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INTRODUCTIONThe optimization problem, in general, an be formulated as follows:x? = argmaxx2U f(x)���i(x) � 0; i = 1; : : : ;m; �; (0.1)where x? is searhed optimum solution of an objetive funtion f(x), i(x) denotesan ith onstraint and U is a spae of solutions.Most of onventional optimization methods are based on, so alled, hard se-letion, where new base points for further exploration are generated basing on thebest obtained points. Suh a strategy usually ends trapped in the loal optimum,and there is almost no hane to leave this area and ahieve better results, sothe global optimization ability is strongly limited. There are many algorithmsproposed in the literature whih try to overome this problem. Most of theman be assigned to two lasses of algorithms: enumerative methods and stohastimethods.First of them is dediated to disrete and �nite sets of possible solutions, andusually onsists in examination of all solutions in order to hoose the best one.This is, of ourse, an ine�ient tehnique, espeially in the ase of large systems,where a full review is impossible to do in a reasonable time. Thus, methods ofheuristi searh an be used (.f. (Shalko� 1990)). Their e�ay, when applied topartiular problems, is often highly dependent on the way they exploit the domain� spei� knowledge sine in and of themselves they are unable to overome theombinatorial explosion to whih searh proesses are so vulnerable.Stohasti optimization methods are mainly applied to searhing for the globaloptimum of the multi-modal and multi-dimensional objetive funtions, for whihthe derivative is di�ult or impossible to ompute. The simple omputer im-plementation is also an advantage of these methods, however, they are time-onsuming. Most of the stohasti methods are omposed of two parts: globaland loal one. First of them determines starting points for the loal searh. Usu-ally these points are randomly hosen from the domain. The loal optimizationis arried out applying lassial gradient methods or stohasti methods, whihrandomly modi�es urrent points usually using the normal distribution. Amongstohasti methods one an list several lasses of these tehniques, e.g., the purerandom searh (Monte Carlo methods), multiple random start, lustering meth-ods, random diretion methods, searh onentration methods (.f. (Birge andLouveaux 1997, Zieli«ski and Neumann 1983)). The main disadvantage of stohas-ti methods lies on their haoti manner, whih does not take into onsiderationinformation ontained in previously evaluated points.An alternative way for global optimum �nding are Evolutionary Algorithms(EAs). The evolution is the natural way of development. Speies aquire their



2properties and abilities by the natural seletion, seemingly a blind proess, whihallows mainly well �tted individuals to survive and proreate. This mehanismallows to transfer the pro�table features to next generations, thus, we have somekind of �intelligent� seletion. But, the nature does not restrit itself to selet onlythe best individuals in the population. Weakly �tted individuals have a hane tointrodue their o�spring to the next generation, too. Their desendants are oftengifted with attributes unknown in the urrent population, and whih an be usefulin the future. Therefore, it is luring to introdue to optimization tehniques thesoft seletion rule instead of the hard one, i.e. there is a possibility of hoosingworse points as base points for further searh. It ours that the soft seletionaelerates the probability of esaping from a loal optimum trap.The soft seletion is the base rule in the EAs, the extremely e�etive tehniqueof the omputation intelligene systems applied to the global optimization. A veryrih bibliography (.f. (Angeline and Kinnear 1996, Arabas 2001, Bäk 1995, Bäket al. 1997, Dasgupta and Mihalewiz 1997, Davis 1987, Fogel 1995, Fogel1998, Galar 1990, Goldberg 1989, Holland 1992, Mihalewiz 1996, Mithel 1996,Osyzka 2002, Shwefel 1995) proves this mimiked searh proess of natural evo-lution is a very robust and e�etive diret algorithm of the global optimization or,rather, adaptation.The aim of this monograph is to present seleted basi properties of evolu-tionary algorithms in the global optimization and hosen appliations in the neuralnetworks design problem and the fault diagnosis of industrial proesses.The book is parted into six main hapters whih are preeded by introdutionand ended by onlusions and two appendies.Chapter 1 ontains a desription of the general outline of the evolutionaryalgorithm, presents the �lassial� forms of the most known EA representatives:Geneti Algorithms (GA), Geneti Programming (GP), Evolutionary Program-ming (EP), and Evolutionary Strategies (ES). Emphasis is put on the EvolutionarySearh with Soft Seletion (ESSS) algorithm, whih is the subjet of majority of re-searh studies desribed in this book. The ESSS algorithm is based on probably thesimplest seletion�mutation model of Darwinian evolution. The n-dimensional realspae is the searh proess domain, on whih some non-negative �tness funtion isde�ned. At the beginning the population of points is seleted from the domain and,next, it is iteratively transformed by the seletion and mutation operations. As aseletion operator the well�known proportional seletion (roulette method) is ho-sen. Coordinates of seleted parents are mutated by adding normally-distributedrandom values.Next hapters ontain results whih are based on the author's researh.Tehniques whih aelerate the exploration abilities of the ESSS algorithmare the subjet of Chapter 2. These tehniques are parted into three lasses:methods adapting the algorithm parameters, methods modifying evolutionary op-erators, and methods, whih modify the objetive funtion during the searhingproess. The �rst lass ontains algorithms whih adapt the standard deviationof Gaussian mutation (ESSS with Simple Variane Adaptation, ESSS-SVA) andpopulation size (ESSS with Varying Population Size, ESSS-VPS). The ESSS-SVA



3algorithm is based on a onept of an evolutionary trap. When population �u-tuates around a loal peak of an adaptation landsape, the standard deviation ofthe Gaussian mutation inreases. This fat dereases the mean �tness of the pop-ulation and failitates the population esape towards a neighbouring peak. Theidea of the ESSS-VPS algorithm is similar to the GAVaPS algorithm (Arabas etal. 1994), eah individual ontains additional parameter: a life time, whih de-pends on the relation between the individual �tness and the mean �tness of theurrent population. The seond lass of tehniques ontains the ESSS algorithmwith Fored Diretion of Mutation (ESSS-FDM) and algorithms with loal sele-tions. The ESSS-FDM is distint from other algorithms of the ESSS family thatthe expeted vetor of the Gaussian mutation is not equal to zero, its diretion isparallel to the latest drift of population. In the ase of the loal seletion, eahindividual ompetes with elements whih are loated a given radius away. De-pending on a method of a surrounding radius determination three algorithms arede�ned: the ESSS with Loal Seletion (ESSS-LS), ESSS with Mixed Seletion(ESSS-MS), and ESSS with Adaptive radius of Loal Seletion (ESSS-ALS). Thethird lass of exploration tehniques is represented by the ESSS algorithm withImpatiene and Polarization mehanism (ESSS-IP), whih has been proposed byGalar and Kopiuh (1999), and erosion mehanism (ESSS with Deterioration ofthe Objetive Funtion, ESSS-DOF). The erosion mehanism onsists in gradualdeterioration of a urrently oupied loal peak of the adaptation landsape by thepopulation. Parameters of the erosion fator depend on the urrent loation anddistribution of the population. This idea was �rstly introdued by Beasley et al.(1993), but it has not been developed yet. The simulation analysis of e�etivenessof onsidered exploration mehanisms ends the hapter.Chapter 3 onerns the analysis of Gaussian and Cauhy mutation, theirin�uene on the e�etiveness of phenotypi evolutionary algorithms. The authordistinguishes two e�ets: surrounding e�et and symmetry e�et, whih a�et theEAs e�ay. Modi�ed versions of Cauhy and Gaussian mutations are proposed,implemented in the ESSS and EP algorithms, and ompared using simulatingexperiments.The evolutionary adaptation in non-stationary environments is the subjetof Chapter 4. There is an attempt at lassi�ation of non-stationary adaptationtasks taking into aount di�erent riteria. As far as the intensity of hanges isonsidered three types of environment hanges are distinguished: adiabati, indi-ret and turbulent hanges. In the ase of adiabati hanges, lassial methodsof loal optimization are e�etive. Along with inreasing intensity of hanges,usefulness of evolutionary algorithms inreases. In the ase of turbulent hanges,the evolutionary proess ould not keep up with a running global optimum loa-tion and searhes an asent of some funtion averaged over some time interval.The adaptation tasks in non-stationary environments an be also lassi�ed tak-ing aount of the problem spei�ation, e.g. traing proesses, an optimizationin a mega-epoh, keeping solutions on an aeptable level, and so on. Di�erentproblem spei�ations require di�erent quality measures for applied adaptationalgorithms. A short analysis of algorithms quality measures known from literatureand proposed by the author is presented and illustrated.



4 The problem of neural models design is onsidered in Chapter 5. The DynamiMulti�Layer Pereptron (DMLP), whose units are based on Ayoubi'es DynamiNeural Model (DNM) and organized into the standard feedforward arhiteture, fo-uses the author's attention. The problem of a neural network design an be viewedas a pair of optimization tasks: a learning proess and an arhiteture optimiza-tion. Both tasks have di�erent nature and need di�erent optimization methods.The learning proess belongs to ontinuous optimization tasks, whih is usuallyonneted with nonlinear, multi-modal objetive funtions, espeially in the aseof the DMLP. Therefore, tehniques based on the gradient-desent method, likethe extended dynami bak-propagation learning, are ine�etive. Evolutionary al-gorithms approahes, espeially based on the ESSS-FDM algorithm, turn out verye�etive learning methods. The spae of neural networks arhitetures is disreteand an be represented by an in�nite digraph. However, there are many instanesof evolutionary approahes to the optimal neural model arhiteture alloation inthe literature, they are not so e�ient as presented heuristi searh methods: theA? algorithm and Tabu Searh tehnique.Appliations of evolutionary algorithms to the fault diagnosis systems designis disussed in Chapter 6. The diagnosis of industrial proesses has been intensivelystudied by the researh group of Institute of Control and Computation Engineeringof University of Zielona Góra for the last ten years. This hapter is based on resultsof the author and o�workers' researh. Designing the fault diagnosis systems foromplex dynami systems is usually onneted with the lak of a mathematialmodel, or with the fat that suh a model is unsatisfatory. Reently, arti�ialintelligene methods have attrated researhes' attention. It is worth notiing thatthe proess of designing fault diagnosis systems, using both analytial and arti�ialintelligene methods, an be redued to a set of omplex optimization problems.They are usually nonlinear, multimodal and, not so rarely, multi-objetive. So,the onventional algorithms are insu�ient to solve them. Evolutionary algorithmsseem to be an attrative tool for searhing an optimal solution. Although there arefew appliations of evolutionary algorithms to fault diagnosis systems, a disussionof existing solution is presented. The emphasis is put on geneti programmingapproahes to residual generation module of a Fault Detetion and Isolation (FDI)system.It is a pleasure to express my sinere thanks to a number of people. Firstof all, I am grateful to professor Józef Korbiz for his ontinuous support andadvie. I wish to thank professors Roman Galar and Robert Shaefer for theirative interest in my researh and many stimulating suggestions, professor DariuszUi«ski, dr. Krzysztof Patan, dr. Krzysztof Trojanowski, and dr. Marin Witzakfor disussions and o�operation, whih bears many joint publiations.I wish to express my speial gratitude to my wife Beata for her ontinuouspatiene, understanding and support in hard times during preparing this book andover the ommon years.Zielona Góra, Deember 2002 Andrzej Obuhowiz



Chapter 1
EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are a broad lass of stohasti adaptation algo-rithms, inspired by biologial evolution, the proess that allows populations oforganisms to adapt to their surrounding environment. The onept of evolutionwas introdued in XIX entury by Charles Darwin and Johann Gregor Mendeland, omplemented with further details, are still widely aknowledged as valid.In 1859, Darwin published his theory of natural seletion or survival of the�ttest. The idea is: not every organism an be held, only those whih an adaptand win the ompetition for food and shelter are able to survive. Almost at thesame time (1865) Mendel published short monograph about experiments in plantshybridisation. He observed how traits of di�erent parents are ombined in an o�-spring by sexual reprodution. Darwinian evolutionary theory and Mendel inves-tigations of heredity in plants beame foundations of evolutionary searh methods.Struture and properties of evolutionary algorithms are disussed in severalbooks (Angeline and Kinnear 1996, Bäk 1995, Bäk et al. 1997, Dasgupta andMihalewiz 1997, Davis 1987, Fogel 1995, Fogel 1998, Galar 1990, Goldberg 1989,Holland 1992, Mihalewiz 1996, Mithel 1996, Shwefel 1995). The artiles on-erned with evolutionary omputation are published in many sienti� journals.There are at least 20 international onferenes losely onneted with evolutionarymethods. Due to a large number of available publiations it is impossible to presentall of plenty of di�erent evolutionary algorithms and their omponents, where theirauthors tried to improve the algorithm e�ieny in the ase of given problem tobe solved. In this hapter, the main omponents of evolutionary algorithms arereminded and di�erent basi forms of them brie�y disussed.1.1. Basi onepts of evolutionary searhIn nature, individuals in a population ompete with eah other for resoure suhas food, water and shelter. Also, members of the same speies often ompeteto attrat a mate. Those individuals whih are most suessful in surviving andattrating mates will have relatively larger numbers of o�spring. Poorly performingindividuals will produe few or even no o�spring at all. This means that theinformation (genes), slightly mutated, from the highly adapted individuals willspread to an inreasing number of individuals in eah suessive generation. Inthis way, speies evolve to beame more and more suited to their environment.



6 1.2. Standard evolutionary algorithmsIn order to desribe a general outline of the evolutionary algorithm let usintrodue few useful onepts and notations (Atmar 1992, Fogel 1999). An evolu-tionary algorithm is based on the olletive learning proess within a populationP (t) = fak 2 G j k = 1; 2; : : : ; �g of � individuals, eah of whih represents agenotype (an underlying geneti oding), a searh point in a, so alled, genotypespae G. The environment delivers a quality information (�tness value) of theindividual dependent on its phenotype (the manner of response ontained in thebehavior, physiology and the morphology of the organism). The �tness funtion� : D ! IR is de�ned on a phenotype spae D. So, eah individual an be viewed asa duality of its genotype and phenotype, and some deoding funtion, epigenesis,� : G ! D0 � D is needed.At the beginning, a population is arbitrary initialized and evaluated(Tab. 1.1). Next, the randomized proesses of reprodution, reombination, mu-tation and suession are iteratively repeated until a given termination rite-rion � : G� ! ftrue; falseg are satis�ed. Reprodution, alled also preseletion,sp�p : G� ! G�0 is a randomized proess (deterministi in some algorithms) of �0parents seletion from � individuals of the urrent population. This proess isontrolled by a set �p of parameters. Reombination mehanism (omitted in somerealization) r�r : G�0 ! G�00 , ontrolled by additional parameters �r, allows themixing of parental information while passing it to their desendants. Mutationm�m : G�00 ! G�00 introdues innovation into urrent desendants, �m is again aset of ontrol parameters. Suession, also alled postseletion sn�n : G��G�00 ! G�is applied to hoose a new generation of individuals from parents and desendants.1.2. Standard evolutionary algorithmsDespite similarities of various evolutionary omputation tehniques, there are alsomany di�erenes between them. It is generally aepted that any evolution-ary algorithm to solve a problem must have �ve basi omponents (Davis 1987,Mihalewiz 1999):� a representation of solutions to the problem,� a way to reate an initial population of solution,� an evaluation funtion, rating solution in terms of their �tness,� seletion and variation operators that alter the omposition of hildren dur-ing reprodution and mutation,� values for the parameters (population size, probabilities of applying variationoperators, et.)The duality of the genotype and the phenotype suggest two main approahesto simulated evolution dediated to global optimization problems in IRn: genotypiand phenotypi simulations (Fogel 1999). In genotypi simulations, attention isfoused on geneti strutures. The andidate solutions are desribed as being



1. Evolutionary algorithms 7
Tab.1.1. The outline of an evolutionary algorithmI. InitiationA. Random generationP (0) = �a0k j k = 1; 2; : : : ; �	.B. EvaluationP (0)! ��P (0)� = ��0k = ����a0k�� j k = 1; 2; : : : ; �	.C. t = 1.II.Repeat:A. ReprodutionP 0(t) = sp�p�P (t)� = �a0tk j k = 1; 2; : : : ; �0	.B. ReombinationP 00(t) = r�r�P 0(t)� = �a00tk j k = 1; 2; : : : ; �00	.C. MutationP 000(t) = m�m�P 00(t)� = �a000tk j k = 1; 2; : : : ; �00	.D. EvaluationP 000(t)! ��P 000(t)� = ��tk = ����a000tk�� j k = 1; 2; : : : ; �00	.E. SuessionP (t+ 1) = sn�n�P (t) [ P 000(t)� = �at+1k j k = 1; 2; : : : ; �	.F. t = t+ 1.Until ���P (t)� = true�.



8 1.2. Standard evolutionary algorithmsanalogous to hromosomes. All the searhing proess is provided in the genotypespae G. However, in order to alulate the individual �tness, its hromosome mustbe deoded to its phenotype. Two main streams of instanes of suh evolutionaryalgorithms, an nowadays be identi�ed:� Geneti Algorithms (GA) (De Jong 1975, Goldberg 1989, Grefenstette 1986,Holland 1975, Mihalewiz 1996),� Geneti Programming (GP) (Kinnear 1994, Koza 1992).In the phenotypi simulations, attention is foused on the behaviors of the an-didate solutions in a population. All searhing operations, seletion, reprodutionand mutation, are onstruted in the phenotype spae D. This type of simula-tions haraterizes a strong behavioral link between a parent and its o�spring.Nowadays, there are two main streams of instanes of �phenotypi" evolutionaryalgorithms:� Evolutionary Programming (EP) (Fogel et al. 1991, Fogel 1992, Fogel 1999,Fogel et al. 1966, Yao and Liu 1999),� Evolutionary Strategies (ES) (Rehenberg 1965, Shwefel 1981).In this book emphasis is put on an Evolutionary Searh with Soft Seletion algo-rithm (ESSS) (Galar 1985, Galar 1989, Galar 1990, Galar and Karz-Dul�ba 1994),whih is some simpli�ed version of the ES. Basi ideas of GA, GP, EP and ES al-gorithms are presented below. The ESSS algorithm is the subjet of the nextsetion.1.2.1. Geneti algorithmsGAs are probably the best know evolutionary algorithms, reeiving remarkableattention all over the world. The basi priniples of GAs were �rst laid down rig-orously by Holland (1975), and are well desribed in many texts (e.g. (Bäkand Shwefel 1993, Beasley et al. 1993a, Beasley et al. 1993b, Dasgupta andMihalewiz 1997, Davis 1987, Davis 1991, Goldberg 1989, Grefenstette 1986,Grefenstette 1990, Mihalewiz 1996).Previously proposed form of GAs (De Jong 1975, Holland 1975), alled SimpleGAs (SGAs) (Goldberg 1989) or anonial GAs (Bäk and Shwefel 1993), operateon binary strings of �xed-length l, i.e. the genotype spae G is a l-dimensionalHamming ube G = f0; 1gl. SGAs are a natural tehnique of solving disreteproblems, espeially in the ase of �nite ardinality of possible solutions. Suha problem an be transformed to a pseudo-boolean �tness funtion, where GAsan be used diretly. In the ase of ontinuous domains of optimization problems,the funtion � : D ! G that enodes the variables of the solving problem into abit string, so alled, a hromosome, is needed. The enoding funtion � is non-invertible and there does not exist the inverse funtion ��1. A deoding funtion� : G ! Dl � D generates only 2l representatives of solutions. This is a stronglimitation of SGAs.



1. Evolutionary algorithms 9The parent seletion sp is arried out by, so alled, proportional method(roulette method):sp�P (t)� = �ah1 ;ah2 ; : : : ;ah�	 : hk = min�h : Phl=1 �tlP�l=1 �tl > �k�; (1.1)where f�k = U(0; 1) j k = 1; 2; : : : ; �g are uniformly-distributed, independentrandom numbers from the interval [0; 1). In this type of seletion, the probabilitythat a given hromosome will be hosen as a parent is proportional to its �tness.Beause sampling is arried out with returns, it an be expeted that well-�ttedindividuals insert a few of their opies in the temporary population P 0(t).Chromosomes from P 0(t) are reombined. In the ase of SGA the rossover isthe reombination operation. Chromosomes from P 0(t) are joined into pairs. Thedeision that a given pair will be reombined is taken with the given probability�r. If the deision is positive, an i-th position in the hromosome is randomlyhosen and the information from the position (i + 1) to the end of hromosomesis exhanged in the pair:( (a1; a2; : : : ; al)(b1; b2; : : : ; bl) )! ( (a1; : : : ; ai; bi+1; : : : ; bl)(b1; : : : ; bi; ai+1; : : : ; al) ):New obtained temporary population P 00(t) is mutated. The individuals mu-tation m�m is done separately for eah bit in a hromosome. The bit value ishanged to the opposite one with the given probability �m. Obtained populationis the population of a new generation.Historially, the �rst attempt to the formal desription of the asymptotiharateristis of the SGA was proposed by Holland (1975). The ombined e�etof seletion, rossover and mutation give so-alled reprodutive shema growthequation (Shaefer 2002):h�(S; t + 1)i � �(S; t)�(S; t)��(t) �1� �r Æ(S)l � 1�(1� �m)o(S); (1.2)where S is a shema de�ned over the alphabet of 3 symbols (`0',`1',and `?' of lengthl; eah shema represents all strings whih math it on all positions other than`?'); �(S; t) denotes the number of strings in a population at the time t mathed byshema S; h�i is a symbol of an expetation value; Æ(S) is the de�ning length of theshema S � the distane between the �rst and the last �xed string positions; o(S)denotes the order of the shema S � the number of 0 and 1 positions presentedin the shema; �(S; t) is de�ned as the average �tness of the all strings in thepopulation at the time t mathed by the shema S; and ��(t) is the average �tnesstaken over all individuals in the population at the time t.The equation (1.2) tells us about the expeted number of strings mathinga shema S in the next generation as a funtion of the atual number of stringsmathing the shema, the relative �tness of the shema, and its de�ning lengthand order. It is lear that above-average shemata with short de�ning length andlow-order would still be sampled at exponentially inreased rates.



10 1.2. Standard evolutionary algorithmsPSfrag replaements +sin �� y z2 � xFig. 1.1 . The sample of the tree whih represents the funtion f(x; y; z) = yz+sin(2�x).The above approah, whih was ritiized many times (see (Grefenstette 1993,Shaefer 2002)), an be treated as an attempt to evaluation of a numerial foreinreasing of a population (Whitley 1994). Vose (1999) proves that Markov pro-esses, whih model the geneti algorithms proessing, are ergodi. This fatimplies the asymptoti orretness in the probabilisti sense and the asymptotiguarantee of suess (Shaefer 2002).1.2.2. Geneti programmingMany trends of the SGA development are onneted with the hange of an indi-vidual representation. One of them deserves partiular attention: eah individualis a tree (Koza 1992). This little hange in the GA gives evolutionary tehniquespossibility of solving problems, whih are not early e�orted to solve. This type ofthe GA is alled the Geneti Programming (GP).Two sets are needed to be de�ned before the GP starts: the set of termsT and the set of operators F . In the initiation step, the population of trees israndomly hosen. For eah tree leaves are hosen from the set T and other nodesare hosen from the set F . Depending on T and F de�nitions a tree an representa polyadi funtion, a logial sentene or a part of a programme ode in a givenprogramming language. Figure 1.1 presents the sample tree for T = fx; y; z; 2; �gand F = f�;+;�; sing. The new type of an individual representation needs newde�nitions of rossover and mutation operators, both of them are explained inFig. 1.2.1.2.3. Evolutionary programmingEvolutionary programming resides in the �phenotypi" ategory of simulations. Itwas devised by L.G. Fogel et al. (1966) in the mid-sixties for the evolution of �nitestate mahines in order to solve predition tasks. The environment was desribed
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PSfrag replaements
rossover

mutationrandom subtreeFig. 1.2 . Geneti operators for the GP.as a sequene of symbols (from a �nite alphabet) and a �nite state mahine hadto reate a new symbol. The output symbol had to maximize some pro�t fun-tion, whih was a measure of predition auray. There are not preseletion andreombination operators. Eah mahine of the urrent population generates ano�spring by random mutation. There are �ve possible modes of random mutationthat naturally result from the desription of the �nite state mahine: hange anoutput symbol, hange a state transition, add a state, delete a state, or hangethe initial state. Mutation are hosen with respet to a uniform distribution. Thebest half number of parents and o�spring were seleted to survive.The EP was extended by D.B. Fogel (1991, 1992) to work on real-valued objetvariables based on normally distributed mutations. This algorithm was alled themeta-EP (Fogel et al. 1991) or the Classial EP (CEP) (Yao and Liu 1999). Thedesription shown in Table 1.2 is based on (Bäk and Shwefel 1993, Yao andLiu 1999).In the meta-EP, an individual is represented by pair a = (x;�), where x 2 IRnis a real-valued phenotype, � 2 IRn+ is a self-adapted standard deviation vetor forGaussian mutation. For initialization, the EP assumes a bounded initial domains
x = Qni=1[ui; vi℄ � IRn and 
� = Qni=1[0; ℄ � IRn+ with ui < vi and  >0. However, the searh domain is extended to IRn � IRn+ during the algorithmproessing. As a mutation operator a Gaussian mutation with a standard deviationvetor asribed to an individual is used. All elements in the urrent populationare mutated. Individuals from both parent and o�spring populations partiipatein the new generation seletion proess. For eah individual ak, q individuals arehosen at random from P (t) [ P 0(t) and ompared to ak with respet to their�tness values. wk is a number, how many of the q individuals are worse than ak.



