla danego modelu. W pracy przedstawiono szczegółowo dwa po-
dejścia do problemu wyznaczania niepewności RSN i jednocześnie estymacji jej
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parametrów: metodę statystyczną analizy niepewności estymat parametrów uzy-
skanych metodą najmniejszych kwadratów MNK oraz metodę EOWB. Obie me-
tody pozwalają efektywnie wyznaczyć parametry modelu oraz określić przedział
ufności sygnału wyjściowego modelu gdy model ma strukturę systemu liniowego
względem parametrów. W przypadku systemów nieliniowych np. RSN konieczna
staje się linearyzacja nieliniowej charakterystyki wokół punktu pracy. Niestety ta-
kie rozwiązanie może wprowadzać pewną niedokładność odnośnie wyznaczanego
przedziału ufności a co za tym idzie wiarygodność detekcji projektowanego ukła-
du może być zagrożona. Aby przezwyciężyć tą trudność zastosowano dla RSN
rozwiązanie alternatywne, a mianowicie korzystając z faktu, że następniki reguł
RSN typu Takagi-Sugeno mają postać liniową, przedstawiono RSN jako system
liniowy względem parametrów co wymagało przyjęcia założenia, że parametry po-
przedników reguł są znane i wyznaczone zostały wcześniej inną metodą estymacji
parametrów.

Ważnym zagadnieniem w kontekście zastosowania RSN do diagnostyki obiek-
tów rzeczywistych jest użyteczność do tego celu zastosowanych metod estymacji
parametrów i procedur określania niepewności modelu. Niestety metoda estyma-
cji MNK oraz podejście statystyczne wyznaczania przedziału ufności dla sygna-
łów wyjściowych nie spełnia tego kryterium. Wiąże się to z koniecznością przy-
jęcia bardzo rygorystycznych założeń dotyczących zakłóceń obecnych w danych
pomiarowych, które w przypadku tych metod muszą charakteryzować się warto-
ścią oczekiwaną równą 0 oraz rozkładem normalnym. Założenie to ogranicza w
dużym stopniu stosowalność tej metody ponieważ w praktyce rzadko spotyka się
obiekty z takim rodzajem zakłóceń. Alternatywą dla opisywanego podejścia jest
metoda EOWB, która wymaga jedynie definicji maksymalnych wartości dla zakłó-
ceń danych pomiarowych używanych w procedurze estymacji parametrów modelu.
Najprostsze podejście zakłada, że sygnałem niepewnym jest jedynie sygnał wyj-
ściowy obiektu. Jednak w praktyce często okazuje się, że sygnały wejściowe należy
traktować również jako niepewne co zostało uwzględnione w odpowiednio zmo-
dyfikowanej metodzie EOWB. Niestety zalety metody EOWB są okupione dużą
złożonością obliczeniową, co w przypadku modeli ze znaczną liczbą parametrów
może istotnie wydłużyć czas potrzebnych obliczeń. Aby uniknąć takich sytuacji
zaadaptowano dla RSN pewną odmianę metody EOWB, algorytm zewnętrznych
elipsoid ograniczających ZEO. Algorytm ten jest mniej wymagający obliczeniowo
ponieważ jedynie aproksymuje obszar ufności parametrów, który można wyznaczyć
dokładnie metodą EOWB.

W końcowej części pracy przedstawiono wyniki badań eksperymentalnych,
których celem była praktyczna weryfikacja zaproponowanych wcześniej rozwiązań
do odpornej detekcji uszkodzeń. Przedstawione metody zastosowano do detekcji
uszkodzeń silnika elektrycznego oraz urządzenia wykonawczego będącego elemen-
tem instalacji technologicznej w cukrowni ”Lublin”. Wyniki badań ukazują dużą
skuteczność i efektywność zaproponowanych metod.
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Babuška R. and Verbruggen H. B. (1995): A new identification method for lingu-
istic fuzzy models. – Proc. 4th IEEE Conf. on Fuzzy Systems and 2nd Int.
Fuzzy Engineering Symp., Yokohama, Japan, pp. 905-912.

Bai E-W. and Huang Y-F. (1999): Convergence of optimal sequential outer boun-
ding sets in bounded error parameter estimation. – Mathematics and Compu-
ters in Simulation, Vol. 49, pp 307-317.

Bezdek D. (1981): Pattern Recognition with Fuzzy Objective Function Algorithms.
– New York, USA: Plenum Press.

Bezdek J. and Dunn J. (1975): Optimal fuzzy partitions: A heuristic for estima-
ting the parameters in a mixture of normal distributions. – IEEE Trans. on
Computers, Vol. 24, pp. 835-838.

Broman V and Shensa M. J. (1990): A compact algorithm for the intersection and
approximation of N-dimensional polytopes. – Math. and Comp. in Simulation,
Vol. 32, pp. 469-480.