12 1.2. Standard evolutionary algorithms
Tab.1.2. The outline of the EP algorithmI. InitiationA. Random generationP (0) = �a0k = �x0k;�k(0)� j k = 1; 2; : : : ; �	.x0k = RANDOM(
x), �0k = RANDOM(
�),
x � IRn, 
� � IRn+.B. EvaluationP (0)! ��P (0)� = ��0k = ��x0k� j k = 1; 2; : : : ; �	.C. t = 1.II.Repeat:A. MutationP 0(t) = m�;� 0�P (t)� = �a0tk j k = 1; 2; : : : ; �0	.x0tki = xtki + �tkiNi(0; 1), �0tki = �tki exp �� 0N(0; 1) + �Ni(0; 1)�,i = 1; 2; : : : ; n,where N(0; 1) denotes a normally distributed one-dimensional randomnumber with mean zero and standard deviation one, Ni(0; 1) indiatesthat the random number is generated anew for eah omponent i.B. EvaluationP 0(t)! ��P 0(t)� = ��0tk = ��x0tk� j k = 1; 2; : : : ; �	.C. Seletion of new generationP (t+ 1) = sn�n�P (t) [ P 0(t)� = �at+1k j k = 1; 2; : : : ; �	.8atk 2 P (t) [ P 0(t),atk ! �atkl = RANDOM�P (t) [ P 0(t)� j l = 1; 2; : : : ; q	,wtk =Pql=1 ���(xtk)��(xtkl)�, �(�) = (0 for � < 01 for � � 0 ,P (t+ 1) � individuals with the best sore wtk.D. t = t+ 1.Until ���P (t)� = true�.



1. Evolutionary algorithms 13� individuals having highest sore wk are seleted from 2� parents and o�springto form new population P (t+ 1).The analysis of the lassial EP algorithm (Fogel 1992) giving a proof ofthe global onvergene with probability one for the resulting algorithm, and theresult is derived from de�ning a Markov hain over the disrete state spae thatis obtained from a redution of the abstrat searh spae IRn to the �nite set ofnumbers representable on the digital omputer.1.2.4. Evolutionary strategiesThe seond well-known �phenotypial� algorithms are Evolutionary Strategieswhih have been introdued in mid-sixties by Rehenberg (1965) and Shwefel(1981). The desription of the ES presented in this subsetion is based on theartile (Bäk and Shwefel 1993). The general form of the ES relies on the indi-vidual representation in the form of a pair: a = (x; C ), where x 2 IRn is a pointin a searhing spae, and the �tness value of the individual a is alulated diretlyfrom the objetive funtion: �(a) = f(x). C is the ovariane matrix for then-dimensional normal distribution N(0; C ), having probability density funtionp(z) =s 1(2�)n det(C ) exp�� 12zT C�1z�; (1.3)where z 2 IRn. To assure positive-de�niteness of the C , it is desribed by twovetors: vetor of standard deviations � (ii = �2i ) and vetor of rotation angles� (ij = 12 (�2i � �2j ) tan 2�ij). So, a = (x;�;�) is used to denote a ompleteindividual.There is no separated operation of seletion of parents in ESs, this seletionis strongly onneted with the reombination mehanism. Di�erent reombinationmehanisms an be used in ESs to reate � new individuals. Reombination rulesof determining an individual a0 = (x0;�0;�0) have the following form:a0i = 8>>>>>>><>>>>>>>: ap;i without reombinationap;i or as;i disrete reombinationap;i + �(as;i � ap;i) intermediate reombinationapi;i or asi;i global disrete reomb.api;i + �i(asi;i � api;i) global intermediate reomb. (1.4)where indies p and s denote two parent individuals seleted at random from P (t),and � 2 [0; 1℄ is uniform random variable. For global variants, for eah omponentof a the parents pi, si as well as �i are determined anew. Empirially, disretereombination on objet variables and intermediate reombination on strategyparameters have been observed to give best results (Bäk and Shwefel 1993).Eah reombined individual a0 is subjet to mutation. Firstly, strategy pa-rameters are mutated, and then new objet variables are alulated using new



14 1.3. Evolutionary searh with soft seletion (ESSS)standard deviations and rotation angles:�00 = f�0i exp(� 0N(0; 1) + �Ni(0; 1)) j i = 1; 2; : : : ; ng�00 = f�0j + �Nj(0; 1) j j = 1; 2; : : : ; n(n� 1)=2g (1.5)x00 = x0 +N (0;�00;�00);where fators � 0, � and � are rather robust exogenous parameters, whih aresuggested to set as follows: � 0 � 1=p2pn, � � 1=p2n and � � 0:0873 (5o inradians).Seletion in ESs are ompletely deterministi. There exist two possible strate-gies:� (�+ �)-ES � seleting � best individuals out of the union of � parents and� o�springs;� (�; �)-ES � seleting � best individuals out of the set of � o�springs (� > �).Although, the (� + �)-ES is elitist and guarantees a monotonously improvingperformane, the e�etiveness of global optimum searhing is worse than in thease of (�; �)-ES, therefore the seond one is reommended nowadays.Under some restritions it is possible to prove the onvergene theorem forthe evolutionary strategies (Bäk et al. 1991). Let the ovariane matrix C be re-dued to the standard deviation vetor whih possesses all omponents idential,i.e. � = f�; : : : ; �g and � > 0, and remains unhanged during the proess. If theoptimization problem with �opt > �1 (minimization) or �opt < 1 (maximiza-tion) is regular then the evolutionary proess onverges to the global optimum inin�nite limit of time with probability one.1.3. Evolutionary searh with soft seletion (ESSS)The ESSS algorithm was introdued by Galar (1989) relying on probably the sim-plest model of the Darwinian phenotypial evolution (Galar 1985). This seletion-mutation proess is exeuted in a multi-dimensional real spae, on whih �tnessfuntion is de�ned. At the beginning, a population of points is randomly ho-sen from the searhing spae and is iteratively hanged by seletion and mutationoperators. As a seletion operator the well-known proportional seletion is used.Seleted elements are mutated by adding a normally distributed random vetor.1.3.1. Phenotypi model of evolutionA basi phenotype evolution model was proposed by Galar (1985). The founda-tions of this model are as follows:� There exists an environment of invariant properties whih have a limitedapaity.



1. Evolutionary algorithms 15� There exists a population of reproduing elements (individuals of the samespeies). The elements of the population are haraterized by a set of features(phenotype quantitative features). The set of feature values determines thetype of an element (phenotype). Eah type is assigned to its �tness.� The assumption that eah element oupies only one plae in the environ-ment is also made. The elements "live" in the environment for some lengthof time (generation), and then a new generation is produed out of the atualone (reprodution).� The new generation is reated by seleting parent elements from the atualgeneration and hanging their features (asexual reprodution).� The hoie of parents is aomplished by soft seletion being a random pro-ess. Eah parent element has a hane of alloating a desendant in theenvironment with probability proportional to the element quality.� The desendant elements are not perfet opies of the parent elements. Typedi�erenes result from lear random mutation.Basing on the above assumptions, the evolution is a motion of individuals inthe phenotype spae alled also the adaptation landsape. This motion is ausedby seletion and mutation proesses. Seletion leads to onentration of the in-dividuals around the best ones, but mutation introdues diversity of phenotypesand disperses the population in the landsape.1.3.2. ESSS algorithmAssumptions desribed above an be formalized by the algorithm presented in Ta-ble 1.3. A real, n-dimensional, searhing spae (an adaptation landsape) IRn isgiven. A �tness funtion � to be maximized is also de�ned on this adaptationlandsape. Previously, an initial population P (0) of � elements is randomly gen-erated. If the ESSS algorithm is used to solve the optimization problem in IRnwithout onstrains, the onept that an initial population has to be `uniformlydistributed' in the searh spae has no sense. One of the possible and rational so-lution is to reate an initial population by adding � times a normally-distributedrandom vetor to a given initial point x00 2 IRn. The �tness �0k = �(x0k) is al-ulated for eah element x0k of the population (k = 1; 2; : : : ; �). The searhingproess onsists in generating a sequene of �-element populations. A new pop-ulation P (t + 1) is reated based only on the previous population P (t). In orderto generate a new element xt+1k , a parent element is seleted and mutated. Bothseletion and mutation are random proesses. Eah element xtk an be hosen as aparent with a probability proportional to its �tness �tk (the roulette method (1.1)).A new element xt+1k is obtained by adding a normally-distributed random valueto eah entry of the seleted parent:�xt+1k �i = �xthk�i +N(0; �) i = 1; : : : ; n; (1.6)



16 1.3. Evolutionary searh with soft seletion (ESSS)
Tab.1.3. The outline of the ESSS algorithmInput data� � population size;tmax � maximum number of iterations (epohs);� � standard deviation of mutation;� : IRn ! IR+ � non-negative �tness funtion, n � number of features;x00 � initial point.1. Initialize(a) P (0) = �x01;x02; : : : ;x0�	 : �x0k�i = �x00�i +N(0; �)i = 1; 2; : : : ; n; k = 1; 2; : : : ; �(b) �00 = ��x00�2. Repeat:(a) Evaluation��P (t)� = ��t1; �t2; : : : ; �t�	 where qtk = ��xtk�; k = 1; 2; : : : ; �.(b) Seletion�h1; h2; : : : ; h�	 where hk = min�h : Phl=1 �tlP�l=1 �tl > �k�and f�kg�k=1 are random numbers uniformly distributed in [0; 1).() MutationP (t)! P (t+ 1);�xt+1k �i = �xthk�i +N(0; �); i = 1; 2; : : : ; n; k = 1; 2; : : : ; �.Until ���P (t)� = true�.



1. Evolutionary algorithms 17where the standard deviation � is a parameter to be seleted. It is important tonote that there is no reombination (rossover) operator in the ESSS. However,the reombination operator is biologially motivated (Mendel's experiments) andpossesses great importane in EAs based on the genotypi representation of in-dividuals, in the ase of phenotype simulations of evolution, whih are based on�oating point representation of individuals, the mutation seems to be the ruialoperator of the evolutionary proess (Fogel 1995, Fogel 1999, Galar 1989).Numerial tests of the ESSS algorithm (Galar 1989) have proved essentialadvantages of soft seletion in a global optimum �nding in omparison with hardseletion in whih only the best individuals are hosen and only loal optima areattained. The ESSS algorithm does not onstitute an optimization algorithm inthe sense of reahing extrema with a desired auray. The evolution proess isnot asymptotially onvergent to an optimum and the interpolation e�etivenessof soft seletion is rather weak. The evolution leads next generations to an elevatedresponse surfae, rather than to maxima. In spite of that, searh advantages ofthe ESSS algorithm suggest that this algorithm an be of real pratial use innumerial pakages for global optimization, espeially when ombined with loaloptimization algorithms.First attempt at the ESSS onvergene analysis was presented in (Karz-Dul�ba 1992, Karz-Dul�ba 1997, Karz-Dul�ba 2001a), where dynamis of in�nitepopulations in a landsape of unimodal and bimodal �tness funtions is onsidered.Galar and Karz-Dul�ba (1994) propose to onsider the evolution dynamis inthe state spae of the population. The population state spae is n�-dimensional.Beause the evolution dynamis is independent on the elements' sequene in thepopulation, the population state spae does not over all the IRn� spae but onlysome onvex, ompat and multi-lateral subspae of IRn�. Analytial results for thepopulation of two elements, obtained by using population state spae desription,are presented in (Karz-Dul�ba 2001).1.4. SummaryThe evolutionary algorithm is distinguished by two main harateristis. Unlikeother lasses of optimization algorithms the EA operates on the population ofindividuals. In this way the knowledge about the environment is disovered simul-taneously by many individuals, veri�es information inherited from anestors andis passed down from generation to generation. Speies aquire their individualharateristis due to the survival of well �tted ones, that is seemingly a blindmehanism where only individuals well adapted to presene an survive and pro-reate. However, the nature does not selet only the best individuals to proreate,sometimes even a weakly adapted one has a possibility of reating an o�springwhih an possess a feature without parallel in the population. This is the seondevolution harateristi, alled soft seletion. If we give up the hard seletion anduse the soft one instead, assuming that weakly-adapted points (in the sense of thevalues of the objetive funtion) an be seleted to reate o�springs, the possibilityof the global optimum �nding inreases.



18 1.4. SummaryAlthough evolutionary algorithms have been suessfully implemented tomany pratial problems, there have a number failures as well, and there is littleunderstanding of what features of these domain make them appropriate or inap-propriate for these algorithms. Beause of the simple form of the ESSS algorithm,it seems to be useful material for transformation and analysis, whih will be help-ful to understand the nature of evolution algorithms. This is a task for the nexthapters of this part of the book.



Chapter 2
NATURAL EXPLORATION MECHANISMS

If the adaptation landsape is omposed of multi-dimensional hills, valleys, sad-dles and ridges, it is easy to prove that the Darwinian-type evolution has a ylinature (Galar 1989). Eah yle onsists of two phases: ative and latent. In rela-tive short-lived ative phases, the population of individuals limbs an adaptationslope to a neighbourhood of a loal peak. The latent phase is a quasi-stationarystate with sporadi �utuations, suh a phenomenon is known in biology as soalled �Müller's ath� (Müller 1964): the population is trapped around the lo-al optimum of the �tness, almost all mutations give worse �tted o�springs. Ifthe oupied hill possesses a higher neighbour, the �utuations an ontribute toross a saddle and a new ative phase starts. The yli nature of evolution isonsistent with the theory of �puntuated equilibria� (Eldredge and Gould 1972)whih laims that the evolution is not evolve with steady motion but irregular �stepwise.In order to illustrate the ESSS proess, a sum of three two-dimensional Gauss-ian peaks�(x) = 12 exp�� 5�(1� x1)2 + x22��+ exp�� 5�x21 + x22��++ 32 exp�� 5�x21 + (1� x2)2�� (2.1)was hosen as a �tness funtion (Fig. 2.1a). The searhing proess an be splitinto two ylially interhanged phases: an ative phase (exploitation) and a latentphase (exploration) (Fig. 2.1b). In the short-lived ative phase the onentratedpopulation moves toward a loal pik of the �tness. In the long-standing latentphase the trapped population �utuates around the top in the searh for a saddleof the adaptation landsape.Long-time exeution of the ESSS algorithm is aused, among other things,by long time intervals of the latent phases whih result from the fat that theseletion proess prefers new o�springs alloated in well-exploited areas aroundthe oupied peak. This is, of ourse, a drawbak to this approah in the ontextof the e�etiveness of the global optimization proess. In order to overome thisproblem, a natural idea is to exlude the neighbourhood of the oupied peakin the exploration proess and to propose and analyze some mehanisms whih
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Fig. 2.1 . The 2D adaptation landsape used in the test (a); the �tness of the best elementin the population vs. epohs (b). These results were obtained for � = 15,� = 0:03, tmax = 4000 and x00 = [2;�1℄.



2. Natural exploration mehanisms 21would try to aelerate the saddle rossing and shorten the time spent on thelatent phase. There are many instanes of this idea in the speialized literature(Bäk et al. 1997, Goldberg 1989, Mihalewiz 1996, Shaefer 2002).There are three ways of in�uene on the ESSS algorithm proessing(Obuhowiz 2003a):� adaptation of algorithm parameters;� modi�ation of evolutionary operators;� inlusion of the population in�uene on the �tness funtion.In this hapter a few methods, whih inrease the ESSS exploration abilities,divided into three above lasses, are presented.2.1. Adaptation of algorithm parametersThe e�ieny of the ESSS algorithm depends on values of input parameters: thestandard deviation of mutation � and the population size � (Table 1.3). Both pa-rameters an be adapted during the algorithm exeution. This idea is not novelty.The adaptation of the mutation standard deviations are inluded in the standardversions of the ES (Bäk and Shwefel 1993, Shwefel 1981) and the EP (Fogel etal. 1991). Standard deviations in the ES and the EP algorithms are self-adaptedand hanged randomly and ontinuously being subjet to the same low as in thease of variables of the objetive funtion. Unlike these algorithms, the adaptationof the standard deviation in the modi�ed ESSS algorithm, alled the ESSS-SVA(the ESSS with Simple Variane Adaptation), is ontrolled by the atual state ofpopulation (Obuhowiz and Patan 1997a). There is proposed a ompletely newmehanism, alled trap test, whih monitored whether the population is trappedaround a loal peak of the �tness funtion. The varying population size was �rstlyproposed for the GA algorithm by Arabas and oworkers in their GAVaPS algo-rithm (Arabas et al. 1994). Eah individual is extended by a new parameter: thelife-time, the value of whih depends on the individual �tness. This tehnique,slightly modi�ed, is implemented in the ESSS-VPS (the ESSS with Varying Pop-ulation Size) algorithm (Obuhowiz and Korbiz 1999).2.1.1. Adaptation of the standard deviation of mutationIdea. When the population is trapped around a loal peak, the standard deviationof mutation inreases. This fat results in a larger variane of the population anda worse mean �tness. In this way, the mean �tness of the population dereases toa saddle level and the possibility of saddle rossing inreases.ESSS-SVA algorithm. When ompared to ESSS, the ESSS-SVA algorithm isenrihed by an additional mehanism whih onsists of three new proedures:1. Trap test. The objetive of this proedure is to determine whether the pop-ulation quality hanged substantially for a given number of epohs tT . The



22 2.1. Adaptation of algorithm parameterstest is positive if the population displaement for the last tT epohs is of thesame order as the mutation variane �t.2. Adaptation of the mutation variane. This proedure is started if an evo-lutionary trap is deteted. The variane of the normal distribution used inmutation is multiplied by a onstant � > 1.3. Return to the initial variane � If no evolutionary trap is deteted, the vari-ane of the normal distribution is set to the initial, relatively low value.The ESSS-SVA algorithm an be written in the following form (see Table 1.3):1. Initiation2. Repeat(a) Estimation;(b) Choie of the best element in the history ;() If Trap Test then Adaptation of the mutation variane else Return tothe initial variane;(d) Seletion;(e) Mutation;Until t > tmax.Illustrative example. In order to validate the performane of the ESSS-SVAproess, let us onsider again the sum of three two-dimensional Gaussian peaks asa �tness funtion (2.1). From the results shown in Fig. 2.2 it is easy to see thatthe applied SVA mehanism aelerates the e�etiveness of saddle rossing.2.1.2. Adaptation of the population sizeIdea. When the population �utuates around a loal peak of the �tness funtion,individuals weakly �tted but geographially alloated losely to the saddle, seemto have a greater hane to reate desendants in the other side of the saddle. Theprobability that suh an individual will be seleted as a parent inreases whenthe population size is low, in other words, it has fewer rivals with better �tness.On the other hand the �utuations of small population around a loal peak arehigher and the e�ieny of loal �tness maximum alloation is low. Therefore,the following hypothesis an be advaned that if the population size � is large, theproess possesses a high quality of loal �tness maximum alloation, but its abilityof saddle rossing is poor in omparison with the ESSS algorithm with small valueof �.ESSS-VPS algorithm. The value of � is adapted in the ESSS-VPS algorithm.An individual element xtk in the ESSS-VPS algorithm is extended by adding oneomponent: the life-time � tk, i.e. the number of epohs in whih the element xtkexists in population. The life-time � tk is spei�ed at the moment of an element
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Fig. 2.2 . The results of the ESSS-SVA searhing proess for the adaptation landsape(2.1). Figures (a) and (b) illustrate relations between the �tness of the bestelement in the population and the population variane, respetively, vs. epohs.These results were obtained for � = 15, �0 = 0:03, � = 1:1, tT = 20 andtmax = 300.



24 2.1. Adaptation of algorithm parametersTab.2.1. Parameters used in simulationsParameters Valuesmaximum of epoh (tmax) 3000initial population size (�0) 5; 10; 20; 50; 100maximum life-time (�max) 4standard deviation (�) 0:005; 0:01; 0:05; 0:1; 0:5birth. It depends on the relation between an element's �tness � (xtk) and the�tness history of population. A few methods of determining � tk have been tested.The following one was hosen in (Obuhowiz and Korbiz 1999):� tk = ��max �tk�t+10 � ; (2.2)where �max is an exogenous parameter, dze returns the minimal integer value thatis still greater then z. Unlike geneti algorithms, where the varying population sizeis a tehnique to avoid preoious onvergene (Arabas et al. 1994), the populationsize dereases when average �tness of the population inreases, in the ESSS-VPSalgorithm the population size inreases with average �tness of population anddereases, when the population is trapped around the loal optimum or averagepopulation �tness dereases.Illustrative example. Let us onsider three two-variable funtions from Ap-pendix B: the �drop wave� funtion f4(x1; x2) (B4), Mihalewiz's funtionf5(x1; x2) (B5), and Rastringin's funtion f7(x1; x2) (B7). All these funtionsare strongly non-linear and multimodal. The �tness funtion has been hosen inthe form :� �xtk� = f �xtk�� f tmin +� 1�t�2 ; (2.3)where f tmin = min (f (xtk) jk = 1; : : : ; �t) is the minimal value of f taken over allelements in the atual population of a size �t, and f is a given objetive funtionwhih has to be maximized. Suh a �tness funtion is non-negative and its rel-ative values in the atual population make the proportional seletion e�etive.Simulations have been done several times for all possible ombinations of inputESSS-VPS parameters ontained in the Table 2.1. When the best set of parame-ters was alloated, several starting points �x00� were tested. The best results havebeen ompared with the ESSS algorithms. Table 2.2 presents the perentages of500 algorithm ourses whih have found the global optimum �nding for three ho-sen objetive funtions. Simulations show that the ESSS-VPS algorithm is slightlybetter than the standard ESSS algorithm in loalization of a global optimum of agiven objetive funtion.



2. Natural exploration mehanisms 25Tab.2.2. Perentages of algorithms ourses whih have found the global optimum:tmax = 3000, �0 = 20, �max = 4, starting points: (9,9) for f4, (3,3) for f5,(4.5,4.5) for f7.alg. ESSS ESSS-VPS� 0.01 0.05 0.1 0.01 0.05 0.1f4 0 0 8 0 0 10f5 0 10 88 4 46 96f7 0 8 98 0 18 962.2. Modi�ation of evolutionary operatorsThe ESSS algorithm is omposed of two evolutionary operators: seletion andmutation. Many seletion and mutation tehniques known from the literature anbe implemented (f. (Bäk et al. 1997)), but methods presented below do notviolate the models paradigm (see setion 1.3.1).2.2.1. Fored diretion of mutationIdea. The ESSS with Fored Diretion of Mutation (ESSS-FDM) algorithm,�rstly proposed by Obuhowiz and Korbiz (1998), has been designed as an adap-tation algorithm in a time-varying landsape (Obuhowiz 1999b). The idea ofFDM mehanism is following: if natural onditions existing in the environment fa-vor some diretion of alteration in the phenotype spae, this diretion is preferrednot only by seletion, but by mutation, too.ESSS-FDM algorithm. The ESSS-FDM algorithm di�ers from the standardESSS one only in the modi�ation step. The elements seleted are mutated byadding to eah omponent i a normally-distributed random variable with expe-tation mi 6= 0. This is unlike the ESSS algorithm, where mi = 0 (see Table 1.3).Aordingly we have() MutationP (t)! P (t+ 1);�xt+1k �i = �xt+1hk �i +N�mti ; ��; i = 1; 2; : : : ; n; k = 1; 2; : : : ; �;mti = �� hxtii � hxt�1i ikhxtii � hxt�1i i)k ; (2.4)hxtii = 1� �Xk=1 �xtk�i:



26 2.2. Modi�ation of evolutionary operators

Fig. 2.3 . The �tness of the best element in the population vs. epohs; these results wereobtained for � = 20, � = 0:03, tmax = 1000 and � = 0, � = 0:5, � = 1, � = 2,� = 10, respetively from the top to the bottom panels.Illustrative example. Let us onsider the �tness funtion � (x) = f1 (x) (B1)from Appendix B. The initial point is hosen as x00 = [�1; 2℄. Results for di�er-ent set of the ESSS-FDM algorithm parameters are presented in Fig. 2.2.1. Themutation expetation vetor mt depends on standard deviation of normal distri-bution � and is parallel to the latest trends of the population drift. The exogenousparameter �, whih is alled the momentum, determines the proportion betweenthe standard deviation � and the length of the vetor mt : � = kmtk=�. If � istoo small, there is essentially no di�erene between the ESSS and the ESSS-FDMsearhing. In the ase of a very large � �kmtk � ��, there is no possibility ofhanging the diretion of the population drift, whih was hosen in the beginningof the searhing proess.2.2.2. Loal seletionIdea. Almost all known evolutionary algorithms use a global seletion, i.e., allindividuals in the urrent population ompete with eah other for plaing as manyo�spring individuals in the next generation as possible. In nature, suh a seletionis impossible for population dispersed on a wide area. The natural seletion is loalseletion, where an individual only ompetes with rivals in its �eologial nihe�.



2. Natural exploration mehanisms 27The idea of the loal seletion is as follows (Obuhowiz 2002a). Eah indi-vidual of the urrent population is a entre of a sphere with a given radius �. Oneparent is seleted from eah of � spheres in aordane to the proportional seletion(the roulette method), i.e., individuals loated inside a given sphere ompete witheah other to beome a parent. In this way the parent population of � individualsare reated. There are proposed three variants of evolutionary algorithms whihuse the loal seletion.ESSS algorithm with Loal Seletion (ESSS-LS). The ESSS-LS algorithmdi�ers from the ESSS algorithm (see Table 1.3) only in Seletion step. At �rst �sets of individuals are onstrutedStj = fxti 2 P (t) : kxti � xtjk < �g; j = 1; 2; : : : ; �: (2.5)The set Stj ontains the individual xtj and its neighbours loated in the sphereentered on xtj and the radius �, whih is an input parameter of the algorithm.It easy to see, that xti 2 Stj , xtj 2 Sti . From eah set (Stj j j = 1; 2; : : : ; �) oneparent is randomly hosen. The probability ptij that the individual xti 2 Stj will behosen as a parent has the formptij = �tiPxtl2Stj �tl : (2.6)ESSS algorithm with Mixed Seletion (ESSS-MS). In the ESSS-MS algo-rithm, loal and global seletion operators are applied alternately. At �rst, theloal seletion is used over tl iterations and next the global seletion is used overtg iterations. Both time intervals tl and tg are input parameters.ESSS algorithm with Adapted Loal Seletion (ESSS-ALS). The seletionin the ESSS-ALS is loal and almost the same as in the ESSS-LS. The ESSS-ALSdi�ers from the ESSS-LS only in representation of individual and de�nition of Stj .An individual in the ESSS-ALS algorithm is a pair (xtj ; �tj), where �0j is initiallyhosen at random from a given interval (0; ) with uniform distribution. Then theequation (2.5) has a new form:Stj = fxti 2 P (t) : kxti � xtjk < �tjg j = 1; 2; : : : ; �; (2.7)and hene the relation xti 2 Stj , xtj 2 Sti is not still valid.The mutation in the ESSS-ALS operates not only on the phenotype xtj , butalso on the loal radius �tj . A new radius is obtained as follows�t+1j = j�tj + �N(0; 1)j: (2.8)The experiment whih ompares desribed above tehniques is presented inSetion 2.4.1.2.3. Population in�uene on the �tnessThere are strong interation between populations of individuals and the environ-ment in nature. On the one hand, the population �tness depends on an available



28 2.3. Population in�uene on the �tnessamount of food and water. On the other hand, individuals an in�uene on theenvironment in order to improve the living onditions or, sometimes, they destrutit when the environment annot provide too large number individuals of a givenspeies.2.3.1. Impatiene and polarizationIdea. Individuals weakly �tted but geographially alloated losely to the saddle,seem to have a greater hane to reate desendants in the other side of the saddle.Thus, when the population does not ahieve better values of the �tness funtion, animpatiene operator is ativated. This operator modi�es the �tness of individualsso that the remote individuals from the entre of the population are rewarded. Inthis way the population is dispersed like in the sharing method (Goldberg 1989). Inthe ase of the ESSS algorithm with the impatiene operator new unexpeted e�etours: the �polarization�. Dispersed population assembles in two lusters loatedon either side of the population entre and rotating around it. If the adaptationlandsape is regular then this phenomenon aelerates the saddle rossing.Impatiene operator. The impatiene operator has been proposed by Galar andKopiuh (1999). It transforms the original �tness �(xj) of the j-th individual tothe e�etive �tness �e(xj) as follows:�e(xj) = � djdA + ��(xj); (2.9)where dj = kxj � hxik and dA = 1� P�k=1 dk.The e�ieny of the impatiene and polarization (IP) e�et has been testedon the bimodal �tness funtion omposed of the sum of two Gaussian peaks (Galarand Kopiuh 1999). Obtained results suggest that:� the IP e�et a�ets on the dereasing of the number of iterations needed toross a saddle;� the IP mehanism inreases the saddle rossing e�ieny for large popula-tions, almost no e�et has been notied in the ase of very small populations;� the IP e�et is pro�table in the ase of low dimensional landsapes.2.3.2. ErosionIdea. The great e�ieny of saddle rossing of the ESSS algorithm and all itsmodi�ation desribed in this setion is not a su�ient ondition for souring awide area of the searhing spae. There is a possibility that population of searhingindividuals will �utuate between two or more neighbouring loal optima. Thereexists natural phenomenon, whih in�uenes the rate of saddle rossing and pre-vents searhing individua from oming bak to the previously inspeted areas. Thisphenomenon is known as the landsape deterioration by the evolutionary trapped



2. Natural exploration mehanisms 29population. Therefore, the population dereases its �tness itself indiretly searh-ing the esape way from the trap.ESSS algorithm with Deterioration of the Objetive Funtion (ESSS-DOF). The ESSS-DOF in�uenes on the topology of an objetive funtion.It ontains an additional step whih is omposed of the following proedures(Obuhowiz 1997):� Trap test � the objetive of this proedure is to determine whether the pop-ulation quality hanged substantially for a given number of epohs.� Erosion � this proedure transforms the objetive funtion �(x) as follows:�(x) = ( �(x)�G(x) for �(x) � G(x);0 for �(x) < G(x); (2.10)where G(x) is the deterioration peak hosen in the Gaussian formG(x) = h exp�� 12(x��)TT�1(x��)�; (2.11)where h, � and T are a height, a entral point and a orrelation matrix ofthe Gaussian deterioration peak, respetively.The deterioration peak (2.11) has to approximate the urrently oupiedloal quality peak. If the population is trapped around the loal optimum, itan be assumed that the population distribution approximates the shape of thispeak. Thus, the parameters of the deterioration peak an be hosen in the form(Obuhowiz 1997): h = �tmax; (2.12)� = hx(t)i; (2.13)T = C t ; (2.14)where �tmax is the �tness of the best individual in the atual population P (t), hx(t)iand C t are the expetation vetor and the ovariane matrix of P (t), respetively.Although, the ESSS-DOF algorithm is the most e�ient in saddle rossingin omparison with other methods based on ESSS, it possesses one main disad-vantage. The deterioration funtion (2.11) does not approximate urrent qualitypeak with the su�ient auray. If an evolutionary trap is deteted, the modi�edquality peak looks like a rater with steep slopes. The deterioration mehanismshould be performed several times until the population starts souring anotherlandsape area. A large number of deterioration peaks used by the algorithm in-�uenes the omputation time and spae omplexity. In (Obuhowiz 2000b) amodi�ed ESSS-DOF algorithm, named ESSS-DOF? has been proposed. Basing



30 2.3. Population in�uene on the �tnesson analytial onsideration ontained in (Karz-Dul�ba 2001a) it an be shownthat if the �tness funtion is hosen in the form of Gaussian peak:�(x) = nYi=1 exp�� x2i2�2i �; (2.15)an in�nite population in the latent phase an be modelled by the Gaussian densityfuntion with the variane:�21;i = 12�2 1 +s1 +�2�i� �2!; i = 1; 2; : : : ; n: (2.16)The ovariane matrix of the deterioration Gaussian peak (2.11) is approximatedusing (2.16). This part of algorithm onsists of four steps:1. Calulate the ovariane matrix C t of the atual population;2. Find all eigenvetors and eigenvalues of the matrix C t in order to de�ne anorthonormal matrix U and a diagonal matrix diag(�2tiji = 1; 2; : : : ; n) suhthat: C t = U diag(�2tiji = 1; 2; : : : ; n)UT ; (2.17)3. Calulate the varianes of the deterioration peak (2.16):�2i = �2ti��2ti�2 � 1�; (2.18)4. Calulate the ovariane matrix T of the deterioration peak:T = U diag(�2i ji = 1; 2; : : : ; n)UT : (2.19)Illustrative example. In order to validate the performane of the ESSS-DOF?algorithm, let us onsider the sum of three two-dimensional Gaussian peaks as a�tness funtion (2.1). The ESSS-DOF? algorithm has a muh greater onvergenerate than other algorithms from the ESSS family (Fig. 2.4). If the populationgets stuk in an evolutionary trap, the proess of loal peak erosion is started.This e�et dereases the average �tness of the population. The population �tnessredues to a saddle level, and running away towards other quality peak is possible.The deteriorated peak will never be attrative for the searhing population. Twodisadvantages of ESSS-DOF? should be noted. First, if the algorithm approxi-mates well the peak shape, then the �tness funtion after the erosion proedurevanishes in the area oupied by the population. Consequently, the evolutionaryalgorithm works like a typial stohasti one and its e�etiveness in loating a newpeak substantially dereases. The other problem is that the population omposedof a �nite number of individuals �utuates around the loal peak and may non
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Fig. 2.4 . An exemplary ESSS-DOF searh in the adaptation landsape (2.1): (a) the�tness of the best element in the population vs. epohs for the ESSS-DOF?,(b) the �tness of the best element in the population vs. epohs for the ESSS-DOF; these results were obtained for � = 15, � = 0:03, tmax = 3000 andtT = 20 epohs.



32 2.4. Experimental omparisonsuniformly surround it at the time moment the erosion proedure �res. As a result,the neighbouring peaks may be deteriorated. Figure 2.4a shows that the mediumpeak of the adaptation landsape was aggravated by the lowest one. Fortunately,the highest one remained intat. Taking aount of the numerial omplexityand above disadvantages of the ESSS-DOF? algorithm, the ESSS-DOF algorithmseems to be more lurative.2.4. Experimental omparisons2.4.1. Loal seletion ontra global seletionMany numerial simulations (about 800) with two two-variable objetive funtionshave been arried out. First funtion, Shwefel's problem 2.22f1(x1; x2) = jx1j+ jx2j+ jx1jjx2j;min f1 = 0; argmin f1 = (0; 0); (2.20)is unimodal, while the seond one, Rastringin's funtionf2(x1; x2) = x21 + x22 � 10(os(2�x1) + os(2�x2) + 20;min f2 = 0; argmin f2 = (0; 0); (2.21)is multimodal. The �tness funtion �(xtk) is alulated from the objetive funtionfi, whih has to be minimized, using the formulae similar to (2.3)�(xtk) = f ti;max � fi(xtk) + 1�2 ; (2.22)where f ti;max = max(fi(xtk) j k = 1; 2; : : : ; �) is the maximum value of fi takenover all elements in the urrent population.Shwefel's problem 2.22. Population in the ESSS algorithms (Fig. 2.5) is fo-used around some entre hxtki with the standard deviationqh(xtk � hxtki)2i � �:This algorithm is very e�etive in the optimum �nding problem, the standarddeviation of mutation � ontrols the onvergene rate of the algorithm.The ESSS-LS algorithm performane strongly depends on the radius � ofthe neighbourhood sphere. If �� � there is no seletion. We get lear stohastiexpansion of the population independently of the objetive funtion. If �� � thenthe ESSS-LS algorithm redues to the ESSS algorithm. The most interesting aseis � � �, where population is divided into few subpopulations whih sporadiallyexhange individuals and are explored on a wide area. However, the loal seletiondereases the e�etiveness of the algorithm in the ase of an unimodal objetivefuntion like the Shwefel's problem 2.22.
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Fig. 2.5 . Shwefel's problem 2.22. Traes of the best elements loations of the ESSS(a), the ESSS-LS (b), the ESSS-MS () and the ESSS-ALS (d) algorithms �typial results (� = 20, � = 0:03, x00 = [2; 2℄, � = 0:07, tT = 20, tmax = 1000).Mixed seletion mehanism in the ESSS-MS algorithm joins the advantagesof both the loal and global seletion. Firstly it uses the loal seletion and allowsthe population to divide it into small subpopulations and explore on a wide area.After some generations the seletion is hanged from loal to global and populationis foused on one or few subpopulation around the best obtained points. In thease of the Shwefel's problem the ESSS-MS e�etiveness an be omparable withthe ESSS one.The ESSS-ALS algorithm e�etiveness is plaed between the ESSS-LS andESSS-MS ones. During its proessing the population autonomously divides intofew large subpopulations, whih possess a high exploitation rate, and many smallones with high exploration rate. Unlike the ESSS-MS algorithm, suh a divisionis not fored by exhanging loal and global seletion, whih is ontrolled by aresearher, but results from the implemented loal seletion with neighbourhoodsphere radius self-adapted during the algorithm proessing.
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Fig. 2.6 . Rastringin's funtion. Traes of the best elements loations of the ESSS (a),the ESSS-LS (b), the ESSS-MS () and the ESSS-ALS (d) algorithms � typialresults (� = 20, � = 0:03, x00 = [2; 2℄, � = 0:1, tT = 20, tmax = 3000).
Rastringin's funtion. However, three, proposed in this work, loal seletionimplementations rather interfere in quik loal optimum alloation, their highexploration rate makes them very e�etive in the ase of multimodal objetivefuntions.Figures 2.6 present the algorithms proessing for the same standard deviationof mutation � and the same population size �. The ESSS algorithm annot leavethe loal valley, in whih the initial population has been reated. The ESSS-LS,ESSS-MS and ESSS-ALS algorithms suessively explore onseutive valleys and�nd the global optimum. The exploration rate of the ESSS-LS is the highest oneand the population disperses in many loal valleys and none of them is preferred.In the ase of the ESSS-MS and the ESSS-ALS the population dispersion is guidedin the diretion of global optimum.



2. Natural exploration mehanisms 35Tab.2.3. Parameter values used in the simulationsAlgorithm Parameter Valueall tmax 3000all � 10; 20; 50all � 0.015, 0:03; 0:05; 0:1all x00 [1; 0; : : : ; 0℄ESSS-SVA � 1:1ESSS-SVA, ESSS-DOF tt 10ESSS-FDM � 0:32.4.2. E�ieny of saddle rossing2.4.2.1. ExperimentLet us onsider the problem desribed in Appendix A.The aim of the experiment is to ompare the e�etiveness of the four evo-lutionary algorithms (ESSS, ESSS-SVA, ESSS-FDM, and ESSS-DOF) in saddlerossing problem. Two parameters are hosen as measures of this e�etiveness.The �rst one is the average number t of epohs whih is needed to ross the sad-dle by a given algorithm. The seond one p is the perentage of runs in whih theglobal optimum was found in a given time tmax. In order to make the Gaussianmutation to be independent on the landsape dimension (see the next hapter),the mutation (1.6) is substituted by the following�xt+1k �i = �xthk�i +N(0; �pn) i = 1; : : : ; n; (2.23)where the standard deviation � is a parameter to be seleted.The algorithms were proessed over 400000 times: 500 times for 19 dimensions(n = 2; 3; : : : ; 20) and 12 ombinations of the population size � and the standarddeviation of mutation � (see Table 2.3). Beause of the numerial omplexity of theESSS-DOF algorithm, the number of times it was proessed its proessing is lim-ited to the following ombinations of � and � : � = 20 and � = 0:015; 0:03; 0:05; 0:1;� = 0:05 and � = 10; 20; 50.2.4.2.2. Results for ESSSThe results obtained for the ESSS algorithm are omprehensively presented inFigs. 2.7, 2.8 and 2.9. Analyzing those, the following onlusions an be drawn:� The saddle rossing e�etiveness of the ESSS algorithm is independent of theadaptation landsape dimension. This result opposes the results presented in(Galar 1989). The reason is di�erent mutation operators in both approahes.
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Fig. 2.7 . The ESSS algorithm with � = 10: the mean number of epohs t needed toross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (� = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.8 . The ESSS algorithm with � = 20: the mean number of epohs t needed toross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (� = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.9 . The ESSS algorithm with � = 50: the mean number of epohs t needed toross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (� = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).



2. Natural exploration mehanisms 39Galar (1989) modi�es a seleted parent aording to the formulae (1.6) andthe mutation radius is dependent on the landsape dimension. In this workthe equation (2.23) is used.� It is not surprising that the saddle rossing e�etiveness dereases with thestandard deviation �. If one hooses the standard deviation as a length unit,the saddle width relatively inreases when � dereases.� A small population is better than a large one. For small values of �, i.e.when perentage of suessful algorithm runs p < 100%, p dereases and tinreases when the population size � inreases. For large �, t is smaller inthe ase of large populations, but the number of �tness funtion evaluationsis still larger.The good ability of the ESSS algorithm with small population size in thesaddle rossing problem was reported in (Galar and Karz-Dul�ba 1994), wherean extremely small population � of two individuals � was onsidered. On theother hand, a small population, in omparison to a large one, loalizes optimumpoints with lower auray. Fitting of both input parameters � and � requiressome researh experiene.2.4.2.3. Results for ESSS-SVAFigs. 2.10, 2.11 and 2.12 present results obtained for the ESSS-SVA algorithm. Onean notie that the value of the initial standard deviation �0 does not in�uenesigni�antly the e�etiveness of the algorithm.Unlike in the ase of the ESSS algorithm, there exists a dependene betweenthe ESSS-SVA algorithm's e�etiveness and the dimension of the adaptation land-sape. It is signi�ant espeially for small populations. The algorithm produessatisfatory results in low-dimensional landsapes. When the dimension inreases,the algorithm's e�etiveness violently dereases and �utuates around some steadylevel for high dimensions. The researher who wants apply the ESSS-SVA algo-rithm to a given problem has to �t the size of the population several times higherthan the dimension of the searhing spae.2.4.2.4. Results for ESSS-DOFThe most interesting simulating result for the ESSS-DOF algorithm is that thepopulation has to be at least a simplex in the n-dimensional searhing spae(Fig. 2.13):� � n+ 1: (2.24)If the above relation is not satis�ed, then p = 0%. No exeptions was notiedduring the simulations. This feature an be explained by the fat that one needs atleast n+1 points in order to approximate a onvex of a �tness funtion. If only theexpression (2.24) is satis�ed, the population size does not in�uene signi�antlythe ESSS-DOF algorithm's e�etiveness.



40 2.4. Experimental omparisons(a)

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

(b)

2 4 6 8 10 12 14 16 18 20
65

70

75

80

85

90

95

100

Fig. 2.10 . The ESSS-SVA algorithm with � = 10: the mean number of epohs t neededto ross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (�0 = 0:015: rosses, �0 = 0:03: stars, �0 = 0:05: diamonds,�0 = 0:1: triangles).
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Fig. 2.11 . The ESSS-SVA algorithm with � = 20: the mean number of epohs t neededto ross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (�0 = 0:015: rosses, �0 = 0:03: stars, �0 = 0:05: diamonds,�0 = 0:1: triangles).
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Fig. 2.12 . The ESSS-SVA algorithm with � = 50: the mean number of epohs t neededto ross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (�0 = 0:015: rosses, �0 = 0:03: stars, �0 = 0:05: diamonds,�0 = 0:1: triangles).



2. Natural exploration mehanisms 43Analyzing the relation between the ESSS-DOF algorithm's e�etiveness andthe standard deviation � (Fig. 2.14) one an distinguish three ranges. The �rstone is the range of low standard deviations, where the ESSS-DOF algorithm e�e-tiveness of saddle rossing is pure. The seond range of high values of � desribesa very e�etive algorithm searhing. There exists some intermediate range forwhih the algorithm e�etiveness annot be learly haraterized. Both t and pstohastially �utuate from low to high values and these results are not reurrent.2.4.2.5. Results for ESSS-FDMThe best results of the ESSS-FDM algorithm in the saddle rossing problem wereobtained for large values of the standard deviation � and the population size �(Figs. 2.15, 2.16 and 2.17). Relationships between the algorithm's e�etiveness andboth of the input parameters, � and �, are not trivial or orrelated. If � = 0:1, thenthe best results are obtained for � = 50, but if � = 0:015, then the e�etiveness ofthe large population is worse.One an say that the population size is small or large only in omparisonwith the landsape dimension. The dependene of the algorithm's e�etiveness onthe searhing spae dimension (Fig. 2.15a) learly illustrates that the ESSS-FDMalgorithm works well if only � > n and the value of the � is su�iently high.2.4.2.6. ComparisonThe graphs presented in Figs. 2.18 � 2.29 omprehensively illustrate the ompara-tive harateristis of algorithms onsidered in this work. The following onlusionsare worth to notiing:� Generally, the ESSS-SVA algorithm seems to be the most e�etive one for thesaddle rossing problem. If it �nds the global optimum, it needs the shortesttime to do it in omparison with other onsidered algorithms. However, insome ases, desribed below, its e�etiveness is very poor.� In the ase of small population sizes, the saddle rossing ability of theESSS-SVA and ESSS-FDM algorithms beomes worse with an inreasein the searhing spae dimension. Extremely, the SVA and FDM meh-anisms seem to disturb ESSS when input parameters are well adjusted(Figs. 2.19, 2.21b, 2.24b, 2.25 and 2.27).� The e�etiveness of the ESSS-DOF algorithm is high in low dimensionallandsapes (Figs. 2.19a, 2.20,2.21, 2.23a, 2.25a, 2.26,2.27, 2.29a). Otherwise,its values are like the e�etiveness of the ESSS algorithm. The advantage ofthe ESSS-DOF algorithm is that it does not return to previously oupiedpeaks, but tries to explore new, unknown areas. This feature annot ourin the ase of the hosen �tness funtion (A1).
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Fig. 2.13 . The mean number of epohs t needed to ross the saddle by the ESSS-DOFalgorithm vs. the dimension of the adaptation landsape n (a). Perentagesp of the ESSS-DOF algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n (b). (� = 0:05and � = 10: rosses, � = 20: stars, � = 50: diamonds).
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Fig. 2.14 . The mean number of epohs t needed to ross the saddle by the ESSS-DOFalgorithm vs. the dimension of the adaptation landsape n (a). Perentagesp of the ESSS-DOF algorithm runs in whih the global optimum was foundin 3000 epohs vs. the dimension of the adaptation landsape n (b). (� = 20and � = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds, � = 0:1:triangles).
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Fig. 2.15 . The ESSS-FDM algorithm with � = 10: the mean number of epohs t neededto ross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (� = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).



2. Natural exploration mehanisms 47(a)

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b)

2 4 6 8 10 12 14 16 18 20
65

70

75

80

85

90

95

100

Fig. 2.16 . The ESSS-FDM algorithm with � = 20: the mean number of epohs t neededto ross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (� = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.17 . The ESSS-FDM algorithm with � = 50: the mean number of epohs t neededto ross the saddle (a) and perentages p of the algorithm runs in whih theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlandsape n; (� = 0:015: rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.18 . The mean number of epohs t needed to ross the saddle by the algorithmsonsidered in the work vs. the dimension of the adaptation landsape n for� = 10 : (a) � = 0:015, (b) � = 0:03; (ESSS: rosses, ESSS-FDM: stars,ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.19 . The mean number of epohs t needed to ross the saddle by the algorithmsonsidered in the work vs. the dimension of the adaptation landsape n for� = 10 : (a) � = 0:05, (b) � = 0:1; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.20 . The mean number of epohs t needed to ross the saddle by the algorithmsonsidered in the work vs. the dimension of the adaptation landsape n for� = 20 : (a) � = 0:015, (b) � = 0:03; (ESSS: rosses, ESSS-FDM: stars,ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.21 . The mean number of epohs t needed to ross the saddle by the algorithmsonsidered in the work vs. the dimension of the adaptation landsape n for� = 20 : (a) � = 0:05, (b) � = 0:1; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.22 . The mean number of epohs t needed to ross the saddle by the algorithmsonsidered in the work vs. the dimension of the adaptation landsape n for� = 50 : (a) � = 0:015, (b) � = 0:03; (ESSS: rosses, ESSS-FDM: stars,ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.23 . The mean number of epohs t needed to ross the saddle by the algorithmsonsidered in the work vs. the dimension of the adaptation landsape n for� = 50 : (a) � = 0:05, (b) � = 0:1; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.24 . Perentages p of algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n for � = 10 :(a) � = 0:015, (b) � = 0:03; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).



56 2.4. Experimental omparisons(a) � = 0:05

2 4 6 8 10 12 14 16 18 20
70

75

80

85

90

95

100

(b) � = 0:1

2 4 6 8 10 12 14 16 18 20
70

75

80

85

90

95

100

Fig. 2.25 . Perentages p of algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n for � = 10: (a) � = 0:05, (b) � = 0:1; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.26 . Perentages p of algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n for � = 20 :(a) � = 0:015, (b) � = 0:03; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.27 . Perentages p of algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n for � = 20: (a) � = 0:05, (b) � = 0:1; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.28 . Perentages p of algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n for � = 50 :(a) � = 0:015, (b) � = 0:03; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.29 . Perentages p of algorithm runs in whih the global optimum was found in3000 epohs vs. the dimension of the adaptation landsape n for � = 50: (a) � = 0:05, (b) � = 0:1; (ESSS: rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).