Calado J. M. F., Louro R., Mendes M. J. G. C., Sa da Costa J. M. G. and Kowal M.
(2003): Fault isolation based on HSFNN applied to DAMADICS benchmark
problem. – Proc. 5th IFAC Symp. on Fault Detection, Supervision and Safety
of Technical Processes, SAFEPROCESS 2003, Washington, DC, USA, pp.
1053-1058.

Calado J. M. F., Kowal M., Mendes M. J. G. C., Korbicz J. and Sa da Costa J.
M. G. (2002): Neuro-fuzzy fault detection approach using a profibus network.
– Proc. 10th Mediterranean Conf. on Control and Automation, MED 2002,
Lisbon, Portugal, CD-ROM.

Chan W. C., Chan C. W., Cheung K. C. and Wang Y. (1999): Modelling of non-
linear stochastic dynamical systems using neuro-fuzzy networks. – Proc. 38th
Conf. on Decision and Control, Pheonix, AZ, USA.



104 BIBLIOGRAPHY

Chen S., Billings S. A. and Luo W. (1999): Orthogonal least squares methods and
their application to nonlinear system identification. – Int. Journal of Control,
Vol. 50, No. 12, pp. 1873-1896.

Chen J-Q., Xi Y-G. and Zhang Z-J. (1998): A clustering algorithm for fuzzy model
identification. – Fuzzy Sets and Systems, Vol. 98, pp. 319-329.

Chen M-Y. and Linkens D. A. (2001): A systematic neuro-fuzzy modeling fra-
mework with application to material property prediction. – IEEE Trans. on
Systems, Man and Cybernetics – Part B, Vol. 31, No. 5, pp. 781-790.

Chiu S. (1994): Fuzzy model identification based on cluster estimation. – Journal
of Intelligent and Fuzzy Systems, Vol. 2, No. 3, pp. 665-685.

Chryssolouris G., Lee M. and Ramsey A. (1996): Confidence interval prediction
for neural network models. – IEEE Trans. on Neural Networks, Vol. 7, No. 1,
pp. 229-232.

Cordon O. and Herrera F. (1999): A two-stage evolutionary process for designing
TSK fuzzy rule based systems. – IEEE Trans. on Systems, Man and Cyber-
netics – Part B, Vol. 29, No. 6, pp. 703-715.

Czogała E. and Łęski J. (2000): Fuzzy and Neuro-Fuzzy Intelligent Systems. –
Heidelberg, Germany: Physica-Verlag.

Dabbenea F., Gayb P. and Polyak B. T. (2003): Recursive algorithms for inner
ellipsoidal approximation of convex polytopes. – Automatica, Vol. 39, No. 6,
pp. 1773-1781.

DAMADICS (2002): Website of the RTN DAMADICS: Development and Appli-
cation of Methods for Actutator Diagnosis in Industrial Control Systems.
http://diag.mchtr.pw.edu.pl/damadics.

Dasgupta S. and Huang Y. F. (1987): Asymptotically convergent modified recursive
least-squares with data-dependent updating and forgetting factor for systems
with bounded noise. – IEEE Trans. on Inf. Theory, Vol. 33, No. 3, pp. 383-392.

Diez J. L., Sala A. and Navarro J. L. (2002): Fuzzy clustering algorithm for local
model control. – Proc. 15th Triennial World Congress of the IFAC, Barcelona,
Spain, CD-ROM.

Dinca L., Aldemir T. and Rizzoni G. (1999): Fault detection and identification
in dynamic systems with noisy data and parameter/modeling uncertainties. –
Reliability Engineering and System Safety, Vol. 65, pp. 17-28.

Doering A., Galicki M. and Witte H. (1997): Structure optimization of neural
networks with the A*–algorithm. – IEEE Trans. on Neural Networks, Vol. 8,
No. 6, pp. 1434-1445.



BIBLIOGRAPHY 105

Driankov D., Hellendoorn H. and Reinfrank M. (1993): An Introduction to Fuzzy
Control – Berlin, Germany: Springer-Verlag.

Duch W., Korbicz J., Rutkowski L. and Tadeusiewicz R. (Eds.) (2000): Biocyber-
netics and Biomedical Engineering 2000. Neural Networks. – Warsaw, Poland:
Akademicka Oficyna Wydawnicza EXIT, Vol. 6. (in Polish)

Edelmayer A. (2000): Research of quantitative and qualitative FDI methods based
on data from Lublin Sugar Factory. – Proc. 4th IFAC Symp. Fault Detec-
tion, Supervision and Safety of Technical Processes, SAFEPROCESS 2000,
Budapest, Hungary, pp. 351-358.