2. Natural exploration mehanisms 61Tab.2.4. Parameter values used in the simulationsAlgorithm Parameters Valuesall tmax 1000� 20� 0.05ESSS-SVA � 1.1ESSS-SVA and ESSS-DOF tt 10ESSS-FDM � 0.32.4.3. Optimization of the hosen multi-dimensional funtions2.4.3.1. ExperimentMany simulations (about 1600) with eight two-variable objetive funtions werearried out. Test funtions used during simulations are listed below:� funtion f1 (sum of two Gaussian peaks) (B1),� funtion f2 (De Jong's funtion F2) (B2),� funtion f3 (De Jong's funtion F5) (B3),� funtion f4 (the �drop wave� funtion) (B4),� funtion f5 (Mihalewiz's funtion) (B5),� funtion f6 (Shubert's funtion) (B6),� funtion f7 (Rastringin's funtion) (B7),� funtion f8 (Aley's funtion) (B8)All those funtions have to be maximized and are strongly non-linear andmultimodal. The �tness funtion was hosen in the form (2.3), where �t = � =onst.At �rst, simulations were arried out several times for di�erent sets of inputparameters. When the best set of parameters was alloated for eah algorithm(see Table 2.4), several starting points were tested.2.4.3.2. ResultsThe results are ompared in Table 2.5. Analysis of the results shows that all meh-anisms (SVA, FDM and DOF) applied to the standard ESSS algorithm aeleratethe rossing of the objetive funtion saddles and inrease the e�etiveness of theglobal optimum �nding. Two algorithms, ESSS-SVA and ESSS-DOF, ompete



62 2.5. SummaryTab.2.5. Perentages of runs in whih the global optimum was foundfuntion f1 f2 f3 f4 f5 f6 f7 f8ESSS 38 53 0 0 12 22 26 0ESSS-SVA 100 88 42 37 27 98 59 69ESSS-FDM 87 79 58 0 13 81 74 0ESSS-DOF 100 100 0 0 41 39 23 13to be the best. ESSS-SVA seems to be the most e�etive algorithm. It winswith other algorithms in the ase of almost all tested objetive funtions. ButESSS-DOF wins in the ase of a �tness funtion whih onsists of a group of on-entrated loal optimum peaks and other distant peaks (Mihalewiz's funtion� f5). If the population in ESSS-SVA starts in the area of this loal group, itylially moves from peak to peak of the group and annot ahieve a remote one.ESSS-DOF erodes peaks in turn and slowly, but onsequently, leads toward theglobal optimum.2.5. SummaryTehniques of exploration in the ESSS algoritm an be divided into three lasses:tehniques whih adapt algorithm parameters (the ESSS-SVA and ESSS-VPS),methods whih modify evolutionary operators (the ESSS-FDM, ESSS-LS, ESSS-MS and ESSS-ALS) and whih modify the �tness funtion (the ESSS-IP and ESSS-DOF).However, most of proposed methods possess their equivalents in the literature,there are some new proposals. First of all the trap-test proedure (the impatienemehanism) is an original idea. This proedure deides on turning o� or on theexploration mehanism. This deision is dependent on the atual state of theevolutionary proess. The fored diretion of mutation tehnique (ESSS-FDM)is an original method whih has not an equivalent in the literature. However,the idea of the erosion tehnique an be found in (Beasley et al. 1993), the widesimulation analysis of the proposed ESSS-DOF algorithm is �rstly inluded in thisbook.The results of three types of omparison experiments were presented in thiswork.The aim of �rst experiment was to analyze a loal seletion mehanism, whihseems to be spei� to natural seletion, in the global parameter optimization.Three variants of the loal seletion were implemented in the standard ESSS al-gorithm: ESSS-LS, ESSS-MS and ESSS-ALS, and were ompared with the ESSSin the saddle rossing problem and two 2D optimization problems: the Shwefel'sproblem 2.22 and the Rastringin's funtion. Simulation experiments show thatthe 'loal' seletion mehanisms are e�etive only for low landsape dimensions



2. Natural exploration mehanisms 63(in omparison to the size of population). The ESSS-ALS algorithm possessesthe highest exploration ability. Although, the loal seletion mehanism ratherdereases e�etiveness of the evolutionary searh in an optimum alloation in thease of unimodal Shwefel problem, it aelerates the exploration rate of the algo-rithm, whih is helpful in global optimum searhing of the Rastringin's funtion.Espeially, the ESSS-MS and ESSS-ALS algorithms, whih join the good exploita-tion rate of the ESSS and the exploration rate of the ESSS-LS, seem to be goodtools for tehnial appliations. Proposed method is lose to the idea of di�usionmodel. In the di�usion model, the number of ompetitors is onstant and equalfor eah individual in the base population. Here, some kind of nihing is used.The questions arise: is the ball-shaped neighbourhood the most appropriate forall possible �tness funtions (e.g., one might expet a negative answer when theshapes of the attration around the loal maxima are highly deformed ellipsoids)and what is the nature of the transition e�et whih is still inomprehensible.The performane analysis of the algorithms mentioned above for the problemof multi-dimensional saddle rossing was the subjet of the seond experiment.Emphasis is put on the relation between the e�etiveness of the algorithm andthe dimension of the adaptation landsape. Simulation results reveal that allmodi�ed algorithms are usually better than the standard ones. In the ase of alow population size, the performane of ESSS-FDM, ESSS-SVA, and ESSS-DOFbeame worse for an inreasing standard deviation of mutation and was lost withthe standard ESSS algorithm. It is worth notiing that in the ase of the ESSS-DOF algorithm the population has to be a simplex, i.e. the size of the populationhas to be larger than the problem dimension.The aim of the third experiment was the e�etiveness analysis of the algo-rithms in the global parameter optimization. All modi�ed algorithms are moree�etive than standard ESSS. Espeially, ESSS-SVA and ESSS-DOF seem to beuseful in tehnial appliations.





Chapter 3
MULTI-DIMENSIONAL MUTATIONS INEAS BASED ON REAL-VALUEDREPRESENTATION

Most appliations of evolutionary algorithms (EAs), whih use the �oating pointrepresentation of population individuals, use the Gaussian mutation as a muta-tion operator (Bäk and Shwefel 1993, Fogel et al. 1966, Fogel 1994, Galar 1985,Mihalewiz 1996, Rehenberg 1965). A new individual x is obtained by adding anormally distributed random value to eah entry of a seleted parent y:xi = yi +N(0; �i); i = 1; : : : ; n: (3.1)The hoie is usually justi�ed by the entral limit theorem. Mutations in natureare aused by a variety of physial and hemial in�uenes that are not identi�ableor measurable. These in�uenes are onsidered as independent and identially dis-tributed (i.i.d.) random perturbations whose normed sum approahes a Gaussianrandom variable in the limit (Rudolph 1997). If the Lindeberg ondition is obeyed,i.e. the �rst two absolute moments are �nite, then the Gaussian distribution isthe only limit distribution for normed sums of i.i.d. random variables. Takinginto onsideration also other distributions, whih have �nite absolute moments�(0 < � < 2), the limit distribution for normed i.i.d. variables may be generallyexpressed as (Gutowski 2001, Mantegna and Stanley 1994):L(x) = 1� Z 10 exp �� q�� os qxdq; (3.2)and is known as the symmetrial Lévy stable distribution of index � and salefator ( > 0). The speial ase of (3.2) for � = 1 (and  = 1 for simpliity) isthe Cauhy distribution with the probability density funtion (pdf) in the formg(x) = 1� ��2 + (x� u)2 : (3.3)While the univariate Cauhy distribution has a unique de�nition, there existat least two multivariate versions of the Cauhy distribution: the spherially sym-metri Cauhy distribution (Obuhowiz 2001b, Shu and Hartley 1987), and the



66Cauhy distribution with independent univariate Cauhy random variables in eahdimension. In reent years, the latter Cauhy mutation has been suessfully ap-plied in the various evolutionary algorithms (Bäk et al. 1997, Kappler 1998, Yaoand Liu 1996, Yao and Liu 1997, Yao and Liu 1999). In these ases, the normallydistributed random value N(0; �i) (3.1) is substituted by a random variable of theone-dimensional Cauhy distribution. The Cauhy pdf shape resembles that of theGaussian one, but it approahes the axis very slowly, inreasing the probability ofthe so alled maro-mutations and the loal optimum leaving.Rudolph (1997) analytially analyzes the loal onvergene of simple (1+1)ESand (1 + �)ES with Gaussian, spherial and non-spherial Cauhy mutations. Ithas been proved that the order of loal onvergene is idential for Gaussian andspherial Cauhy distributions, whereas non-spherial Cauhy mutations lead toslower loal onvergene. There are no omparing results of the saddle rossingability of EAs with spherial and non-spherial Cauhy mutations in the literature.The in�uene of the hoie of the referene frame on the e�etiveness of EAs inglobal optimization tasks is a very important problem that should in partiular beanalyzed (the symmetry e�et).Another problem whih seems to be impereptible by the researhes is relatedto the probability that the distane from the mutated point x and its o�spring ywill be in the range kx�yk 2 [r; r+dr℄. Although the pdfs of multivariate Gaussianand non-spherial Cauhy mutations of the type (3.1) have their optimum in themutated point, it is easy to prove (Obuhowiz 2001a, Obuhowiz 2001b) thatthe most probable loation of the o�spring is the nearest neighbourhood of theparent individual only in the ase of the one-dimensional mutation. In the ase ofn-dimensional one, the most probable loation moves from the enter of mutationto the �ring" of the radius proportional to the norm of the standard deviationvetor of mutation and to pn� 1 (the surrounding e�et).The aim of this hapter is to present the results of simulation experimentswhih ompare the e�etiveness of evolutionary algorithms with multivariateGaussian and Cauhy mutations (Obuhowiz 2003b). Four types of mutationsare onsidered, namely, spherial and non-spherial Cauhy mutations, and theGaussian mutation in its lassial form (3.1) and in the new form, in whih spher-ially symmetri random vetor is deomposed on the uniformly distributed ran-dom diretion and a normally distributed random radius. It is important to notethat the surrounding e�et does not obligate in the ase of multivariate spherialCauhy and modi�ed Gaussian distributions. Implemented EAs are based on twotypes of evolutionary models: the ESSS (Tab. 1.3) and EP (Tab. 1.2). The maindi�erene between these two types of EAs is that the standard deviation of mu-tation is adapted in EP but not in ESSS. Thus, it is possible to analyze whetherthe adapted standard deviation redues the surrounding e�et or not.
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Fig. 3.1 . Two-dimensional Gaussian density funtion, � = 1.3.1. Surrounding and symmetry e�etsA mutation funtion whih desribes the transformation of an element y into x inaordane with the Gaussian mutation (3.1) has the formgG(x� y) = nYi=1 1p2��i exp�� (xi � yi)22�2i �: (3.4)Let us sale the referene frame using �i (i = 1; 2; : : : ; n) as a unit length in theith diretion; then the length of the vetorr = �ri = xi � yi�i ����i = 1; 2; : : : ; n� (3.5)an represent the distane between the base and o�spring vetors. Thus, theequation (3.4) has the following form:gG(x� y) = � 1p2���n exp�� 12r2�; (3.6)where r = krk and � = �Qni=1 �i�1=n. The two-dimensional version of (3.6) withy = 0 and � = 1 is presented in Fig. 3.1.The probability dPG that the point obtained after mutation will be loatedin the volume ([xi; xi + dxi℄nji = 1; : : : ; n) is equal todPG = gG(x� y)d!; (3.7)where d! = dx1dx2 : : : dxn.



68 3.1. Surrounding and symmetry e�etsLet us onsider the relationship between the probability dPG and the distanebetween the base and mutated points. In order to do it, the n-spherial refereneframe with the origin in the base point y will be introdued. Transformationequations have the following forms:r1 = r os(�1);r2 = r sin(�1) os(�2);r3 = r sin(�1) sin(�2) os(�3); (3.8): : :rn = r sin(�1) sin(�2) : : : sin(�n�1);where �n�1 2 [0; 2�) and (�i 2 [0; �)ji = 1; : : : ; n� 2).Using (3.8) in (3.7), the probability dPG an be obtained from the equationdPG =  1p2�!n exp�� 12r2�rn�1drd
 = gG(r)drd
; (3.9)where d
 = Qn�1i=1 � sinn�(i+1)(�i)d�i� is the in�nitely small n-dimensional solidangle. Due to non-negative values of the radius and the sinus funtion in theinterval [0; �), the magnitude operator of the transformation Jaobian an beomitted. It is very interesting that for a small r the value of the probabilitydPG is low. The most probable distane r? is not equal to 0 butr?(n) = argmax gG(r) = pn� 1 (3.10)and r?(n) ! 1 as n ! 1. Therefore, in the ase of the n-dimensional (n �2) Gaussian mutation, the probability that the o�spring will be loated loselyto its parent is low and dereases with n. This fat in�uenes the exploitatione�etiveness of EAs in the ase of large landsape dimensions (the surroundinge�et).In order to on�rm the above results, a simulation experiment is done. 106points are generated in aordane to (3.1) for dimensions n = 2; 3; 4; 5, �1 =�2 = � � � = �n = 1 for eah one-dimensional mutation and the base point y =0. Histograms of the distanes between the base and points mutated aordingto (3.1) (Fig. 3.2a) show that the probability of point loation in the nearestneighbourhood of the base point is low and dereases with n. Maximum points ofhistograms are obtained in r?(n) = pn� 1.The presented e�et of the multi-dimensional Gaussian mutation is aused bythe following fat. The volume of the subspae d!0 = drd�1d�2 : : : d�n�1 dependson the radius r: dV = dSdr � rn�1dr, where dS is the area of the n-dimensionalspherial setor (Fig. 3.3). The probability that the mutated point x 2 d!0 isproportional to the probability density gG(r) in this subspae and to the dV .Fig. 3.4 illustrates the result of this produt in the 2D landsape.
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Fig. 3.2 . Histograms of the distanes between the base and 106 points mutated aordingto Gaussian (a) and non-spherial Cauhy (b) mutations; n = 2 � solid line,n = 3 � dotted line, n = 4 � dashed line, n = 5 � dash-dotted line, otherharateristis in the text.

Fig. 3.3 . The subspae d!0 in 3D landsape. It is ease to alulate that dV =r2 sin(�1)drd�1d�2.
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Fig. 3.4 . Linear inrease of perimeter with r (dashed line) and the Gaussian probabilitydensity funtion (dotted line) as fators reating the relationship between theprobability that kx � yk 2 [r; r + dr℄ vs. r (solid line) in the ase of thetwo-dimensional landsape,(� = 1).Similar results are obtained in the ase of the multi-variate non-spherialCauhy mutation (Fig. 3.2b). Here, a new individual x is obtained by adding arandom value to eah entry of a seleted parent y:xi = yi + C(0; �i); i = 1; : : : ; n; (3.11)where C(u; �) is a random value obtained aording to the one-dimensional Cauhymutation with the pdf de�ned by (3.3). The shape of the one-dimensional Cauhypdf is entered at u and resembles that of the Gaussian density funtion, butapproahes the axis so slowly that the variane is in�nite and an expetationdoes not exist. The omparison between one-dimensional Cauhy and Gaussiandensity funtions is presented in Fig. 3.5a. A mutation funtion desribing thetransformation of the vetor y into x in aordane with the multi-dimensionalnon-spherial Cauhy mutation has the formgC(x� y) = ��n nYi=1 �i�2i + (xi � yi)2 : (3.12)The Cauhy mutation of type (3.12) has a non-spherial symmetry (Fig. 3.5b)and prefers diretions parallel to the axis of the referene frame. Therefore thee�etiveness of evolutionary algorithms, whih uses the mutation desribed by(3.12), depends on the hoie of the referene frame (the symmetry e�et).
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Fig. 3.5 . (a) One-dimensional Gaussian (solid line) and Cauhy (dashed line) probabilitydensity funtions (� = 1, � = 1 and u = 0). (b) Four one-dimensional setionsof the four-dimensional Cauhy density funtion, along the diretions [1,0,0,0℄(dotted line), [1,1,0,0℄ (dashed line), [1,1,1,0℄ (solid line) and [1,1,1,1℄ (dash-dotted line) (� = 1 and u = 0).3.2. Spherially Symmetri DistributionsFang et al. (Fang et al. 1990) prove that a spherially symmetri random vetorZ an be deomposed viaZ = rU ; (3.13)where U is uniformly distributed on the surfae of an n-dimensional hyperball (e.i.a random diretion), and r is a random variable representing the random radiusof the hyperball. The vetor U an be obtained from the formulaeU1 = os(�1);U2 = sin(�1) os(�2);U3 = sin(�1) sin(�2) os(�3); (3.14): : :Un�1 = sin(�1) : : : sin(�n�2) os(�n�1);Un = sin(�1) : : : sin(�n�2) sin(�n�1);and �n�1 is a uniformly distributed random angle (�n�1 = U [0; 2�℄), and otherangles f�n�k�1 2 [0; �)jk = 1; : : : ; n� 2g are randomly hosen with the pdfsf(�n�k�1) = Kk sink(�n�k�1); k = 1; 2; : : : ; n� 2; (3.15)



72 3.3. E�etiveness of EA vs. mutation type: experimental studieswhere Kk = 12 3 � 5 � : : : � (2l+ 1)2 � 4 � : : : � 2l for k = 2l+ 1;Kk = 1� 2 � 4 � : : : � 2l3 � 5 � : : : � (2l � 1) for k = 2l:In order to obtain a new modi�ed Gaussian mutation or a spherial Cauhymutation, the random variable r an be hosen asr = N(0; �) (3.16)or r = C(0; �); (3.17)respetively.The probability dPNO orresponding to the modi�ed Gaussian mutation anbe alulated from the following formulae:dPNO = Kp2�� exp�� r22�2� sinn�2(�1) sinn�3(�2) : : : sin(�n�2)d!0;(3.18)and for the spherial Cauhy mutation:dPCO = K� ��2 + r2 sinn�2(�1) sinn�3(�2) : : : sin(�n�2)d!0; (3.19)where d!0 = drd�1d�2 : : : d�n�1 andK = n�2Yk=1Kk =8><>: �n�22 �!�n�22 ; if n is even;(n�1)!�n�12 �!2n� n�12 ; if n is odd:Fig. 3.6 presents histograms of distanes kx � yk for 106 points generatedin aordane with both the proposed mutation and dimensions n = 2; 7. Theprobability of point loation dereases with r and is independent of the landsapedimension. The same histograms an be obtained for whatever n.3.3. E�etiveness of EA vs. mutation type: experimental stud-ies3.3.1. Evolutionary algorithms used in simulationsTwo lasses of evolutionary algorithms are used in simulation experiments. The�rst one is based on the ESSS algorithm, and the following four evolutionaryalgorithms of this lass are onsidered:
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Fig. 3.6 . Histograms of the distanes between the base and 106 mutated points gener-ated in aordane with the modi�ed Gaussian mutation (a) and the spherialCauhy mutation (b); n = 2 � rosses, n = 7 � irles, � = 1 and � = 1.� ESSS-G : the ESSS algorithm with the standard Gaussian mutation (1.6);� ESSS-GN : the ESSS algorithm with the Gaussian mutation and the standarddeviation �=pn (2.23);� ESSS-GO : the ESSS algorithm with the modi�ed Gaussian mutation (3.13)(3.16);� ESSS-C : the ESSS algorithmwith the non-spherial Cauhy mutation (3.11);� ESSS-CO : the ESSS algorithm with the spherial Cauhy mutation (3.13)(3.17).The seond lass ontains algorithms based on the EP algorithm� CEP : the lassial evolutionary programming algorithm with the Gaussianmutation (Fogel et al. 1991);� CEPS : the CEP algorithm with the modi�ed Gaussian mutation (3.13)(3.16);� FEP : the fast EP algorithm with the non-spherial Cauhy mutation (3.11)(Yao and Liu 1997);� FEPS : the FEP algorithm with the spherial Cauhy mutation (3.13) (3.17).Apart from the di�erent seletion tehnique, the EP-lass algorithms posses theadaptation mehanism of standard deviation of the mutation operator.



74 3.3. E�etiveness of EA vs. mutation type: experimental studies3.3.2. Loal optimum alloationLet us hoose the `quadrati funtion with noise' (Yao and Liu 1999) as a unimodalobjetive funtion to be minimized:fu(x) = nXi=1 ix4i + random[0; 1): (3.20)Algorithms based on the ESSS algorithm (ESSS-G, ESSS-GO, ESSS-C andESSS-CO) loalized the optimum so quikly that di�erenes in their e�ieny areon the level of a statistial error. This fat is mainly aused by the proportionalseletion, whih prevails over mutation operators in the sense of their in�uene onthe loal optimum loalization. So, the attention is foused on the four variantsof the EP-lass algorithms: CEP, CEPS, FEP and FEPS. The following param-eters are used in the simulations: the population size � = 50, the initial area forvarianes 
� = Q5i=1[0; 0:5℄, the initial area for population 
x = Q5i=1[�0:3; 0:3℄,the maximum number of epohs tmax = 5000 and the number of sparing partnersq = 10. Eah algorithm is started 50 times.The surrounding e�et in the EP-lass algorithms learly manifests itself inthis experiment. The CEPS and FEPS algorithms reah the optimum surroundingssigni�antly faster than their lassial originals. Figure 3.7b presents the epohsof the �rst suess, i.e. the �rst epoh in whih the objetive funtion value of oneof the population elements is lower than 0:1. For larity of graphs, samples havebeen sorted. The advantage of the CEPS and FEPS algorithms over the CEP andFEP algorithms is signi�ant. As it has been antiipated the surrounding e�etinreases with the landsape dimension (Fig. 3.8). In the ase of the 5D landsape,average ourses of all algorithms onsidered are similar (Fig. 3.8a). Disproportionbetween the pairs CEPS�FEPS and CEP�FEP enlarges in the ase of the 30Dlandsape (Fig. 3.8b). This experiment illustrates that o�spring in the CEPS andFEPS algorithms are loated losely to their parents with higher probability thanin the ase of CEP and FEP (Fig. 3.7), for whih attrativeness of the parents'surroundings dereases with the landsape dimension (Fig. 3.8).3.3.3. Sensitivity to narrow peaksLet us onsider the following �ve-dimensional �tness funtion:�np(x) = 12 exp��5 5Xi=1 x2i�+exp��100�(x1�0:4)2+ 5Xi=2 x2i��: (3.21)The two-dimensional equivalent of this funtion is presented in Fig. 3.9. It on-sists of two Gaussian peaks. The �rst one is high and slim, the seond one islow and wide. The distane between both peaks is not very large in omparisonwith the standard deviation of mutation hosen in the experiment and �xed as� = 0:05. Three algorithms are tested: ESSS-G, ESSS-GN and ESSS-GO. All ofthem start with a population generated by an �-time mutation of an initial point
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Fig. 3.9 . The two-dimensional version of the �tness funtion (3.21).x00 = [�1;�1;�1;�1;�1℄. Other algorithm parameters are hosen as follows: thepopulation size � = 20, the maximum number of epohs tmax = 2000.All algorithms are proessed 500 times. Typial algorithm proeedings areillustrated in Fig. 3.10. The standard ESSS-G algorithm has trouble �nding theglobal optimum. If there is a dominant element in the population loated inthe narrow peak, its suessors are generated outside this peak. It follows fromthe fat that the most probable distane between parent and suessor elementsr? = �pn� 1 = 0:1 (3.10) is of the same order as vh. In the ase of the ESSS-GNalgorithm, r? = �p(n� 1)=n � 0:045. The evolved population does not loate anelement in the higher peak so easily as in the ase of the ESSS-G algorithm. Butif it does, this peak is oupied for a short time. The ESSS-GO algorithm is moste�etive on the narrow peak loalization. It �nds it quikly and does not lose it.The presented numerial experiment shows that the standard Gaussian mu-tation dereases the evolutionary algorithm's sensitivity on narrow peaks. It isaused by the surrounding e�et. The evolutionary algorithm with the proposedmodi�ed Gaussian mutation ends in full suess.In order to analyze the e�ieny of the evolutionary algorithm, whih adaptsits mutation parameters during its proessing, the four variants of the EP algo-rithm are tested: CEP, CEPS, FEP and FEPS. The following parameters areused in the simulations: the population size � = 50, the initial area for varianes
� =Q5i=1[0; 0:5℄, the initial area for population 
x =Q5i=1[�0:2; 0:2℄, the maxi-mum number of epohs tmax = 2000 and the number of sparing partners q = 10.Eah algorithm is started 500 times. Figure 3.11 presents the mean �tness of the
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Fig. 3.10 . The �tness (3.21) of the best element in the population vs. epohs; ESSS-G(a), ESSS-GN (b) and ESSS-GO ().Tab.3.1. Perentages of suessful algorithm runsalgorithm suesses [%℄CEP 74CEPS 64FEP 78FEPS 60best element in the population vs. epohs. Unlike the ESSS-lass algorithms, se-letion in the ase of EP keeps the best elements from generation to generation.This is the reason for the monotoni harater of the urves in Fig. 3.11, whihpresents the relation between the �tness of the best element in the populationand epohs. The population �utuates around the best elements and only a sin-gle maro-mutation an put o�spring in the area of the higher peak. So, thereare many algorithm runs whih end without suess in tmax = 2000 epohs, asagainst to the ESSS-GO algorithm, whih has found global optimum in all tests.In the ase of the �tness funtion (3.21), the perentages of suessful runs of thealgorithms under onsideration are desribed in Tab. 3.1. It an be seen that theCEPS and FEPS algorithms, whih use the spherial mutation (3.13) are less ef-fetive than the CEP and FEP algorithms. This fat suggests that in the ase ofthe mutation (3.13) a new formulae for adaptation mehanism is needed instead
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80 3.3. E�etiveness of EA vs. mutation type: experimental studiesof that presented in Table 1.2. The same onlusion is obtained via the theoretialonsideration by Rudolph (1997). The surrounding e�et manifests itself only inthe harater of the urve slopes in Fig. 3.11b. In the ase of the CEPS algorithm,when some element of population is loated in the narrow global peak, the ex-treme point is loalized very quikly. Desendants of the element onsidered aregenerated losely to their parent. In the ase of the CEP algorithm, this proessproeeds more slowly. Most of the desendants are loated outside the narrowglobal peak.3.3.4. E�ieny of saddle rossingIn order to analyze the mutation in�uene on the saddle rossing e�ieny, let usonsider the problem desribed in Appendix A.Firstly, let us onsider the ESSS-G, ESSS-GN, ESSS-GO, ESSS-C and ESSS-CO algorithms. An initial population is obtained by � mutations of the loaloptimum point of the lower peak x00 = [1; 0; : : : ; 0℄. The goal is to ross the saddlebetween both peaks. We assume that it is done when the weight mean of thepopulation Et(x) is loated at the higher peak, i.e. hE(xi j i = 1; 2; : : : ; n)i < 0:35.Other algorithm parameters are hosen as follows: the population size � = 20, themaximum number of epohs tmax = 105, � = � = 0:05 (for Gaussian and Cauhymutations, respetively). All algorithms are tested for a set of dimensions of theadaptation landsape n = 2; 4; 6; : : : ; 40.Relations between the mean number of epohs neessary to ross the sad-dle taken over 100 runs of the algorithms and the dimension of the adaptationlandsape for all algorithms are presented in Fig. 3.12. In the ase of low dimen-sions, algorithms with standard Gaussian and non-spherial Cauhy mutations aresubstantially better than their modi�ed versions. The most probable distanes r0between parent points and suessors are less than the peak thikness v. The ESSS-G and ESSS-C algorithms reate more dispersed populations and their ability ofsaddle rossing is greater. The ESSS-C algorithm is the most e�etive algorithmfor low dimensions, espeially sine the diretion between both loal and global�tness optima is parallel to the diretion of the axe of the referene frame and ispreferred by the non-spherial Cauhy mutation. The spherial Cauhy mutation(the ESSS-CO algorithm) evenly hands out diretions to mutated points and itse�etiveness initially dereases very quikly with n.The surrounding e�et manifests itself in a quik derease in the ESSS-Gand ESSS-C algorithms' e�ieny. It is learly visible in the ase of the ESSS-Calgorithm, whih is still the best for n = 10 and beomes the worst for n = 14.The e�ieny of the ESSS-GN and ESSS-GO algorithms is similar. Just in thevery high dimensions, ESSS-GO beomes better. The most interesting results,espeially for high landsape dimensions, are obtained for the spherial Cauhymutation.The four versions of the EP algorithm (CEP, CEPS, FEP and FEPS) arealso tested in order to �nd the global optimum of the funtion (A1). All algo-rithm parameters are the same as in the previous experiment onerning sen-sitivity to the narrow peak apart from the initial area for population 
x =
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ESSS−COFig. 3.12 . The mean number of epohs needed to ross the saddle vs. the dimension ofthe adaptation landsape.[0:8; 1:2℄�Q5i=2[�0:2; 0:2℄. Eah algorithm is started 100 times for eah dimensionof n = 1; 2; : : : ; 20.As it has been noted in the previous subsetion, the saddle rossing e�ienyof the EP-lass algorithms is losely related to their ability to perform maro-mutations. Surprisingly, the searhing proess either �nds the global peak in rela-tively short time (Fig. 3.13b), or it does not �nd it at all in tmax = 100000 epohs(Fig. 3.13a). This is a disadvantage of the EP-lass algorithms in omparisonwith the ESSS ones. Unexpetedly, the e�ieny of the CEPS algorithm is muhhigher than that of the CEP algorithm for low dimensions. This disproportiondisappears along with the dimension growth, when the saddle rossing e�ienyof both the CEPS and FEPS algorithms rapidly dereases. The FEP algorithmseems to be least unreliable in the saddle rossing problem. It owes its suessto its non-spherial mutation, whih prefers diretions parallel to the axis of thereferene frame. The surrounding e�et manifests itself in an exponential inreasein the mean number of epohs needed to ross a saddle by the CEP and FEPalgorithms with the landsape dimension (Fig. 3.13b). This relation is weaker inthe ase of the CEPS and FEPS algorithms.3.3.5. Symmetry problemLet us onsider the following series of four-dimensional �tness funtions:�l(x) = 12 exp �� 5kxk2�+ exp �� 5kx� alk2�; l = 1; 2; 3; 4; (3.22)



82 3.3. E�etiveness of EA vs. mutation type: experimental studieswhere a1 = [1; 0; 0; 0℄, a2 = [1=p2; 1=p2; 0; 0℄, a3 = [1=p3; 1=p3; 1=p3; 0℄ anda4 = [1=2; 1=2; 1=2; 1=2℄ are global optimum loations. Distanes between bothloal and global optima are the same in all �l and equal to unity.The ESSS-C and ESSS-CO algorithms are tested in this experiment. The goalis the same as in the previous simulations: to ross the saddle between both peaks.Other algorithm parameters are hosen as follows: the population size � = 20, themaximum number of epohs tmax = 103, � = 0:05 and the initial point of searhingx00 = [0; 0; 0; 0℄.Fig. 3.14 shows the relation between the mean number of epohs needed toross a saddle taken over 103 algorithms' proessing. It is easy to see that theESSS-C algorithm's e�ieny strongly depends on the diretion of the global peakloation. In the ase of the ESSS-CO algorithm the saddle rossing e�ieny isindependent of this diretion.The symmetry e�et in the EP-lass algorithms is tested using �ve-dimensional Akley's (n = 5):�A(x) = 20 + e� 20 exp�� 15 kxkn �� exp�Pni=1 os(2�xi)n � (3.23)and generalized Rastringin's funtion (n = 5):�R(x) = nXi=1 �x2i � 10 os(2�xi) + 10�: (3.24)Both funtions have to be minimized. Next two funtions �Ar and �Rr are rotatedversions of �A and �R, i.e. both are obtained from �A and �R after rotationof the referene frame in the plane (x1; x2) through an angle equal to �=4, andin the plane (x2; x3) through an angle equal to �=4, too. Both Akley's andRastringin's funtions are multimodal, but Rastringin's funtion haraterizes thehigher amplitude of hanges and its valleys are deeper. Loal optima of bothfuntions �A (3.23) and �R (3.24) are loated in the nodes of the 5D-ubi net,whose edges are parallel to the axes of the referene frame. This property isdisturbed in the ase of �Ar and �Rr.The following parameters are used in the simulations: the population size� = 50, the maximum number of epohs tmax = 10000, the number of sparingpartners q = 10 and the initial area for varianes 
� = Q5i=1[0; 3℄. The initialareas for population are 
x = Q5i=1[�5:12; 5:12℄ in the ase of �A and �Ar, and
x = Q5i=1[�32; 32℄ in the ase of �R and �Rr. Eah algorithm is started 50times.The CEP and FEP algorithms reveal their advantage over the CEPS andFEPS algorithms in the ase of �A (Fig. 3.15a). The surrounding e�et in theCEP algorithm makes it easier for the population to ross shallow saddles of �A.The high e�etiveness of the FEP algorithm follows from three main fats:� high probability of maro-mutations (in the sense of phenomenon, not a newoperator) using the Cauhy distribution,



3. Multi-dimensional mutations in EAs based on real-valued representation 83(a)

2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90

100
CEP 
CEPS
FEP 
FEPS

(b)

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

CEP 
CEPS
FEP 
FEPS

Fig. 3.13 . Perentages of the suessful runs (a) and the mean number of epohs neededto ross the saddle taken over all suessful runs (b) of four versions of theEP algorithm vs. the landsape dimension.
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Fig. 3.15 . The �tness of the best element in the urrent population vs. epohs; resultsaveraged over 50 samples for 5D Akley's funtion �A (a) and its rotatedversion �Ar (b).
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Fig. 3.16 . The �tness of the best element in the urrent population vs. epohs; resultsaveraged over 50 samples for 5D Rastringin's funtion �R (a) and its rotatedversion �Rr (b).



3. Multi-dimensional mutations in EAs based on real-valued representation 87ene of the surrounding e�et on the onvergene rate of evolutionary algorithmsbased on lassial Gaussian and Cauhy mutations.The seond experiment illustrates the exploitation performane of the evolu-tionary algorithms onsidered. Evolutionary searh with standard Gaussian muta-tion is least e�etive in loalizing narrow peaks beause of the surrounding e�et.Only appliation of the modi�ed Gaussian mutation proposed in this work guar-antees suess. In order to analyze the e�ieny of the evolutionary algorithm,whih adapts its mutation parameters during its proessing, the four variants ofthe EP algorithm are tested. It an be seen that the CEPS and FEPS algorithms,whih use the spherial mutation (3.13), are less e�etive than the CEP and FEPalgorithms. This suggests that in the ase of the mutation (3.13), a new formulaefor the adaptation mehanism is needed instead of that applied in the lassialform of the EP algorithm.The third experiment presents the in�uene of the landsape dimension on theexploration e�ieny of the algorithms. The measure of this e�ieny is the meannumber of generations needed to ross a saddle between two Gaussian peaks. It isnot surprising that, in the ase of the ESSS-lass algorithms, standard Gaussianand Cauhy mutations give the best results in the ase of low dimensions. Thesurrounding e�et aelerates their apability of saddle-rossing. Unfortunately,the e�ieny of the ESSS-G and ESSS-C algorithms rapidly dereases when thelandsape dimension inreases. Gaussian peaks beome too narrow for these algo-rithms. Appliation of modi�ed Gaussian and spherial Cauhy mutations againsuessfully overomes this problem, as those are the most e�etive algorithms inhigh landsape dimensions. However, their e�ieny in low dimensions is poor inomparison with standard mutations. When evolutionary algorithms with adaptedmutation parameters are used, the disadvantage of the lassial form of Gaussianand Cauhy mutations disappears. The surrounding e�et is dereased by theadaptation mehanism.The last experiment disloses the in�uene of the seletion of the refereneframe on the global optimization e�etiveness of evolutionary algorithms whihuse the non-spherial Cauhy mutation.The presented simulation results do not prove the advantage of multi-dimensional Gaussian and Cauhy mutations in their modi�ed forms over theirusually used lassial versions. One an only say that these are di�erent typesof mutation operators, and eah of them an be preferred for a di�erent lass ofproblems.





Chapter 4
EVOLUTIONARY ADAPTATIONIN NON-STATIONARY ENVIRONMENTS

In reent years the problem of adaptation in time-varying landsapes has beenintensively studied by many groups of researhes. The number of publiationssuessively grows. This domain of researh is important and urrent from pointof view of many tehnial branhes, e.g. the optimal ontrol, the learning pro-ess of neural networks, the fault detetion in dynami systems. Unfortunately,diverse methodology and terminology make most of researh solutions inompara-ble. In this hapter some proposal of ordered view on optimization and adaptationproblems in non-stationary environments are introdued. Some taxonomy of non-stationary environments as well as measures of adaptation algorithms quality arealso proposed.4.1. Non-stationary environmentsA non-stationary optimization problem in general an be formulated as follows:max f(x; t)���i(x; t) � 0; i = 1; : : : ;m;x 2 U(t)�; (4.1)where f(x; t) is an objetive funtion, i(x; t) denotes an ith onstraint and U(t)is a spae of solutions.Non-stationary problems an be lassi�ed under a number of riteria. The�rst one is a physial struture of the spae of solutions U(t): is it disrete orontinuous? A domain struture determines a lass of possible measures of evolu-tionary algorithms performane.In general f(x; t), i(x; t) and U(t) an be time varying simultaneously. Butphysially it ours very seldom. The �rst attempt to lassi�ation of all possibleases, whih elements of the sequene (f; figmi=1;U) are varying in time, is providedin (Trojanowski and Mihalewiz 1999b). An extension of this lassi�ation isproposed in (Trojanowski and Obuhowiz 2001) (Table 4.1).Changes of the domain, e.g. hanges of the number of dimensions or of dimen-sions' boundaries signi�antly modify the nature of the problem. For example, forbinary representation of solutions, hanges of the domain modify resolution and



90 4.1. Non-stationary environmentsTab.4.1. Classi�ation of hanges in a proess. The symbol ; denotes the ase wherethe set of onstrains is empty; stati � there are no hange in time; varying� there are some hanges in time.No. objetive onstrains spae of solutionsfuntionM1 stati ; statiM2 stati stati statiM3 stati varying statiM4 varying ; statiM5 varying stati statiM6 varying varying statiM7 stati ; varyingM8 stati stati varyingM9 stati varying varyingM10 varying ; varyingM11 varying stati varyingM12 varying varying varyingpreision of the algorithm so there is a need for modi�ation of individual repre-sentation. Thus, in the ase of suh hange, we usually have to re-start the searhproedure and to tune the optimization tool to the new problem after the hangehas ourred. For the sake of that, we assume that the domain is onstant and donot disuss this form of hanges in further text.There are a number of riteria along whih non-stationary environments anbe ategorized (Branke 1999):� frequeny of hanges;� severity of hanges;� preditability of hanges;� regularity of hanges.Frequeny of hanges. The environment an hange with di�erent frequeny,from ontinuous in time to very rare sudden hanges whih are preeded by station-ary state of the environment. An example of a environment with the ontinuoushanged an be the optimal ontrol problem in the ase of a real system a�etedby an ageing proess, or a time optimal trajetory planning for mobile robots inthe ase of moving obstrution.



4. Evolutionary adaptation in non-stationary environments 91Severity of hanges. The nature of hanges an manifest in their speed andrange. The lassi�ation under this riteria is di�ult beause of estimation sub-jetivity whether hanges are sudden or adiabati, wide or loal. In the ase ofmodel M4 (Tab. 4.1), where the �tness funtion is varying in time, some mea-sure of hanges in a given subspae 
 � U and a given time interval T an beintrodued (Trojanowski and Obuhowiz 2001)� ontinuous domain(let f(x; t) 2 L2(
);8t)M(
; T; t) = 1T R : : : R
 �f(x; t)� f(x; t� T )�2d!R : : : R
 f2(x; t)d! ; (4.2)where d! = dx1dx2 : : : dxn;� disrete domainM(
; T; t) = 1T Pxi2
 �f(xi; t)� f(xi; t� T )�2Pxi2
 f2(xi; t) : (4.3)The measure M(
; T; t) desribes the average speed of relative �tness hanges insubspae 
 taken over the time interval T whih an be onsidered as a samplinginterval, i.e. the time interval between two suessive alulations of the �tnessfuntion. One may de�ne two onstants �a and � (�a < �) for given searhingproblem in order to lassify hanges of the �tness funtion:� M(
; T; t) < �a � the adiabati hanges (S1), whih guarantee approxi-mately stationary state of evolutionary searh. The population �keeps up"with the hanged optimum. There are usually no quality di�erenes betweenthis problem and stationary problems.� �a < M(
; T; t) < � � the indiret hanges (S2). It is the most interestingase. An e�etiveness of the searhing proess signi�antly depends on ahosen searhing strategy and its input parameters.� M(
; T; t) > � � the turbulent hanges (S3). In this ase, usually thesearh proedure have to be restarted and tuned to the ompletely newproblem after the hange has ourred.Parameters �a and � have, rather, informal nature and are not well de�ned.The ability of lassifying, to whih of hanges type: S1;S2 or S3, a given problembelongs, allows to hoose a lass of optimization methods to solve the problemand hoose a measure of a given methods e�etiveness. If a given problem belongsto the lass S1, global optimum is usually moved to suh a point whih is loseenough to be found again without a risk of beoming trapped in a loal optimum.Then it is possible to use standard optimization methods, like gradient methods,to follow the optimum point during all the proessing time. Here, evolutionaryomputation method is omputationally rather too expensive to use.



92 4.1. Non-stationary environmentsFrom an evolutionary point of view, S2 is the most interesting lass. Thehanges are too di�ult and therefore omputationally too expensive for the las-sial optimization methods, but not too di�ult for evolutionary methods, whihmay solve the problem beause of their softness and onurrent searhing, espe-ially when we are satis�ed even if the solution is suboptimal only.The turbulent hanges S3 are usually unable to ontrol (e.g. the hangesof square error funtion in the on-line neural network training proess where asequene of training patterns is randomly hosen from a training set). Any opti-mization proess an not keep up the optimum peak trak. Applied adaptationalgorithms usually �nd hills of a form of objetive funtion averaged over searhingtimePreditability of hanges. If hanges of the problem omponents appear inreal-world optimization tasks ontinuously or at least periodially, then values ofproposed solutions vary in time and thus a ontinuous searh proess is needed.In general, non-stationary optimization task belongs to one of four main groups(Mothes 1967):1. Deterministi situations, where full information about the values of environ-ment parameters now and in the future is available.2. Probabilisti situations, where the values of environment parameters are notknown, however they are preditable, beause probability distributions ofthese parameters are known.3. Unertain situations, where environment parameters are unknown and un-preditable.4. Con�it situations, where the environment parameters are ontrolled by ourantagonists (ases, where a game theory is used).The subjet of our interest is the third group of situations. A large number ofreal world problems belongs to this group, and examples of suh non-stationaryand unpreditable problems an be easily found around us (Trojanowski andMihalewiz 1999b, Trojanowski and Mihalewiz 1999).Regularity of hanges. Investigating properties of optimization tools applied toproblems varying in time, it is also neessary to study and lassify di�erent formsof hanges. Changes of the problem omponents an be lassi�ed in many ways,for example (Trojanowski and Mihalewiz 1999b):� regularity of hanges (i.e. yli and non-yli ones);� ontinuous vs. disrete hanges in time;� ontinuous vs. disrete hanges in the searh spae.Obviously, not every problem varying in time an be optimized with evolu-tionary algorithms, e.g. situations where immediate reation is needed, but thereis still a large group of ases (like e.g. ontrol and management of eletri energysoures by a dispather day by day).



4. Evolutionary adaptation in non-stationary environments 934.2. Quality rates for adaptation algorithmsIn evolutionary omputation ommunity, some measures for obtained results havebeen proposed; these measures exploit the iterational nature of the searh proessand the presene of ontinuously modi�ed and improved population of solutions.One of the �rst measures were on-line and o�-line performane proposed by DeJong (1975).� O�-line performane � is the best value in the urrent population aver-aged over the entire run. It represents the e�ieny of the algorithm in agiven time of run.� On-line performane � is the average of all evaluation of the entire run.It shows the impat of the population on the fous of the searh.These two measures, although designed for stati environments, were employed inexperiments with non-stationary ones (Bäk 1998, Grefenstette 1992, Vavak andFogarty 1996, Vavak et al. 1997).In other publiations, authors visually ompared graphs of the best objetivefuntion value measured during the entire searh proess (or graphs of the meanvalue obtained from series of experiments) (Angeline 1997, Bäk and Shutz 1996,Branke 1999, Cedeno and Vemuri 1997, Cobb and Grefenstette 1993, Dasguptaand MGregor 1992, Ghosh et al. 1998, Goldberg and Smith 1987, Grefenstette1992, Grefenstette 1999, Lewis et al. 1998, Mori et al. 1997, Mori et al. 1996, Moriet al. 1998, Ng and Wong 1995, Vavak and Fogarty 1996). In some papers graphsof average values of all individuals or of the worst individual in the population werealso analyzed (Cobb and Grefenstette 1993, Goldberg and Smith 1987, Dasguptaand MGregor 1992, Mori et al. 1997, Mori et al. 1996, Mori et al. 1998). Boththese methods were based on the measures of o�-line and on-line performane.Before a form of a quality rate for searhing algorithm in the non-stationaryenvironments is hosen, a researher has to deide what kind of results will besatisfying, what type of searhing proess should be applied. Four main types ofsearhing proesses an be distinguished. Let us assume that the �tness funtionis equal to the objetive funtion �(x; t) = f(x; t).C1: A traing proess. � This type of the searhing proess is dediatedmainly to adiabati problems (S1). The goal of the searhing proess of thetype C1 is to keep solutions losed to the optimum one as well as possible.Most of publiations of the non-stationary optimization onsider suh a typeof searhing proess. Applied measures of searhing algorithms are usuallybased on measures for stationary environments.An interesting measure based on the o�-line performane is an adaptationperformane desribed in (Mori et al. 1997, Mori et al. 1996). It was evalu-ated aording to the formula:�ad = 1tmax tmaxXt=1 �best(t)�opt(t) ; (4.4)



94 4.2. Quality rates for adaptation algorithmswhere: tmax is the length of the entire searh proess, �best(t) � the �tnessof the best individual in the population at the time t, �opt(t)� the optimum�tness in the searh spae at the time t.This formula was later modi�ed slightly to:�0ad = 1tmax tmaxXt=1 ��best(t)�opt(t) ; (4.5)where (for the maximization problem):� = ( 1; if �best(t) = �opt(t);0:5; if �best(t) < �opt(t):In (Feng et al. 1998), two benhmarks measuring relative loseness of thebest found solution to the global optimum were proposed: optimality �opand auray �a. optimality �op represents loseness of the value of thebest obtained solution �(x0) to the value of optimum �opt, e.g. for themaximization problem, we have the following formulae:�op = �(x0)� �min�opt ��min ; (4.6)where �min = minx2U �(x). The auray �a represents the relative lose-ness of the found solution x0 to the global optimum solution xopt and it isde�ned with following formula:�a = 1� �(xopt;x0)�(xmax;xmin) : (4.7)where xopt = argmaxx2U �(x), xmax and xmin are the lower and upperbounds of the searh range, and �(a; b) is a distane measure in U , e.g. ifU � Rn then �(a; b) = ka� bk.Although authors did not use these measures to non-stationary optimizationevaluation, the loseness to the optimum during the searh proess is aninteresting value whih seems to be helpful in omparisons between applia-tions and is easy to ontrol in experiments. The evolutionary approah tonon-stationary optimization presented in (Obuhowiz 1999b) uses measurewhih idea is losely related to the measure �a:�0a = 1tmax tmaxXt=1 ��xopt(t);x0(t)�; (4.8)where x0(t) is the best point of population in the time t and xopt(t) =argmaxx2U �(x; t).



4. Evolutionary adaptation in non-stationary environments 95C2: An optimization in a mega-epoh. � This type of searhing proessonerns tasks, in whih onseutive hanges in the environment are signif-iant but our rather seldom (ones in a 'mega-epoh'). The goal is to �ndthe optimum before a new hange ours.For estimations of non-stationary optimization results, the following twomeasures: auray (�a) and adaptability (�ada) were proposed in(Trojanowski and Mihalewiz 1999a, Trojanowski and Mihalewiz 1999).They are based on a measure proposed by De Jong (1975): o�-line per-formane but evaluate the di�erene between the value of the urrent bestindividual and the optimum value instead of evaluation of the value of justthe best individual. Auray is a measure dediated exlusively to dynamienvironments. It is a di�erene between the value of the urrent best indi-vidual in the population of the �just before the hange" generation and theoptimum value averaged over the entire run:�a = 1K KXi=1(erri;��1): (4.9)Adaptability measures a di�erene between the value of the urrent bestindividual of eah generation and the optimum value averaged over the entirerun: �ada = 1K KXi=1 24 1� ��1Xj=0(erri;j )35 ; (4.10)where: erri;j is the di�erene between the value of the urrent best individualin the population of the j-th generation after the last hange (j 2 [0; � � 1℄),and the optimum value for the �tness landsape after the i-th hange (i 2[0;K�1℄), � � the number of generations between two onseutive hanges,K � the number of hanges of the �tness landsape during the run.Clearly, the lower values of measure (for both auray and adaptability)orrespond to the better results. In partiular, a value of 0 for auraymeans that the algorithm found the optimum every time before the landsapewas hanged (i.e. � generations were su�ient to trak the optimum). Onthe other hand, a value of 0 for adaptability means that the best individualin the population was at the optimum for all generations, i.e. the optimumwas never lost by the algorithm.C3: Keeping solutions on an aeptable level. � In many real tehnologialproblems, e.g. in the on-line training of a dynami neural networks (Korbizet al. 1998), in ontrol systems (Bryson and Ho 1975) or in many problemsof the operational researh, the optimal solution is not so neessary as thesolution of an aeptable quality. This problems usually are of the type S2.One has to be sure that the �tness of the atual best known solution willnot be worse than a given assumed level during all time long of a searhing



96 4.2. Quality rates for adaptation algorithmsproess. This aeptable level may, for example, desribe non on�it runof onurrent proesses, guarantee the stability of the ontrolled dynamisystem.The aeptability is a measure of unsatis�ed realization in a quality spae �this is a mean deviation of the best �tness in time t below the aeptablelevel (Trojanowski and Obuhowiz 2001)�apt = 1tmax tmaxXt=1 ���apt(t)��best(t)�; (4.11)where: tmax is the length of the entire searh proess, �best(t) � the �t-ness of the best individual in the population at the time t, and �apt(t) isthe minimum satisfying value of the �tness (it an be varying in time) and(Trojanowski and Obuhowiz 2001)�(a� b) = ( 0; if a � b;a� b; if a > b:The aeptability distane �ad is an equivalent of �apt in searhing spaeand is de�ned as follows:�ad = 1tmax tmaxXt=1 ���(xopt(t);x0(t)) � r�; (4.12)where r is, so alled, the aeptability radius whih desribes the maximumaeptable distane between the best known solution and the atual optimumpoint.C4: A proess with averaged aeptability. � This type of searhing pro-ess is dediated to turbulent problems (S3). A searhing proess is unableto follow the optimum as well as to guarantee the aeptable solutions duringthe algorithm proessing. The only measure of the adaptation proess is itsability to �nd the solution with the best average �tness over all realizationof �(x; t)(t = 1; 2; : : : ; tmax). This measure an be expressed in the followingform �ava = 1tmax tmaxXt=1 ��x?;x0(t)�; (4.13)where x? = argmax� 1tmax tmaxXt=1 �(x; t)�:



4. Evolutionary adaptation in non-stationary environments 974.3. Illustrative simulations4.3.1. Properties of the ESSS in the adiabati and turbulent ases of landsapenon-stationarityLet us onsider the following one-dimensional non-stationary adaptation landsapeomposed by two Gaussian peaks�(x; t) = (0:5 + 0:5 os ��t=s))e�5(x�0:5)2+ (0:5� 0:5 os ��t=s))e�5(x+0:5)2 ; (4.14)where t denotes time, s is a given positive parameter ontrolling the rate of hangeof peaks highs.Adaptation proess is ontrolled by the ESSS algorithm (Trojanowski andObuhowiz 2001). Figure 4.1 illustrates the adiabati funtion hanges. The bestpoint of the population follows the global optimum during all time. The measuresfor the obtained results dediated for stationary problems an be applied. In thease of the turbulent hanges (Fig. 4.2) the global optimum is not monitored. Thepopulation �utuates around the point of the smallest hanges of the objetivefuntion. This feature is well known in the on-line training proess of the arti�ialneural networks (Korbiz et al. 1994)4.3.2. Comparison of four algorithms from ESSS familyLet us onsider the following time-varying 2D adaptation landsape:�(x) = h exp h�x� zt�T C�1�x� zt�i ; (4.15)zt = �zt1; zt2� = �1 + os�2�t360� ; sin�2�t360�� (4.16)where �(x) represents a Gaussian peak with expetation vetor zt, whih movesaround the irumferene of unity radius, and ovariane matrix C .Four algorithms are used in the adaptation proess: ESSS, ESSS-FDM, ESSS-VPS and the last ESSS-FV ontaining both FDM and VPS mehanisms. Simula-tions have been arried out for various sets of input parameters, several times foreah set. Representative realizations of the onsidered algorithms are presented inFigs. 4.3�4.6.As a quality measure, the average distane between the best element of thepopulation and the top of the Gaussian peak is hosen (4.8). For all the onsid-ered algorithms, there exists a set of input parameters, whih usually realizes asatisfying quality fator of the adaptation proess, although, the sensitivity of thisfator to slight hanges in the optimal input parameters is di�erent for eah testedalgorithm.The ESSS-FDM algorithm turns out to be least sensitive to input param-eter disturbanes. Thus, the searh time for the optimal input parameters set



98 4.3. Illustrative simulations(a)
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Fig. 4.1 . Adiabati hanges M([�2; 2℄; 1) � 2:86 � 10�9. The �tness (a) and loation(b) of the best element in the population vs. time, (� = 20, � = 0:05, s = 250).
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Fig. 4.2 . Turbulent hanges M([�2; 2℄; 1) � 1:84. The �tness (a) of the best element inthe population vs. time, and loation of the mean point in the population vs.time (b),(� = 20, � = 0:01, s = 1).
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Fig. 4.3 . Realization of the ESSS algorithm in the time-varying landsape (4.15); inputparameters: � = 20, � = 0:5; the quality fator: �0a = 0:345; (a) evaluation ofthe Gaussian peak (dotted line) and the best element of the population (solidline); onseutive irles represent the results obtained every 50 iterations; (b)�tness of the best element in population vs. iterations.(a) (b)
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Fig. 4.4 . Realization of the ESSS-FDM algorithm in the time-varying landsape (4.15);input parameters: � = 20, � = 0:8; � = 0:125; the quality fator: �0a =0:206; (a) evaluation of the Gaussian peak (dotted line) and the best elementof the population (solid line); onseutive irles represent the results obtainedevery 50 iterations; (b) �tness of the best element in population vs. iterations.was shortest in omparison with the remaining algorithms. This property of theESSS-FDM algorithm is used in dynami neural networks learning proess (seesetion 5.4.2).