Eykhoff P. (1980): Identification in Dynamic Systems – Warsaw, Poland: Wydaw-
nictwo Naukowe PWN. (in Polish)

Frank P.M. and Ding X. (1997): Survey of robust residual generation and evaluation
methods. – Jour. of Process Control, Vol. 7, No. 6, pp. 403-424.

Gao X. Z. and Ovaska S. J. (2001): Soft computing methods in motor fault dia-
gnosis. – Applied Soft Computing, Vol. 1, pp. 73-81.

Gath I. and Geva A. B. (1989): Unsupervised optimal fuzzy clustering. – IEEE
Trans. on Pattern Analysis and Machine Intelligence, Vol. 7, pp. 773-781.

Gertler J. (1998): Fault Detection and Diagnosis in Engineering Systems. – New
York, USA: Marcel Dekker.

Gertler J. and Kowalczuk Z. (1997): Detection and distinction of errors using
analitical models – Proc. 2nd Nat. Conf. Diagnostics of Industrial Processes,
DPP’97, Łagów Lubuski, Poland, pp. 169-174. (in Polish)

Geva A. B. (1999): Hierarchical unsupervised fuzzy clustering. – IEEE Trans. on
Fuzzy Systems, Vol. 7 No. 6, pp. 723-733.

Goldberg D. (1989): Genetic Algorithms in Search, Optimization and Machine
Learning – Massachusetts, USA: Addison-Wesley Publishing Company.

Gustaffson D. E. and Kessel W. C. (1975): Fuzzy clustering with a fuzzy covariance
matrix. – IEEE Trans. on Fuzzy Systems, Vol. 9, No. 1, pp. 194-199.

Guven M. K. and Passino K. M. (2001): Avoiding exponential parameter growth
in fuzzy systems. – Proc. IEEE CDC, San Diego, CA, USA, pp. 761-766.

Hadjili M. L. and Wertz V. (2002): Takagi-Sugeno fuzzy modeling incorporating
input variables selection. – IEEE Trans. on Fuzzy Systems, Vol. 10, No. 6,
pp. 728-742.

Higgins C. M. and Goodman R. M. (1994): Fuzzy rule-based networks for control.
– IEEE Trans. on Fuzzy Systems, Vol. 2, No. 2, pp. 82-88.



106 BIBLIOGRAPHY

Homaifar A. and McCormick E. (1995): Simultaneous design of membership func-
tions and rule sets for fuzzy controllers using genetic algorithms. – IEEE
Trans. on Fuzzy Systems, Vol. 3, No. 6, pp. 129-139.

Hong X. and Harris C. J. (2001): Variable selection algorithm for construction
of MIMO operating point dependent neurofuzzy networks. – IEEE Trans. on
Fuzzy Systems, Vol. 9, No. 1, pp. 88-101.

Isermann R. and Ball P. (1997): Trends in the application of model-based fault
detection and diagnosis of technical processes. – Control Eng. Practice, Vol.
5, No. 5, pp. 709-719.

Isermann R. (1993): Fault diagnosis of machines via parameter estimation and
knowledge processing. – Automatica, Vol. 29, No. 4, pp. 815-835.

Janczak A. (2004): Identification of Nonlinear Systems Using Neural Networks
and Polynomial Models. A Block-Oriented Approach. – Berlin, Heidelberg,
Germany: Springer-Verlag.

Jang J. S. R. (1993): ANFIS: Adaptive network based fuzzy inference system. –
IEEE Trans. on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685.

Jin Y. (2000): Fuzzy modeling of high-dimensional systems: complexity reduction
and interpretability improvement. – IEEE Trans. on Fuzzy Systems, Vol. 8,
No. 2, pp. 212-221.

Joh J., Chen Y-H. and Langari R. (1998): On the stability issues of linear Takagi-
Sugeno fuzzy models. – IEEE Trans. on Fuzzy Systems, Vol. 6, No. 3, pp.
402-410.

Johansson P., Rantzer A. and Arzen K-E. (1999): Piecewise quadratic stability of
fuzzy systems. – IEEE Trans. on Fuzzy Systems, Vol. 7, No. 6, pp. 713-722.

Juang C-F. and Lin C-T.(1999): A recurrent self-organizing neural fuzzy inference
network. – IEEE Trans. on Neural Networks, Vol. 10, No. 4, pp. 828-845.

Kang S-J., Woo C-H., Hwang H-S. and Woo K. B. (2000): Evolutionary design of
fuzzy rule base for nonlinear system modeling and control. – IEEE Trans. on
Fuzzy Systems, Vol. 8, No. 1, pp. 37-45.

Kaymak U. and Setnes M. (2002): Fuzzy clustering with volume prototypes and
adaptive cluster merging. – IEEE Trans. on Fuzzy Systems, Vol. 10, No. 6,
pp. 705-712.
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