4. Evolutionary adaptation in non-stationary environments 101(a) (b)
-2 -1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4.5 . Realization of the ESSS-VPS algorithm in the time-varying landsape (4.15);input parameters: � = 20, � = 0:8; the quality fator: �0a = 0:280; (a)evaluation of the Gaussian peak (dotted line) and the best element of thepopulation (solid line); onseutive irles represent the results obtained every50 iterations; (b) �tness of the best element in population vs. iterations.(a) (b)
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Fig. 4.6 . Realization of the ESSS-FV algorithm in the time-varying landsape (4.15);input parameters: � = 20, � = 0:8, � = 7:5; the quality fator: �0a = 0:303;(a) evaluation of the Gaussian peak (dotted line) and the best element of thepopulation (solid line); onseutive irles represent the results obtained every50 iterations; (b) �tness of the best element in population vs. iterations.4.4. SummaryFor years, the evolutionary algorithms were applied mostly to the group of statiproblems. A set of satisfying proedures for tuning and omparisons between



102 4.4. Summarydi�erent approahes was established during that time. However, nowadays a widergroup of problems, inluding non-stationary ases, is optimized with evolutionaryalgorithms but still with the same old methods and proedures of results evaluationand algorithms omparison. Beause of the extension of optimized problems range,these measures seem to be insu�ient, and new measures for optimization toolquality and for the non-stationary problem di�ulty should be proposed.In this hapter, an analysis and lassi�ation of these problems, review of theexisting measures and some propositions of new ones as well as the simulationstudy of algorithms from the ESSS family in the non-stationary environment arepresented.



Chapter 5
OPTIMIZATION TASKSIN NEURAL MODELS DESIGNING

Arti�ial Neural Networks (ANN) provide an exellent mathematial tool for deal-ing with non-linear problems. They have an important property, aording towhih any ontinuous non-linear relationship an be approximated with arbitraryauray using a neural network with suitable arhiteture and weight parame-ters (Korbiz et al. 1994). Their another attrative property is the self learningability. A neural network an extrat the system features from historial train-ing data using the learning algorithm, requiring a little or no a priori knowledgeabout the proess. This provides modelling of non-linear systems a great �exibility(Fausett 1994, Hertz et al. 1991, Korbiz et al. 1994). These properties make theANN a very attrative tool in modelling and identi�ation of dynami proesses,adaptive ontrol systems (Hunt et al. 1992, Miller et al. 1990), time series pre-dition problems (Zhang and Man 1998), and diagnostis of industrial proesses(Frank and Köppen-Seliger 1997, Koivo 1994).The appliation of ANNs in modelling and identi�ation of dynami pro-esses has been intensively studied for the last two deades (f. (Korbiz etal. 1998, Narendra and Parthasarathy 1990, Zhu and Paul 1995)). Attrativenessof ANNs results from the fat that they are useful when there are no mathemat-ial models of an investigated system, hene, analytial models and parameter-identi�ation algorithms annot be applied. As opposed to a lot of ANN e�etiveappliations, e.g. in the pattern reognition (f. (Looney 1997, Sharkey 1999))or in the approximation of the non-linear funtion (f. (Hornik et al. 1989)), theappliation of ANNs in modelling requires taking into onsideration the dynamisof the investigated proesses.One of the possible solutions is the appliation of reurrent neural networks(Draye et al. 1996, Tsoi and Bak 1994). The most general arhiteture of re-urrent networks was proposed by Williams and Zipser (1989), where onnetionsbetween any neurons are permitted. Unfortunately, a pratial realization of suha network struture is very limited, mainly due to their instability and a very slowonvergene of the training proess. The Elman reurrent network has less generalharater but better harateristis of pratial appliations (Elman 1990). It isworth noting that the standard reurrent neural networks are built using the statiMCulloh-Pitts neuron model (MCulloh and Pitts 1943), and their relatively



104good dynami properties are ahieved by introdution of global feedbaks. Gen-erally, suh networks su�er from stability problems during training and requireompliated learning algorithms.The alternative solution is the appliation of a neural network of the Multi-layer Pereptron (MLP) struture but omposed of dynami neurons. In generalase, dynami neuron models an be obtained by introduing one of the followingfeedbaks: synapse feedbak (Gupta and Rao 1993), output feedbak (Fasoni etal. 1992) or ativation feedbak (Tsoi and Bak 1994) to the stati MCulloh-Pitts model. Another solution an be obtained by extension of a stati modelby adding memory elements (Sastry et al. 1974). One of the most interesting so-lutions of dynami system modelling problem is the appliation of the DynamiNeural Model (DNM) whih onsists of an adder module, a linear dynami sys-tem - In�nite Impulse Response (IIR) �lter, and a non-linear ativation module((Ayoubi 1994, Patan and Korbiz 1996)). The dynami neuron models renderit possible to design a neural network with a struture similar to the well-knownMLP. Taking into aount the fat that this struture has no feedbaks betweenneurons, one an train it in a simpler way than the globally reurrent networks(Campolui et al. 1999).The onstrution proess of an ANN, whih has to solve a given problem,usually onsists of four steps (Obuhowiz 2000a). First, a set of pairs of inputand output patterns, whih should represent harateristis of a problem as well aspossible, is seleted. Next, an arhiteture of the ANN, the number of units, theirordering into layers or modules, synapti onnetions and other struture param-eters, are de�ned. At the third step, free parameters of the ANN (e.g. weights ofsynapti onnetions, slope parameters of ativation funtions) are automatiallytrained using a set of training patterns. Finally, the obtained ANN is evaluated inaordane with a given quality measure. The above proess is repeated until thequality measure of the ANN is satis�ed. Therefore, two optimization proessesan be distinguished in the ANN onstrution proess: an optimal arhiteturedesigning and optimal ANN parameters alloation (learning proess).The relatively omplex DNM allows to build an e�etive Dynami MLP(DMLP). The DMLP an have the same arhiteture as the MLP. The alulatedoutput error is propagated bak to the input layer through hidden layers ontain-ing dynami �lters, similarly as in the standard Bak-Propagation (BP) algorithm(Werbos 1974, Korbiz et al. 1994). As a result, the Extended Dynami Bak-Propagation algorithm may be de�ned (Patan 2000, Patan and Korbiz 1996).This algorithm adjusts onnetion weights as well as IIR �lter parameters. Unfor-tunately, the training proess of an DMLP whih has to identify a dynami system,seems to be an optimization problem whih is intrinsially related to a very rihtopology of the sum square-error funtion (Korbiz et al. 1998). The EDBP al-gorithm usually �nds one of the loal unsatisfatory optima. Therefore, globaloptimization methods, like stohasti algorithms (Patan and Obuhowiz 1999)or evolutionary algorithms (Obuhowiz 1999a, Patan and Jesionka 1999), shouldbe implemented. High performane of a dynami system neural modelling, whihhas been trained by an evolutionary algorithm, has been observed by Obuhowiz(1999a).



5. Optimization tasks in neural models designing 105However, there are e�etive methods of a training patterns seletion, learn-ing and an evaluation of the ANN, researhers usually alloate the ANN arhi-teture rather on a basis of their intuition and experiene than using an auto-mati proedure. Experiened researher has, usually, no problems with arhi-teture design in the ase of the MLP applied to the approximation of a givenlow-dimensional non-linear funtion, however, there are many propositions of theautomati MLP struture alloation methods (Alippi et al. 1997, Ash 1989, Born-holdt and Graudenz 1991, Chauvin 1989, Doering et al. 1997, Fahlman andLebierre 1990, Frean 1990, Harp et al. 1989, Hassibi and Stork 1993, Kozaand Rie 1991, LeCun et al. 1990, Marshall and Harrison 1991, Mezard andNadal 1989, Miller et al. 1989, Obuhowiz 1998, Obuhowiz 2000a, Wang etal. 1994). But, in the ase of more omplex modeled systems, high-dimensional ordynami, automati algorithms beome indispensable.The signi�ane of network arhiteture optimization inreases when theDMLP is taken into onsiderations. Dynami nature of DMLP is very sensitiveto hanges in the network struture and then a suitable seletion of the DMLParhiteture is very important. The methods of the arti�ial intelligene searhing,like the simulated annealing (Obuhowiz 1998), the tabu searh (Obuhowiz andPatan 2003), the A? algorithm (Obuhowiz 1999) and evolutionary algorithms(Obuhowiz and Politowiz 1997) seem to be very attrative for this task.5.1. Considered neural networksThe ANN is represented by a ordered pair NN = (NA;v) (Doering et al. 1997,Obuhowiz 2000a). NA denotes the ANN arhiteture:NA = (fVi j i = 0; : : : ;Mg; E): (5.1)fVi j i = 0; : : : ;Mg is a family of M + 1 sets of neurons, alled layers, inludingat least two non-empty sets V0 and VM that de�ne s0 = ard(V0) input andsM = ard(VM ) output units, respetively, E is a set of onnetions betweenneurons in the network. The vetor v ontains all free parameters of the network,among whih the set of weights of synapti onnetions w : E ! IR are.In general, sets fVi j i = 0; : : : ;Mg have not to be disjuntive, thus, therean be input units whih are also outputs of the NN . Units whih do not belongto either V0 or VM are alled hidden neurons. If there are yles of synaptionnetions in the set E , then we have a dynami network.5.1.1. Multi-Layer PereptronThe most popular type of the neural network NN = (NA;v) is the MLP. TheMLP is based on the MCulloh-Pitts neurons (MCulloh and Pitts 1943) andits arhiteture possesses following properties:8i 6= j Vi \ Vj = ;; (5.2)



106 5.1. Considered neural networksE = M�1[i=0 Vi � Vi+1: (5.3)Layers in the MLP are disjuntive. The main task of the input units of the layerV0 is preliminary input data proessing u = fup j p = 1; 2; : : : ; Pg and passingthem onto units of the hidden layer. Data proessing an omprise e.g. saling,�ltering or signal normalization. Fundamental neural data proessing is arriedout in hidden and output layers. It is neessary to notie that links betweenneurons are designed in suh a way that eah element of the previous layer isonneted with eah element of the next layer. There are no feedbak onnetions.Connetions are assigned with suitable weight oe�ients, whih are determined,for eah separate ase, depending on the task the network should solve.The fundamental training algorithm for the MLP is the BP algorithm(Rumelhart et al. 1986, Werbos 1974). This algorithm is of iterative type andit is based on minimization of a sum-squared error utilizing optimization gradientdesent method. Unfortunately, the standard BP algorithm is slowly onvergent,however, is widely used and in a few reent years its numerous modi�ations andextensions have been proposed (�wi¡¢ and Bilski 2000), e.g.: Chan's and Fallside'salgorithm (1997), the delta-delta algorithm (Jaobs 1988), Quikprop algorithm(Fahlman 1988), Silva's and Almeida's algorithm (1990), Park's,Yun's and Kim'salgorithm (1992), RPROP algorithm (Riedmiller and Braun 1992), and Levenberg-Marquardt algorithm (Hagan and Menhaj 1994).Neural networks with the MLP arhiteture owe their popularity to manye�etive appliations, e.g. in the pattern reognition problems (Looney 1997,Sharkey 1999) and approximation of the non-linear funtions (Hornik et al. 1989).It is proved that using the MLP with only one hidden layer and suitable numberof neurons, it is possible to approximate any non-linear stati relation with arbi-trary auray (Cybenko 1989, Hornik et al. 1989). Thus, taking relatively simplealgorithms applied to the MLP learning into onsideration, this type of networksbeomes a very attrative tool for building models of stati systems.5.1.2. Dynami neural modelIn this hapter, the general struture of a neuron model proposed by Ayoubi (1994)is onsidered. Dynamis is introdued to the neuron in suh a way that the neuronativation depends on its internal states. It is done by introduing a linear dynamisystem � IIR �lter � to the neuron struture (Fig. 5.1) whih is alled the DynamiNeuron Model. Three main operations are performed in this dynami struture.First of all, the weighted sum of inputs is alulated aording to the formula :�(k) = wTu(k); (5.4)where w = fwp j p = 1; 2; : : : ; Pg denotes the input weights vetor, P is thenumber of inputs, and u(k) = fup(k) j p = 1; 2; : : : ; Pg is the input vetor. Theweights perform a similar role as in stati feed-forward networks. The weightstogether with the ativation funtion are responsible for approximation properties
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Fig. 5.2 . Blok sheme of nth order IIR �lter.of the model. Then this alulated sum �(k) is passed to the IIR �lter. Here,the �lters under onsideration are linear dynami systems of di�erent orders, viz.the �rst, seond and third order. The general struture of the n-th order IIR�lter is shown in Fig. 5.2. This �lter onsists of delay elements (denoted by z�1)and feedbak and feedforward paths weighted by the vetor weights a = fai j i =1; 2; : : : ; ng and b = fbi j i = 1; 2; : : : ; ng, respetively. The behaviour of this linearsystem an be desribed by the following di�erene equation:'(k) = b0�(k) + b1�(k � 1) + � � �+ bn�(k � n)� a1'(k � 1)� � � � � an'(k � n); (5.5)where �(k) is the �lter input, '(k) is the �lter output, and k is the disrete-timeindex. Finally, the neuron output an be desribed by:y(k) = F ��'(k)�; (5.6)where F (�) is a non-linear ativation funtion that produes the neuron outputy(k), and � is the slope parameter of the ativation funtion. In the dynamineuron the slope parameter � as well as weights w and feedbak a and feed-forward b �lter weights are trained during a learning proess.
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Fig. 5.3 . Arhiteture of the DMLP.5.1.3. Dynami MLPConsidering the dynami neuron model desribed above, one an design moreomplex struture - a neural network. Using the well-known MLP struture withDNM units as nodes a network of dynami neurons, alled Dynami MLP (DMLP),is de�ned (Fig. 5.3). The DMLP presents an ordered pair (NA;v) . NA denotesthe network arhiteture (5.1)NA =�fVm j m = 0; 1; : : : ;Mg;foms j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg; E�; (5.7)where fVm j m = 0; 1; : : : ;Mg is a family of M + 1 layers of DNM units. foms jm = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg is a set of natural numbers, oms denotes theIIR dynami order of the s-th DNM unit from the m-th layer, sm = ard(Vm).E = SM�1m=0 Vm�Vm+1 is a set of edges that de�ne the onnetions between units inthe network. The vetor of network parameters v an be expressed in the followingway: v = �w; f(ams ; bms ; �ms ) j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg�; (5.8)where the set of weights w assigns a real value to eah onnetion,f(ams ; bms ; �ms ) j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg desribes feedbak and feedfor-ward IIR synapti vetors and the slope parameter, respetively, of the s-th DNMunit from the m-th layer.It an be proved by applying the Leontaritis and Bilings theorem (1985) thatthe DMLP is a universal identi�er. They proved that under some assumptions, anynonlinear, disrete and time-invariant system an be represented by a simpli�edversion of the NARMAX model (Nonlinear Auto Regressive Moving Average witheXogenous inputs).



5. Optimization tasks in neural models designing 1095.2. Problem statementLet us onsider the network whih has to approximate a given funtion f(u). Let� = f(u;y)g be a set of all possible (usually unountably many) pairs of vetorsfrom the domain u 2 D � IRs0 and from the range y 2 D 0 � IRsM whih realizethe relation y = f(u). The goal is to onstrut a NN with an arhiteture NAoptand a set of parameters vopt, whih ful�lls the relation yNA;v = fNA;v(u), that agiven ost funtion sup(u;y)2� JT (yNA;v;y) will be minimized. So, the followingpair has to be found�NAopt;vopt� = argmin � sup(u;y)2� JT �yNA;v;y��: (5.9)Pratially, the solution of the above problem is not possible to obtain beause ofthe in�nite ardinality of the set �. Thus, in order to estimate the solution, two�nite sets �L;�T � � are seleted. The set �L are used in the learning proessof the network of the arhiteture NA:v? = argminv2V � max(u;y)2�L JL�yNA;v;y��; (5.10)where V is the spae of network parameters. In general, ost funtions of the learn-ing JL(yNA;v;y) and testing JT (yNA;v;y) proesses an have di�erent de�nitions.The set �T is used in searhing proess of NA?, for whihNA? = arg minNA2A� max(u;y)2�T JT �yNA;v? ;y��; (5.11)where A is the spae of neural network arhitetures. Obviously, the solutions ofboth tasks, (5.10) and (5.11), need not neessary be unique. Than a de�nition ofan additional riterion is needed.There are many de�nitions of the seletion of the best neural network arhi-teture. The most popular are (Obuhowiz 1998):� minimization of the number of network free parameters. In this ase, thesubset AÆ = �NA : JT �yNA;v? ;y� � Æ	 � A (5.12)is looked for. The network with arhiteture NA 2 AÆ and the smallestnumber of training parameters is onsidered to be optimal. This riterion isruial, when the VLSI implementation of the neural network is planned.� maximization of the network generalization ability. The sets of training �Land testing �T patters have to be disjuntive �L \�T = ;. Then, JT is theonformity measure between network reply on testing patterns and desiredoutputs. Usually, both quality measures JL and JT are similarly de�nedJL(T )�yNA;v;y� = ard(�L(T ))Xk=1 �yNA;v � y�2: (5.13)



110 5.2. Problem statementRestrition of the number of training parameters is the minor riterion inthis ase. The above riterion is important for approximating networks orneural models.� maximization of the noise immunity. This riterion is applied in networksapplied in lassi�ation or pattern reognition problems. The quality mea-sure is the maximal noise level of the pattern whih is still reognized by thenetwork.Two �rst riterions are orrelated. Gradually dereasing number of hiddenneurons and synapti onnetions auses the drop of non-linearity level of thenetwork mapping, and then the network generalization ability inreases. The thirdriterion needs some redundany of the network parameters. This fat usuallylashes with previous riterions. For the most part of publiations, the seondriterion is hosen.The quality of the estimates obtained via neural networks strongly dependson seletion �nite training �L and testing �T sets. Small network strutures maynot be to able to approximate the desired relation between inputs and outputswith the satisfying auray. On the other hand, if the number of network freeparameters is to large (in omparison with ard(�L)), then the funtion fNA?;v?(u)realized by the network strongly depends on the atual set of training patterns (thebias/variane dilemma, (Geman et al. 1992)).It is very important to note that the e�ieny of the method of the neural net-work arhiteture optimization strongly depends on the used learning algorithm.In the ase of multi-modal topology of the network error funtion, the e�etive-ness of the lassial learning algorithms based on the gradient desent method(e.g. the BP algorithm and its modi�ations) is limited. These methods usuallyloalize some loal optimum and the superior algorithm searhing for the optimalarhiteture reeives wrong information about the learned network quality.The problem of the optimal network design, desribed by relations (5.9), (5.10)and (5.11), is applied to the stationary ase and an be simply extended to theproblem of the design of the optimal dynami neural model.Let y(k) = f�u(k);u(k�1); : : : ;u(k�n);y(k);y(k�1); : : : ;y(k�n0)� (5.14)is the response of a non-linear dynami system f(�) on an input signal u(k). Let� = fu : K ! IRs0g is a family of all possible maps (in�nitely many) from theset K of disrete time moments to the spae IRs0 of input signals. The ultimategoal of the onstrution of a neural model (with an arhiteture NA and a set ofnetwork parameters v)yNA;v(k) = fNA;v�u(k);u(k � 1); : : : ;u(k � nNA);yNA;v(k);yNA;v(k � 1); : : : ;yNA;v(k � n0NA)� (5.15)of a dynami system (5.14) is the minimization of a ost funtionsupu(k)2� JT �yNA;v(k);y(k) j k 2 K�. Thus one has to determine the following



5. Optimization tasks in neural models designing 111pair : (NAopt;vopt) = argmin � supu(k)2� JT �yNA;v(k);y(k) j k 2 K��: (5.16)Similarly as in the stati ase, the solution of the (5.16) annot be ahievedin real systems, beause of in�nite size of �. Hene, two �nite subsets �L;�T �� : �L \ �T = ; are separated. The set �L is used to determine the best vetorof parameter of a given network arhiteture NA:v� = argminv2V � supu(k)2�L JL�yNA;v(k);y(k) j k 2 K��: (5.17)The set �T is used to determine the network arhiteture NA that realizes theminimal ost within the set of all network arhitetures A = fNAg:NA� = arg minNA2A� supu(k)2�T JT �yNA;v�(k);y(k) j k 2 K��: (5.18)5.3. ESSS algorithms in the MLP learning proessHowever, the emphasis of this part is put on the dynami neural models design,it is interesting to hek the e�etiveness of algorithms from the ESSS family(Chapters 1 and 2), in the problem of the MLP learning. The MLP, whih is usuallylearned by BP algorithm, is a type of ANNs used the most often by researhes andengineers. The surfae topology of the error funtion of the MLP is multimodal andknowledge about it is limited. The BP algorithm, whih is based on the gradient-desent method, usually gets stuk in loal minimum and is terminated too early.Thus, global optimization algorithms, whih are able to ross saddles of the errorfuntion surfae, may be an interesting solution. There is a reah bibliography ongeneti algorithms appliations to neural network training. They are used in feed-forward networks (Kwa±nika and Szerszon 1997, Montana and Davis 1989, Muselliand Ridella 1991, Reeves and Steele 1992, Rutkowska et al. 1997, Yao 1993), andKohonen networks (Harp and Samad 1992).The ESSS algorithm has been suessfully applied to learn a simple MLP forthe XOR problem (Makuh et al. 1996). The aim of this setion is to analyzethe e�ieny of the ESSS and ESSS-SVA algorithms as learning methods of theMLP with muh omplex struture than that of the XOR network (Obuhowizand Patan 1997b). An approximation of a two-variable version of the De Jong'sfuntion F3 (De Jong 1975) is hosen as an exemplary problem for an MLP. Thisfuntion has the formf(u1; u2) = ��bu1+ bu1�; (5.19)where u1; u2 2 (�5:12; 5:12), b� rounds a real number to the nearest integertowards �1, and � = 0:08 is a normalization fator suh that f(u1; u2) 2 (�1; 1)for argument values in the onsidered region.



112 5.3. ESSS algorithms in the MLP learning proessTab.5.1. E�ieny of four tested learning methods of the MLP onsidered in the senseof fator JT (5.21). Perentage of simulations with JT in a given interval.algorithm BP BPA ESSS ESSS-SVAJT � 0:1 0 47 4 320:1 < JT � 0:25 0 29 94 68JT > 0:25 100 24 2 0The trained MLP onsists of two input units, one output neuron, bias unit andtwo hidden layers of seven and four neurons, respetively. A hyperboli tangentfuntion is hosen as the ativation funtion of eah neuron. The initial weights arehosen from a uniform distribution on the interval (�1; 1). Similarly, a hundredtraining pairs are hosen from a uniform distribution on the onsidered region ofu1; u2.The MLP is trained independently by four algorithms: BP (Rumelhart etal. 1986), BP with adaptive learning rate (BPA) (Demuth and Beale 1993), theESSS and ESSS-SVA algorithms, in the o�-line ourse, i.e. the sum of squarederrors of all training pairs is minimized. The �tness funtion for ESSS and ESSS-SVA has to be non-negative and is hosen in the form:�(u1; u2) = njb� aj � nXi=1 �yNA;v(u(i)1 ; u(i)2 )� f(u(i)1 ; u(i)2 )�2; (5.20)where n is the number of training pairs, (a; b)� = (�1; 1)� is the interval of outputvalues, f((u(i)1 ; u(i)2 ); f(u(i)1 ; u(i)2 )) j i = 1; 2; : : : ; ng is a set of training pairs, andfyNA;v(u(i)1 ; u(i)2 ) j i = 1; 2; : : : ; ng is a set of network answers.In order to ompare the learning methods, a fator JT is de�ned:JT = RR� �yNA;v(u1; u2)� f(u1; u2)�2du1du2RR� f2(u1; u2)du1du2 ; (5.21)where � is the input vetor spae.In order to ompare the e�ieny of the proposed algorithms with the ex-isting approahes, a number (about 400 experiments for eah algorithm) of om-putational experiments were arried out. The orresponding results are listed inTable 5.1.The BP algorithm annot teah the network approximating the onsideredfuntion in all samples. It gets stuk in loal minima. If the MLP is learnedsuessfully by the BPA algorithm, the optimal point in the weight spae is usuallyreahed perfetly. But about a quarter of simulations gives bad results. In pratie,the ESSS and ESSS-SVA algorithms stop with suess. In the ase of the ESSS,the auray of the global optimum loation is weak. It results from the fat



5. Optimization tasks in neural models designing 113that the value of the standard deviation � of the normal distribution used inparents' modi�ation (Table 1.3) is too large for a high auray of extreme �tting.But dereasing of � dereases the e�ieny of saddle rossing. The �-adaptationmehanism used in the ESSS-SVA algorithm improves the searhing auray.Unfortunately, the ESSS and ESSS-SVA algorithms possess some ritial de-fet, whih is the feature of all evolutionary methods. This is extremely long timeof searhing the solution. They operate on populations of power from severaldozens to hundreds points of the multi-dimensional weight spae. These feature ofthe ESSS and ESSS-SVA methods suggests that a hybrid method, whih ombinesthem with a method of loal optimization, an be more e�ient.5.4. Learning tehniques for DMLPLet us onsider an M -layered network with dynami neurons desribed by di�er-entiable ativation funtions F (�). The ativity ums (k) of the s-th neuron in them-th layer is de�ned byums (k) = F 0��ms � nXi=0 bmis Sm�1Xp=1 wmspump (k � i)� nXi=1 amis 'ms (k � i)�1A(5.22)The main objetive of the learning proess is to adjust all the unknown net-work parameters v (5.8) based upon a given training set of input-output pairs. TheMLP struture of the DMLP suggests that some kind of the BP algorithm an beimplemented. However, if an internal reurrene is presented (Fig. 5.1), the loal-ized alulation of the gradient beomes di�ult, beause the present output ofthe network yNA;v(k) depends on the past outputs. In order to solve this problem,the Dynami BP algorithm (DBP) (Baldi 1995) with extension for the DMLP, soalled Extended DBP (EDBP) (Patan and Korbiz 1997, Korbiz et al. 1998), willbe disussed. The EDBP algorithm, similarly to the lassial BP, usually �nds oneof the loal unsatisfatory optima. A multi-start version of the EDBP algorithmvery seldom ends up suessfully (Obuhowiz and Patan 1998). Thus, algorithmsof global optimization should be implemented. Three types of the global opti-mization algorithms were used in the DMLP learning proess: geneti algorithms(Patan and Jesionka 1999), stohasti algorithms (Patan and Obuhowiz 1999),and the ESSS-FDM (Obuhowiz 1999a). The last two will be disussed in thissetion.5.4.1. Stohasti algorithmsIn this setion, an attempt to apply stohasti algorithms to training of the dy-nami neural network is undertaken. A similar study for a simple multi-layerpereptron was presented by Tu et al. (1995). In that work, however, simula-tion was performed for a very simple XOR problem. In the ase of modelling of



114 5.4. Learning tehniques for DMLPdynami non-linear proesses, a sum-squared error surfae is more omplex andmultimodal. Pure stohasti algorithms to the DMLP training proess was pro-posed by Patan and Obuhowiz (1999) as a simple tehnique, whih allows toavoid the problem of the loal harater of the EDBP algorithm. In this setion,algorithms whih have iterative harater are onsidered. Assuming that the se-quene v0;v1; : : : ;vk is already appointed, a way of ahieving next point vk+1 isformulated (Zieli«ski and Neumann 1983). All the algorithms desribed in thissetion are haraterized by a very simple struture.5.4.1.1. Stohasti algorithms with randomly hosen diretion of searhing(Algorithm A)The priniple of operation of these algorithms is that the diretion of searhingis hosen in a random manner, and after that in this diretion a step of suitablelength is performed. Two ases an be distinguished here: 1) the step rate isestablished and 2) the step rate is hanged during optimization proedure. Letthere be given two sequenes (ak)k>0 : ak > 0 and ("k)k>0 : "k > 0 ^ "k # 0. Leta vetor sequene (�k)k>0 : �k 2 U (S(0; 1)), eah �k is randomly hosen fromthe spherial surfae of radius equal to unity with the uniform distribution. Thestohasti algorithm with a given learning rate is de�ned by the formula:vk+1 = ( vk + ak�k JL(vk + ak�k) < JL(vk)� "k;vk otherwise; (5.23)where v is the vetor of all network parameters, and JL(vk) is the performaneindex in the form of sum-square error:JL(vk) = PXp=1 �yNA;vk(p)� y(p)�2 : (5.24)Taking into aount equation (5.23), in the �rst ase one an speak about �suess",and in the other ase, � about �failure". A new, di�erent from previous, point vk+1,only in the ase of suess is obtained. A point vk + ak�k an be treated as a testpoint. The quantity ak is the step rate, and "k is the �improvement threshold".5.4.1.2. Stohasti algorithms with an estimation of a gradient (Algorithm B)The stohasti algorithm with an estimation of a gradient is de�ned aording tothe formula:vk+1 = vk � ak'̂ �vk� ; (5.25)where (ak)k>0 is a given sequene, and '̂ �vk� is an estimator of r' �vk�, where' �vk� = JL(vk)=kJL(vk)k. This estimator an be expressed in the form:'̂ �vk� = ĴL �vk�ĴL (vk)  ; (5.26)



5. Optimization tasks in neural models designing 115where ĴL �vk� 6= 0 is the estimator of the rJL at the point vk. Let (k)k>0 :k > 0 be a sequene of positive numbers, and (�k)k>0 : �k 2 U (S(0; 1)) be avetor sequene of independent random diretions with uniform distribution. Theestimator ĴL �vk� an be desribed as:ĴL �vk� = JL �vk + k�k�� JL �vk�k �k: (5.27)It is neessary to note that in this ase:'̂(vk) = sgn hJL �vk + k�k�� JL �vk�i �k (5.28)and the algorithm under onsideration an be transformed to the formula:vk+1 = 8>><>>: vk � ak�k if JL(vk + k�k) > JL(vk);vk + ak�k if JL(vk + k�k) < JL(vk);vk otherwise: (5.29)In this ase, the point vk + k�k an be treated as a test point. This algorithmadmits points with better as well as worse quality (ompare with (5.23)). Thus, ittakes the feature of rossing saddles in sum-square error landsape.5.4.1.3. Stohasti algorithms with randomly hosen sample points(Algorithm C)Let there be two sequenes (rk)k>0 : rk > 0 and ("k)k>0 : "k > 0 ^ "k # 0. Leta vetor sequene (�k)k>0 : �k 2 U (K(0; rk)), eah �k is randomly hosen fromthe sphere of radius equal to rk with the uniform distribution. The stohastialgorithm with a given learning rate is de�ned by the formula:vk+1 = ( �k JL(�k) < JL(vk)� "k;vk otherwise: (5.30)5.4.1.4. Illustrative exampleLet us onsider the following identi�ation problem of a nonlinear dynami systemdesribed by the equation (Narendra and Parthasarathy 1990):y(k) = y(k � 1)y(k � 2)y(k � 3)u(k � 1)�y(k � 3)� 1�+ u(k)1 + y2(k � 2) + y2(k � 3) : (5.31)To solve this problem, the DMLP with one input and one output units, and onehidden layer with �ve units has been applied (Patan and Korbiz 1996). Allthe neurons have the seond order IIR �lter (the network of the N 21;5;1 lass), sothe onsidered network has 46 learning parameters. The network strutures and



116 5.4. Learning tehniques for DMLP

Fig. 5.4 . Evolution of training: (a) algorithm A: ak = 0:1; "k = 0; k = 1; : : : ; 104; (b)and () algorithm B: ak = 0:1; k = 0:1; k = 1; : : : ; 104; (d) algorithm C:rk = 1; "k = 0; k = 1; : : : ; 5 � 104learning parameters have been hosen experimentally. Training of the networkwas arried out using, by turns: the stohasti algorithm with a randomly hosensearh diretion (algorithm A), the stohasti algorithm with gradient estimation(algorithm B), and the stohasti algorithm with randomly hosen sample points(algorithm C) (Patan and Obuhowiz 1999). Illustrative examples of trainingproessing are presented in Fig. 5.4. As it an be seen, none of the proposedalgorithms is able to train the network aurately. In the best ase the sum-squared error was approximately equal to 0:65. This large error value does notassure a high modelling quality. In spite of the fat that these algorithms fail,some interesting remarks an be formulated.Both algorithms A and B solve the training problem with an equivalent au-ray. Training with the algorithm A seems to be more stable. It results from thefat that, unlike in the algorithm B, only the best vetors are aepted as a basefor the next searhing in the algorithm A. The algorithm B sporadially rossessaddles in sum-square error landsape, but bene�ts following from this fat arenot to be notieable. The e�ieny of the algorithm C is the worst. However, inthe ase of the multi-layer pereptron training, it usually gives the best results. It



5. Optimization tasks in neural models designing 117probably follows from the fat that there is a very rih topology of the sum-squareerror funtion, in the ase of hosen non-linear system (5.31), and �tting a suit-able algorithm parameters is very di�ult. However, if an adaptation of algorithmparameters is implemented, the fast stohasti algorithms might train the DMLPwith better e�ieny. A very important remark is that the stohasti and gradientalgorithms an be ombined. Thus, a hybrid method is obtained, within whihthe stohasti algorithm an at as a mehanism whih seures running away fromloal minima.5.4.2. Evolutionary algorithmsThe idea of a soft algorithm appliation to DMLP learning proess was �rst in-trodued by Patan and Jesionka (2000, 1999). They used the geneti algorithmto learn the DMLP whih had to identify a dynami system. In order to imple-ment the GA to the DMLP training, the hromosome should ontain informationabout the weights w of synapti onnetions between neurons, the feedbak a andthe feed-forward b parameters for eah neural IIR �lter and the slope parame-ters � for eah DNM unit. The hromosome length depends on the number ofbits, whih ode eah network parameter. The DMLP onsidered in (Patan andJesionka 1999) belongs to the lass N 11;5;1 (one input, �ve hidden and one outputunits with the �rst order IIR). Thus we have 40 network parameters to adjust. Letall the parameters be from the range [-1,1℄. If eah parameter is to be representedwith auray equal to 10�5, then we need 18 bits per network parameter and 720bits per hromosome. If the size of population is equal to 200, then the algorithmoperates on 144 thousand bits per epoh (!).The results obtained are not satisfying (Patan 2000). The GA is not an opti-mization algorithm in the sense of reahing an optimum with a desired auray. Itis not asymptotially onvergent to an optimum. Thus, the best element obtainedin the history of a GA proessing is proposed to be the initial one for the loaloptimization method, e.g. the EDBP algorithm. The resulting DMLP revealsa high quality of system identi�ation. This tehnique, whih ombines the GAand EDBP algorithms gives a very good neural model. In order to evaluate themodelling results the disrete version of the quality index (5.21) is de�ned in theform (Obuhowiz and Patan 1998):JT = PPp=1 �yNA;v(p)� y(p)�2PPp=1 y2(p) ; (5.32)where P is the size of the testing set. The quality indies JT (5.32) obtained forthe DMLP models learned using the GA and EDBP algorithms are lower severaltimes then these DMLP models, whih have been learned by the EDBP algorithmonly (Patan 2000).Besides unquestionable advantages, the GA has several drawbaks. First ofall, this algorithm is numerially omplex, and training time is very long. More-over, training using the GA an be performed only o�-line. Therefore, the GAs



118 5.5. The MLP arhiteture optimizationshould be applied in very di�ult optimization problems, where lassial methodsfail, and a very high modelling quality is required.Some of the GA disadvantages whih our in the DMLP learning proesshave been overome using the ESSS-FDM algorithm (Obuhowiz 1999a, Korbizet al. 1999). Unlike the GA, the ESSS-FDM algorithms works using �oatingpoint representation and there are no problems with the long hromosomes. TheESSS-FDM algorithm has been suessfully implemented in the ase of a time-varying performane index (Obuhowiz 1999b), thus the attempt at applyingthis algorithm to the on-line learning proess ends in suess (Obuhowiz 1999a).To model Narendra's dynami system (5.31), a DMLP network belonging tolass N 21;5;1 was hosen (one hidden layer with �ve neurons). Eah neuron ontainsa seond-order IIR �lter. Hene, 52 adaptable parameters have to be adjusted inthe training proess. The parameters of the ESSS-FDM algorithm were as follows:the size of population � = 20; the momentum � = 0:0545; the maximum numberof iterations tmax = 5000; the variane of modi�ation � = 0:075 for t � 200 and� = 0:015 for t > 200. A set of 500 training patterns for the on-line trainingproess was generated. Figure 5.5 shows the system and neural model outputs fordi�erent hosen inputs.In the ase of the DMLP network trained with the ESSS-FDM algorithm, avery good quality (JT = 0:0058) was obtained for the testing signalu(k) = (sin(2�k=250) for k � 250;0:8 sin(2�k=250) + 0:2 sin(2�k=25) for k > 250: (5.33)The obtained result is better than all known results for the Narendra's system(5.31) in the literature (Narendra and Parthasarathy 1990, Speht 1991, Patanand Korbiz 1996, Obuhowiz and Patan 1998). From Fig. 5.5 it follows that theperformane of the system modelling is high for di�erent inputs. Unfortunately,the ESSS-FDM algorithm is more time-onsuming than the EDBP one. Basedon this approah a good quality model of the dynami proess an be designed.It was found that the DMLP network with ESSS-FDM learning algorithm an beapplied in the ases where high modelling quality is required and the learning timedoes not matter. In other ases, the EDBP algorithm is reommended to train theDMLP network.5.5. The MLP arhiteture optimizationLet us onsider the MLP network with two hidden layers and units with sigmoidativation funtion (Fig. 5.6).Four spaes an be distinguished: the input spae U , and its suessive pat-terns Yh1 = Rh1(U), Yh2 = Rh2(Yh1) and Y = Ro(Yh2), where Rh1, Rh2 and Roare mappings realized by both hidden and output layers, respetively. Numbersof input and output units are de�ned by dimensions of input and output spaes.The number of hidden units in both hidden layers depends on an approximationproblem solved by a network. Further onsideration are based on the followingtheorem (Wang et al. 1992):
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Quality index J=0,0058 Quality index J=0,01658

Quality index J=0,01639 Quality index J=0,06991

Quality index J=0,02006 Quality index J=0,0222

Fig. 5.5 . The system output (solid line) and the DMLP output (dotted line) to a set ofhosen inputs.
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Rh1 Rh2 RoU Yh1 Yh2 YFig. 5.6 . The MLP network with three layersTheorem 5.5.1. Let �L be a �nite set of training pairs assoiated with �niteand ompat manifolds. Let f be some ontinuous funtion. Taking into aountthe spae of three-level MLPs, there exists an unambiguous approximation of theanonial deomposition of the funtion f , if and only if the number of hiddenneurons in eah hidden layer is equal to the dimension of subspae of the anonialdeomposition of the funtion f .Theorem 5.5.1 gives neessary and su�ient onditions for existing of the MLPapproximation of the anonial deomposition of any ontinuous funtion. Theseonditions are following. The U and Y must be fully represented by the trainingset �L. The network ontains more than two hidden layers, whih are enoughfor implementation of the onsidered approximation of anonial deompositionof any ontinuous funtion. The goal of the �rst hidden layer is to map the n-dimensional input spae U into the spae Yh1 = Rh1(U), whih is inverse imageof the output spae in the sense of the funtion f . Thus, the mapping Yh1 ! Yis invertible. The number of units in the �rst hidden layer ard(V1) is equal to adimension of the minimal spae, whih still fully represent input data, and is, ingeneral, lower than the dimension of input vetors.Theorem 5.5.1 guarantees, that an approximation of the anonial form offuntion f exists and is unambiguous. If ard(V1) is higher than the dimensionof the anonial deomposition spae of the funtion f , the network does notapproximate the anonial deomposition, but an still be the best approximationof the funtion f . However, suh an approximation is not unambiguous, anddepends on the initial ondition of the learning proess. On the other hand,if the number ard(V1) is too low, the obtained approximation is not optimal.So, both de�ieny and exess of neurons in the �rst hidden layer lead to poorapproximation.As it has been pointed out above, the �rst layer redues the dimension of theatual input spae to the level su�ient for the optimal approximation. Next twolayers, seond hidden and output, are su�ient for realization suh an approxima-



5. Optimization tasks in neural models designing 121tion (Cybenko 1989, Hornik et al. 1989). The number of units in the seond hiddenlayer ard(V2) is determined by an assumed error of the approximation. Lowesterror needs higher ard(V2). The ruial tradeo� one has to make is between thelearning apability of the MLP and �utuations due to the �nite sample size. Ifard(V2) is too small, network might not be able to approximate well enough thefuntional relationship between the input and target output. If ard(V2) is toogreat (ompared to the number of training samples), the realized network fun-tion will depend too muh on the atual realization of the training set (Geman etal. 1992).The above onsideration suggests, that the MLP an be used to approximationof a anonial deomposition of any funtion spei�ed on the ompat topologialmanifold. The following question omes to mind: why is the anonial deompo-sition needed? Usually, essential variables, whih fully desribe the input-outputrelation, are not preisely de�ned. Thus, the approximation of this relation anbe di�ult. The existene of the �rst layer allows to transform a real data to theform of the omplete set of variables of an invertible mapping. If the input spaeagrees with the inverse image of the approximated mapping, the �rst hidden layeris unneessary.5.5.1. Methods lassi�ationProedures, whih searh the optimal ANN arhiteture, have been studied fordozen or so years. Espeially an esalation of papers took plae in 1989�1991. Atthat time almost all standard solutions were published. In subsequent years thenumber of publiations signi�antly dereases. Most of proposed methods weredediated to spei� types of neural networks. But new results are still needed.There are very rih bibliography items and various methods to solve thisproblem. Reently, a variety of arhiteture optimization algorithms have beenproposed. They an be divided into three lasses (Doering et al. 1997, Obuhowiz2000a):� bottom-up approahes,� top-down approahes,� disrete optimization methods.Starting with a relatively small arhiteture, bottom-up proedures inreasethe number of hidden units and thus inrease the power of the growing network.One of the �rst methods was proposed by Mezard and Nadal (1989). Their tilingalgorithm is dediated for the MLP, whih have to map Boolean funtions of bi-nary inputs. Creating subsequent layers neuron by neuron the tiling algorithmsuessively redues the number of training patters, whih are not linearly separa-ble. Similar approah was introdued by Frean (1990). Both algorithms give MLParhitetures in a �nite time, and this arhitetures aspire to be almost optimal.In (Hirose et al. 1991) the extension of the bak-propagation algorithm has beenproposed. This algorithm allows to add or redue hidden units depending on an



122 5.5. The MLP arhiteture optimizationatual position of the training proess. Ash (1989), Setiono and Chi Kwong Hui(1995) proposed that the training proess of the sequential reated networks isinitiated using values of parameters from previous obtained networks. Wang ando-workers (1994) built an algorithm based on the their Theorem 5.5.1 (Wang etal. 1992) , whih desribes neessary and su�ient onditions that there exists aneural network approximation of an anonial deomposition of any ontinuousfuntion. The asade-orrelation algorithm (Fahlman and Lebierre 1990) buildsan ANN of original arhiteture. The bottom-up methods prove to be the most�exible approah, though omputationally expensive, omplexity of all known al-gorithms is exponential. Several bottom-up methods have been reported to traineven hard problems with a reasonable omputational e�ort. The resulting networkarhitetures an hardly be proven to be optimal. But, a further ritiism onernsthe insertion of hidden neurons as long as elements of the training set are mislas-si�ed. Thus the resulting networks posses a poor generalization performane andare disquali�ed for many appliations.Most of neural networks appliations uses the neural model of binary, bipolar,sigmoid or hyperboli tangent ativation funtion. A single unit of this type rep-resents a hyperplane whih separates its input spae into two subspaes. Throughthe serial-parallel units onnetions in network, the input spae is divided intosubspaes whih are polyhedral sets. The idea of the top-down methods is gradualredution of the hidden unit number in order to simplify shapes of the division ofthe input spae. In this way the generalization property an be improved. Threelasses of top-down appliation may be distinguished:� sensitive methods,� penalty funtion methods, and� ovariane analysis methods.A sensitivity of an synapti onnetion is a measure of the in�uene of this onne-tion redution on a quality measure of the network. First de�nitions of the sensi-tivity measure was proposed by Mozer and Smolensky (1989) and Karnin (1990),but the most known sensitivity algorithms are Optimal Brain Damage (LeCun etal. 1990) and its extension: Optimal Brain Surgeon (Hassibi and Stork 1993). Theidea of the penalty funtion methods is modi�ation of the quality measure of anANN by adding a fator whih penalizes a network for the exess of arhitetureelements (Chauvin 1989, Hertz et al. 1991). The topologial optimization may beprovided by the distribution analysis of the eigenvalues of the ovariane matrixof output signals of hidden units. It is assumed that as many hidden units an beredued as there are eigenvalues negligently small (Weigend and Rumelhart 1991).Alippi and o-workers (1997) transform the ovariane matrix of output signalsof hidden units into diagonal matrix using, so alled, virtual layer, and than thegeneralization performane is improved by reduing virtual neurons with insignif-iant output signals. The top-down approahes inherently assume knowledge ofa su�iently omplex network arhiteture that an always be provided for �-nite size training samples. Beause the algorithms presented up to now an only



5. Optimization tasks in neural models designing 123handle speial ases of redundany redution in a network arhiteture, they arelikely to result in a network that still oversized. In this ase the asade-redutionmethod (Obuhowiz 1999d), where the obtained arhiteture using a given top-down method is an initial arhiteture for next searhing proess, an be a goodsolution.The spae of ANN arhitetures is an in�nite disrete spae and there are veryrih bibliography items about implementation of disrete optimization methods tosolve the ANN arhiteture optimization problem. In partiular, evolutionaryalgorithms, espeially geneti algorithms, seem to have gained a strong attrationwithin this ontext (.f. (Bornholdt and Graudenz 1991, Harp et al. 1989, Kitano1990, Koza and Rie 1991, Marshall and Harrison 1991, Miller et al. 1989, Nagaoet al. 1993, Obuhowiz and Politowiz 1997)). Nevertheless, implementations ofthe A? algorithm (Doering et al. 1997, Obuhowiz 1999) and the SimulatingAnnealing (Obuhowiz 2000a) deserve an attention.One of the most interesting approahes, proposed by Doering and o-workers(1997), where the ruial point ertainly is the e�ient use of information alreadygained during training a sequene of network arhitetures. The A?-algorithm isapplied. It is known that it uses heuristi information in an optimal way and thusis superior to all other algorithms working with the same heuristi information,i.e., it �nds the optimal arhiteture by exploring the smallest possible subset ofthe searh spae.5.5.2. Evolutionary algorithms approah to ANN arhiteture optimizationAppliation of the evolutionary algorithms to the onstrution proess of neuraltools has just a history of a dozen or so years. Evolutionary algorithms an beused in three types of problems:� learning proess of an ANN with �xed arhiteture;� searhing for an optimal ANN arhiteture, the learning proess is done usinganother method, e.g. the BP algorithm;� solving both above problems simultaneously.The �rst type of problems was onsidered in Setion 5.3, the others are thesubjet of this point. Among all known EAs, geneti algorithms seem to be themost natural tool for searhing a disrete spae of ANN arhitetures. This fatresults from the lassial struture of a hromosome � a string of elements froma disrete set, e.g. a binary set.The most popular representation of the ANN arhiteture is a binary string(Bornholdt and Graudenz 1991, Harp et al. 1989). At �rst, an initial arhitetureNAmax must be hosen. This arhiteture must be su�ient to realization ofa desired input-output relation. The NAmax de�nes the upper limit of searhingarhitetures omplexity. Next, all units of the NAmax have to be numbered from 1toN . In this way, the searhing spae of ANN arhitetures is limited to lass of alldigraphs of N nodes. Any arhiteture NA (a graph) of this lass is represented by



124 5.5. The MLP arhiteture optimizationits onnetion matrix V of elements equal to 0 or 1. If Vij = 1 then there exists thesinapti onnetion from i-th unit to j-th one, Vij = 0 otherwise. A hromosomeis built by rewriting the matrix V row by row to a bit string of length N2. Usingsuh a representation of an ANN arhiteture a standard GA algorithm an beused (see Setion 1.2.1).It is easy to see, that the above representation an desribe an ANN of anyarhiteture: the feedforward networks as well as reurrent ones. If a lass of on-sidered networks is limited to the MLP then the matrix V ontains many elementsequal to 0 and annot be hanged during a searhing proess. Suh a limitationompliates geneti operations and oupies a wide memory in a omputer. Thus,the passing over this elements in the representation is sensible (Obuhowiz andPolitowiz 1997).Usually, an ANN has from hundreds to thousands synapti onnetions inpratial appliations, and a binary ode representing suh an ANN arhiteture isvery long. This fat auses that standard geneti operations are not e�etive. Theonvergene of the geneti proess deteriorates with inreasing the omplexity ofthe ANN arhiteture. Miller and oworkers (1989) propose geneti representationof the ANN arhiteture in the form of the onnetion matrix V. The rossoveroperator is de�ned as an exhange of randomly hosen rows or olumns betweentwo matries. In the ase of the mutation, eah bit is turned with some (verysmall) probability.Presented above methods of the geneti representation of the ANN arhite-ture are alled diret enoding (Kitano 1990). This term informs that eah bitrepresents one synapti onnetion in the ANN struture. The disadvantage ofthese methods is too slow onvergene of the geneti proess, or lak of onver-gene in the limit of very large arhitetures. Furthermore, if the initial arhite-ture NAmax is very omplex, the result of suh geneti searhing proess is notso optimal as an be haraterized by some ompression level. The measure ofthe method e�ieny an be, so alled, the ompression index (Obuhowiz andPolitowiz 1997) de�ned by the form:� = �?�max � 100%; (5.34)where �? is a number of synapti onnetions in the resulted arhiteture, �maxis the maximal number of onnetions whih is aeptable in a given arhiteturerepresentation.In order to illustrate this ompression ability of the geneti approah withthe diret enoding, let us onsider the MLP, whih implements logial onjun-tion (AND), inlusive OR and exlusive OR (XOR) of two bits. This problem isdesribed in the work (Obuhowiz and Politowiz 1997). The number of inputand output units is de�ned by the dimension of the input vetor u 2 IR2 and theoutput vetor y 2 IR3. For simpli�ation the network arhiteture is limited toone hidden layer (Fig. 5.7). The problem is redued to the number � of hiddenneurons and the number � of synapti onnetions determination. The de�nition
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�10�10 �20�20 �30�30 �40�40 �50�50 �60�60 20002000 40004000 60006000 80008000 1000010000Fig. 5.8 . Fitness of the best individual in time in the ase of the GA (a) and GESA (b)for di�erent values of � = 2; 3; : : : ; 10 (� = 2 � the top urve, and � = 10 �the bottom urve). For the e�ieny omparison � = 0 in the equation (5.36).The high of the urve fault is proportional to the ompressing fator � (5.34)In the work (Marshall and Harrison 1991) an individual ontains binary enodedparameters of an MLP arhiteture (the number of hidden layers, the number ofhidden neurons in eah layer, et.) and parameters of the BP algorithm usedfor learning this MLP (the learning fator, the momentum fator, the desiredauray, the maximal number of iterations, et.). A disrete �nite set of values isde�ned for eah parameter, the ardinality of this set depends on the number ofbits assigned for a given parameter. In this ase the geneti proess searhes notonly for the optimal arhiteture but for optimal training proess, too.The other proposition (Kitano 1990) is a graph-based enoding. Let thesearhing spae be limited to arhitetures, whih ontain 2h+1 units at the most.Then, the onnetion matrix an be represented by a tree of h levels, and eahnode of this tree possesses four suessors of is the leaf. Eah leaf is one of the16 possible matries 2 � 2 of binary elements. Four leaves of a given node of thelevel h � 1 de�ne a 4� 4 matrix, et. In this way the root of the tree representsthe whole onnetion matrix. Crossover and mutation operators are de�ned inthe same way as in GP method (Fig. 1.2). Koza and Rie (1991) apply the GPalgorithm (see Setion 1.2.2) for neural network design.5.6. Optimization of the DMLP arhitetureThe signi�ane of network arhiteture optimization inreases when the DMLPis taken into onsiderations. The number of free network parameters rapidly in-reases when one substitutes standard MCulloh-Pitt's neurons by the DNMunits. Thus, there is some quality di�erene between arhiteture alloation ofthe MLP and the DMLP. Apart from setting an appropriate number of hiddenlayers and the number of neurons in eah of these layers, the dynami order ofeah partiular neuron has to be established in the DMLP.



5. Optimization tasks in neural models designing 1275.6.1. Simulated annealing with asade-redution tehnique5.6.1.1. Simulated annealing algorithmSimulated Annealing (SA) (Kirkpatrik et al. 1992) is based on the observationof the rystal annealing proess, whih has to redue rystal defets. The systemstate is represented by a point S in the spae of feasible solutions of a givenoptimization problem. The neighbouring state S0 of the state S di�ers from Sonly in one parameter. The minimized objetive funtion E is alled the energyby the physial analogy, and the ontrol parameter T is alled the temperature.The SA algorithm is following:1. Choose the initial state S = S0 and the initial temperature T = T0.2. If the stop ondition is satis�ed then stop with the solution S else go to 3.3. If the equilibrium state is ahieved, go to 8 else go to 4.4. Choose randomly a new neighbouring state S0 of the state S.5. Calulate �E = E(S0)�E(S).6. If �E < 0 or � < exp(��E=T ), where � is uniformly distributed randomnumber from the interval [0; 1), then S = S0.7. Go to 3.8. Update T and go to 2.The non-negative temperature (T > 0) allows to hoose the state S0, whoseenergy is higher than the energy of the atual state S, as a base state for thefurther searh, and then, there is a hane to avoid getting stuk in a loal op-timum. Disloations , whih deteriorate the system energy, are ontrolled by thetemperature T . Their range and ourring frequeny derease with T ! 0. As theequilibrium state an be hosen a state,when the energy almost does not hange(with a given auray, whih is a funtion of temperature) in a given time inter-val. This riterion is relatively strong and annot be aomplished. So, usually,a number of iteration is �xed for a given temperature. The initial temperatureis the measure of the maximal �thermal� �utuations in the system. Usually, itis assumed that the hane of ahieving any system energy should be high in thebeginning of the searhing proess. The linear dereasing of the temperature isnot reommended. The linear annealing strategy auses the exponential dereaseof �thermal� �utuations and the searhing proess usually gets stuk in a loaloptimum. Two annealing strategies are reommended:T (tn) = 8><>: T01 + ln tn�T (tn�1) ; (5.38)
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Fig. 5.9 . (a) The minimal number of synapti onnetions obtained using the GA (solidline), the GESA (dashed line ) and the SA (dotted line) as a funtion ofmaximal number of hidden units � (see Fig. 5.7); (b) The relationship betweenthe ompression index � (5.34) and �.where tn is the number of temperature updating, and � 2 [0; 1℄ is a given onstant.The annealing strategy determines the stop ondition. If the strategy (5.38) isused, the proess is stopped when the temperature is almost equal to 0 (T < ").Firstly, the simulated annealing algorithm was applied as a rereation proessof the Boltzmann mahine (Korbiz et al. 1994). The SA implementations inthe learning of the MLP have not signi�ant suesses. But, it is very promisingalgorithm in the ase of searhing for the optimal ANN arhiteture. In the work(Obuhowiz 1998), the SA algorithm was ompared with the GA and GESA (seeSetion 5.5.2). Let the MLP arhiteture be represented in the same way like inthe GA and GESA, i.e. by a bit string, where eah bit represents presene (1)or absene (0) of the orresponding synapti onnetion. A randomly generatedbit string is hosen as an initial solution S. The neighbouring solution S0 di�ersfrom the S only by one bit. The annealing strategy is onduted in order tothe seond formulae of (5.38), where � = 0:9 and the initial temperature T0 =20. The algorithm ends if T < 0:05. Simulation experiments show that the SAalgorithm is more e�etive than the GA and GESA. Figure 5.9a presents therelationship between the minimal numbers of onnetions (the global minimum�opt = 9) obtained by the GA, GESA, and SA, and the maximal permissiblenumber of hidden neurons � = 2; 3; : : : ; 10 (15 < �max < 63). Figure 5.9b presentsthe relationship between the ompression index � (5.34) and �. The dominationof the SA algorithm is learly seen.5.6.1.2. Casade redution with simulated annealingThe main idea of asade redution is following (Obuhowiz 1999d). We startwith a network struture that is supposed to be su�iently omplex and redue itusing a given algorithm. Thus, we obtain a network with �?(0) parameters from�max(0). In the next step we assume that �max(1) = �?(0) and apply redutionagain. This proess is repeated until �?(k) = �max(k)(= �?(k � 1)).



5. Optimization tasks in neural models designing 129Let us onsider the dynami system desribed by (5.31), whih is modeled bythe DMLP network. The set of learning signals onsists only one type of the inputsignal � the white noise. The squared errorJL = 12D�yDMLP (k)� y(k)�2E; (5.39)is hosen as the ost funtion of the on-line learning proess, whih is proeeded bythe EDBP algorithm. The training ends up if JL < 0:01 or the assumed maximumnumber of iterations (kmax = 10000) is ahieved. The map (5.33) is hosen as atesting signal. The testing ost JT is de�ned by (5.32).Taking into aount results obtained in previous Setion (Fig. 5.9) the SAalgorithm seems to be the best hoie as a redution proess. An arhitetureof the DMLP network is enoded into a bit string, eah bit represents abseneor presene of one free parameter of the DMLP network (weight of the synaptionnetion, the feedbak ar feedforward parameter of the IIR �lters, et.). Theparameters of the SA algorithm are hosen as: � = 0:95, T0 = 0:5. For simpliity,we assume that all DNM units possess seond-order IIR �lter. We start with thenetwork arhiteture N 21:10:10:1 (one input unit, 10 units in the �rst hidden layer,10 units in the seond hidden layer, and one output unit � 246 free parameters).The sequene of network strutures obtained after eah SA proess is as follows:N 21:10:10:1(246)! N 21:5:3:1(77)! N 11:5:1(46)! N 11:1:1(14): (5.40)The number of free parameters is desribed in brakets. Figure 5.10 presents theresponses of the dynami system (5.31) and the resulting DMLP on the testingsignal (5.33). Unfortunately, the above DMLP arhiteture has been obtainedonly a ouple of times for dozens experiments. This fat proves that the EDBPalgorithm used to the network training usually �nds unsatisfatory loal minimain the spae of DMLP parameters.5.6.2. Casade network of dynami neuronsThe basi idea of the asade-orrelation algorithm is to redue iteratively theoutput error by inserting hidden units that orrelate (or anti-orrelate) well withthe error. By freezing the network while optimizing the new hidden unit andidatethe algorithm avoids the moving targets problem of the standard BP algorithm(Fahlman and Lebierre 1990). Below, the asade-orrelation algorithm adaptedto the dynami network and used in this work is desribed.This algorithm starts without any hidden units. The diret input-outputonnetions are trained on-line using the gradient desent method. At this stage,the EDBP algorithm redued to the version of one DNM unit learning an beapplied. If the network performane is satisfatory, the proedure is stopped,otherwise it attempts to redue the residual errors further by adding a new hiddenDNM unit to the network. The unit reation proess begins with a andidate unitthat reeives trainable input onnetions from all of the networks external inputsand from all pre-existing hidden units. The output of this andidate unit is not yet
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Fig. 5.10 . Responses of the dynami system (5.31) (solid line) and the DMLP of N 11:1:1struture (dotted line) on the testing signal (5.33) (JT = 0:011 (5.32))onneted to the ative network. The adjusting of the andidate unit input weightsand its IIR parameters is performed to maximize the following performane index:	 = sMXi=1 ����� PXp=1(Vp � hV i)(Epi � hEii)����� (5.41)where sM is the number of output units, P is the number of training patterns,hV i = ( 1P )PPp=1 Vp and hEii = ( 1P )PPp=1Epi, Vp denotes the response of theandidate on the input up and Epi is the output error on the input up.When a new DNM unit is added to the network, its adjusted parameters arefrozen, and all the output neurons parameters are trained again using the gradientdesent method. This yle repeats until the output network error is aeptable.In Fig. 5.11 an example of the neural network with two inputs and two outputsis shown. It is alled the Casade Network of Dynami Neurons (CNDN) (Patanet al. 1999). Blak dots denote adaptable weights between neurons. This is afeed-forward series-parallel struture. Eah neuron reeives signals from all inputsand all hidden neurons. Suh a struture has some advantages in ontradistintionto the standard feed-forward networks. The �rst advantage is preventing movingtarget problem. This problem often ours in the standard feed-forward networks,where eah neuron adapts its parameters in a onstantly hanging environmentreeiving only the input and output network data of small sizes. In fat, instead of aquik adjustment of its parameters, the hidden neurons engage in a omplex dane
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Fig. 5.11 . Examples of asade network with two inputs and two outputs.around the onstantly moving target. The more hidden neurons there are, theharder it is to ahieve a good learning quality. In a asade network, eah hiddenneuron is trained separately. Thus, it reeives all input and output learning dataand that is why it an adjust its parameters in a orret way. The other advantageis an optimal harater of this struture. The hidden neurons are added to thenetwork one by one until the output network error is aeptable. In this way anoptimal neural network, in the sense of modelling quality, an be designed. It isneessary to note that the proposed network is not optimal in the sense of thenumber of hidden neurons or number of parameters either.In order to illustrate the e�etiveness of the neural model based on the CNDN,let us onsider the Two-Tank System, whih onsists of two ylindrial tanks withidential ross setions being �lled with water and with a delay spiral pipeline (seeFig. 5.12). The nominal out�ow Qn is loated at Tank 2. The pump driven bya DC motor supplies Tank 1, where Q1 is the in�ow of the liquid through pumpto Tank 1. Both the tanks are equipped with sensors for measuring the level ofthe liquid (h1; h2). Valves V1; V2; V3; V4 and VE are eletroni swithing ones.The aim of the two-tank system ontrol is to keep up the water level in Tank 2onstant.The high modelling quality has been obtained for relatively small CNDNarhiteture N3��1 (the CNDN onsists of 3 hidden DNM units and one outputDNM unit). Figure 5.13 ompares the measured and model liquid levels in Tank 2.Basing on the CNDN models for a set of possible faults in the two-tank system, thee�etive fault diagnosis system has been proposed (Korbiz et al. 1999, Korbiz etal. 2001).5.6.3. Graph of the DMLP struturesThe optimum DMLP arhiteture searhing proess an be more e�etive if thespae of the DMLP arhitetures will be ordered. Doering and oworkers (1997)propose the ordering of the MLP arhitetures in the in�nite graph (Fig. 5.14).
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Fig. 5.13 . The measured (solid line) and modelled by the CNDN (dotted line) liquidlevels in Tank 2The notation �1 � �2 used in Fig. 5.14 denotes that the network onsists of �1neurons in the 1st hidden layer and �2 neurons in the 2nd hidden layer. Thenumber of units in the input and output layers are de�ned by the dimensions ofthe input and output spaes, respetively.In the ase of the spae of the DMLP arhitetures the orresponding graphG(A) is muh ompliated beause of IIR �lters existene in the DNM units(Obuhowiz 1999). The graph G(A) an be desribed by de�nition of the ex-pansion operator �(NA), whih generates all suessor of a given arhiteture NA.
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Fig. 5.14 . The graph of the MLP strutures.The expansion operator �(NA) reates the following suessors.1. Varying the number of hidden layers. Assume the DMLP arhiteture NA(5.7). The arhiteture NA(1) with inserted hidden layer with one DNM unitv0 of zero orderNA(1) = �fV (1)m j m = 0; 1; : : : ;M + 1g;fo(1)ms j m = 1; 2; : : : ;M + 1; s = 1; 2; : : : ; smg; E(1)�;V (1)m = Vm; for m = 0; 1; : : : ;M � 1;V (1)M+1 = VM ;V (1)M = �v0	; (5.42)o(1)ms = oms ; for m = 0; 1; : : : ;M � 1; s = 1; 2; : : : ; sm;o(1)M1 = 0;o(1)M+1s = oMs ; for s = 1; 2; : : : ; sM+1(= sM );E(1) = E [ ��v; v0���v 2 V (1)M�1	[��v0; v���v 2 V (1)M+1	 n ��v�; v+���v� 2 V (1)M�1; v+ 2 V (1)M+1	is the suessor of NA.



134 5.6. Optimization of the DMLP arhiteture2. Varying the number of units in a hidden layer. Assume the arhiteture NA(5.7) that has at least one hidden layer (M � 2). Then, all arhiteturesNA(2) with an inserted unit v00 in a i-th layer for i = 1; 2; : : : ;M � 1NA(2) = �fV (2)m j m = 0; 1; : : : ;Mg;fo(2)ms j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg; E(2)�;V (2)m = Vm; for m 6= i;V (2)i = Vi [ fv00g; (5.43)o(2)ms = oms ; for m 6= i; s = 1; 2; : : : ; sm;o(2)isi+1 = 0;E(2) = E [ ��v; v00���v 2 V (2)i�1	 [ ��v00; v���v 2 V (2)i+1	;are suessors of NA.3. Varying the IIR order of the DNM unit. Assume the arhiteture NA (5.7).Then, all arhitetures NA(3) with inreased order of the IIR �lter in thej-th DNM unit of the i-th layer i = 1; 2; : : : ;M , j = 1; 2; : : : ; siNA(3) = �fVm j m = 0; 1; : : : ;Mg;fo(3)ms j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg; E�;o(3)ms = oms ; for m 6= i; s = 1; 2; : : : ; sm; (5.44)o(3)is = ois; s 6= j;o(3)ij = oij + 1are suessors of NA.Thus, �(NA) maps an arhiteture NA with M � 1 hidden layers and Nproessing DNM units onto M +N suessors.The searhing proess on the G(A) an be arried out by many ways. TheSA algorithm, the A? algorithm, and tabu searh seem to be the most interestingapproahes.5.6.4. Simulated annealing approahTaking into aount the enouraging results of the simulated annealing in theasade-redution method, it is �rst proposed method for searhing the optimalDMLP arhiteture NA? in the graph G(A) (Obuhowiz and Patan 1998). Start-ing with the random node S, the graph is searhed by the SA algorithm (see



5. Optimization tasks in neural models designing 135Setion 5.6.1). A node, whih is diretly onneted with an atual base node S, istreated as a neighbouring arhiteture S0.Similarly as in Setion 5.6.1, the dynami system desribed by (5.31) is on-sidered. The set of learning signals onsists of only one type of the input signal:the white noise. The squared error (5.39) is hosen as the ost funtion of theon-line learning proess, whih is proeeded by the EDBP algorithm, for whih10000 learning patters have been generated. The training ends up if JL < 0:01or the assumed maximum number of iterations (kmax = 10000) is ahieved. As atesting signal the map (5.33) is hosen. The testing ost JT de�ned by (5.32) istreated as a energy funtion for the SA (Setion 5.6.1).The optimization proess has been set in motion a few dozen times for di�erentinitial DMLP arhitetures, di�erent learning parameters, and di�erent annealingstrategies. Unfortunately, obtained results are not reproduible. This problemresults from the fat, that the EDBP algorithm for a given network arhitetureand a given set of learning parameters does not give the same results, but getsstuk in di�erent for eah run loal optimum of the square error funtion. The mostoften obtained resulting arhitetures are N 21:4:1 or N 21:5:1 (JT �= 0:012 � 0:019).However, it happens that the strutures N 21:10:1 or N 21:4:3:1 (JT �= 0:025� 0:035)have been treated as �optimal�.5.6.5. A??? and Tabu Searh approahes do DMLP arhiteture optimization5.6.5.1. A??? algorithmThe A? algorithm, �rst desribed in (Hart et al. 1968, Nilsson 1980), is a wayto implement best-�rst searh to a problem graph. The algorithm will operate bysearhing a direted graph in whih eah node ni represents a point in the problemspae. Eah node will ontain, in addition to a desription of the problem state itrepresents, an indiation of how promising it is, a parent link that points bak tothe best node from whih it ame, a list of the nodes that were generated from it.The parent link will make it possible to reover the path to the goal one the goalis found. The list of suessors will make it possible, if a better path is found toan already existing node, to propagate the improvement down to its suessors.A heuristi funtion f(ni) is needed that estimates the merits of eah gen-erated node. In the A? algorithm this ost funtion is de�ned as a sum of twoomponents:f(ni) = g(ni) + h(ni); (5.45)where g(ni) is the ost of the best path from the start node n0 to the node ni andit is known exatly to be the sum of the ost of eah of the rules that were appliedalong the best path from n0 to ni, and h(ni) is the estimation of the addition ostgetting from the node ni to the nearest goal node. The funtion h(ni) ontainsthe knowledge about the problem.The outline of the A? algorithm is desribed in many handbooks from thedomain of Arti�ial Intelligent. In this work the algorithm inluded in (Rih 1983)is implemented.



136 5.6. Optimization of the DMLP arhiteture5.6.5.2. Tabu SearhThe tabu searh metaheuristi has been proposed by Glover (1986). This algo-rithms models proesses existing in the human memory. This memory is imple-mented as a simple list of solutions explored reently. The algorithm starts froma given solution x0, whih is treated as atually the best solution x�  x0. Thetabu list is empty T := ;. Next, the set of neighbouring solutions are generatedexluding solutions noted in the tabu list, and the best solution of this set is hosenand is hosen as a new base point. If x0 is better than x� then x�  x0. The atualbase point x0 is added to the tabu list. This proess is iteratively repeated until agiven riterion is satis�ed.There are many implementations of the Tabu Searh idea, whih di�er be-tween eah other in the method of the tabu list managing, e.g. Tabu Naviga-tion Method (TNM), Canellation Sequene Method (CSM), Reverse EliminationMethod (REM). Partiular desription of these methods an be found in (Gloverand Laguna 1997).5.6.5.3. ImplementationsIn order to apply the A? and Tabu Searh algorithms to an arhiteture optimiza-tion of the DMLP we have to de�ne (Obuhowiz and Patan 2003):� the optimization riterion � whih is hosen in the formJT �yNA;v?(k);y(k) j k 2 K� = Pk2K �yNA;v?(k)� y(k)�2Pk2K y2(k) ; (5.46)where yNA;v?(k) and y(k) are the output of the learned DMLP and desiredoutput, respetively.� an expansion operator �(NA) : A ! 2A de�ned be equations (5.42)�(5.44),whih maps any network arhiteture NA 2 A onto a set of suessors.Moreover, the following funtions have to be de�ned for the A? algorithm� the ost funtion g(NA;NA0) assigned to eah expansion operation:g(NA;NA0) = " (NA0)� (NA)Æ(NA0)� Æ(NA) # ; (5.47)where (NA) is the number of free parameters in the DMLP arhitetureNA, and Æ(NA) is the number of hidden layers in NA;� the heuristi funtion h(NA)h(NA) = 264 JT �yNA;v?(k);y(k) j k 2 K�JT �yNA0;v?(k);y(k) j k 2 K�0 375 ; (5.48)where NA0 denotes the initial arhiteture of searhing.



5. Optimization tasks in neural models designing 137Tab.5.2. Spei�ation of the seleted neural networksMethodCHARACTERISTICS Tabu Searh � list length A?3 5 10Network struture N21;1;1 N21;4;1 N21;4;1 N21;5;11st layer �lters orders (2) (2 1 1 0) (2 1 1 0) (2 1 0 2 1)2nd layer �lters orders (0) (1) (1) (2)Modelling quality 0:145051 0:139015 0:139015 0:123431Beause both g(NA;NA0) and h(NA) are vetor funtions, the relation p _�q mustbe de�nedp _�q , (p1 � q1)or�(p1 = q1)and(p2 � q2)�: (5.49)5.6.6. Experimental omparison of the A??? algorithm and Tabu SearhThis setion presents the experimental results ahieved during seletion of the op-timal neural network struture using searhing methods desribed in the previoussetions (Obuhowiz and Patan 2003). The neural network omposed of dynamineuron models is used here to identify the dynami non-linear proess representedby the following di�erene equation:y(k + 1) = y(k)1 + y(k)2 + u(k)3; (5.50)where u(k) and y(k) are the input and output of the proess at the instant k,respetively. The learning proess is arried out o�-line for 500 steps using theExtended Dynami Bak-Propagation algorithm and a pseudo-random input uni-formly distributed in the interval [�2; 2℄. The learning set onsists of 200 patternsand the learning rate is equal to 0.01. The training proedure of eah examinednetwork struture is repeated four times in order to derease a hane to get stukin loal minima of an error funtion. Furthermore, eah neuron in the networkhas the hyperboli tangent ativation funtion.The seletion of the optimal neural network struture is performed using twosearhing methods: the A? algorithm and the Tabu Searh method. The seondalgorithm is tested with di�erent number of strutures memorized, in turn 3, 5and 10. Results ahieved during experiments are presented in Table 5.2, where thenotation Nnr;v;s denotes n-th layer neural network with r inputs, v hidden neuronsand s outputs, and (or1 or2 : : : orn) denotes that 1st neuron possesses or1 order�lter, 2nd one � or2 order �lter and n-th neuron � orn �lter order.Both searhing methods start with the minimal network struture onsistingof the output neurons only. After that, the neural network is growing up. Ateah algorithm step one parameter an be hanged: the number of hidden layers



138 5.6. Optimization of the DMLP arhiteture(maximum 2 hidden layers) or the �lter order (maximum 2nd order) or the numberof neurons in hidden layers. The Tabu Searh algorithm makes is also possible toredue the network size. As one an see in Table 5.2, the best results have beenobtained using A? algorithm. The optimal network struture seleted with thismethod onsists of two proessing layers and �ve hidden neurons. It is worth notinghere that this method has been run on three omputers and results obtained in theeah ase are the same (the same network struture, quality and optimal path).One an onlude that the algorithm generates redible results. The optimal pathgenerated with the A? algorithm is presented in Table 5.3. In order to �nd theoptimal neural network, 558 strutures have been tested. Eah next network hasa bigger size than the previous one.Tab.5.3. Optimal path generated with the A? algorithmFilters ordersNetwork No. Network 1st layer 2nd layer Modellingstruture (hidden) (output) quality0 N11;1 � (0) 0.2673252 N11;1 � (1) 0.1718693 N21;1;1 (0) (1) 0.1449269 N21;1;1 (1) (1) 0.24966712 N21;1;1 (1) (2) 0.23952720 N21;2;1 (1 0) (2) 0.15130428 N21;3;1 (1 0 0) (2) 0.15211531 N21;4;1 (1 0 0 0) (2) 0.161490118 N21;4;1 (1 1 0 0) (2) 0.168057322 N21;4;1 (1 1 0 1) (2) 0.168039426 N21;5;1 (1 1 0 1 0) (2) 0.208492540 N21;5;1 (1 1 0 1 1) (2) 0.210782543 N21;5;1 (2 1 0 1 1) (2) 0.220161558 N21;5;1 (2 1 0 2 1) (2) 0.123431In the ase of the Tabu Searh method the results are also interesting. Whena short tabu list was used (length of 3), the algorithm demonstrated the periodibehaviour. After every 23 strutures it generates the same optimal neural networkof the N21;1;1 lass. To avoid suh a periodi behaviour, the longer tabu lists havebeen applied (length of 5 and 10). Table 5.2 learly shows that using longer tabulists, better results an be obtained. Moreover, in both ases the idential optimalpath has been ahieved. The onlusion is, that further inreasing size of thetabu list does not yield better results. In Table 5.4 one an see the optimal pathgenerated with the Tabu Searh method (list length equal to 3). First, the network



5. Optimization tasks in neural models designing 139Tab.5.4. The optimal path generated with the Tabu Searh (list length � 3)Filters ordersNetwork No. Network 1st layer 2nd layer Modellingstruture (hidden) (output) quality0 N11;1 � (0) 0.2673252 N11;1 � (1) 0.1718633 N21;1;1 (0) (1) 0.1635889 N21;1;1 (1) (1) 0.16372528 N21;1;1 (1) (0) 0.14774933 N21;1;1 (2) (0) 0.145051is growing up, and for the network No. 28 the algorithm redues the network size.This phenomenon is very attrative and an ause that Tabu Searh may be more�exible method than the A? algorithm. In turn, Table 5.5 shows the optimal pathgenerated with the Tabu Searh algorithm using the tabu list length of 10.5.7. SummaryThe problem of the neural model design has been onsidered in this hapter.Two optimization tasks are distinguished in order to solve the main problem: thelearning proess and the alloation of the optimal arhiteture of the ANN.Loally reurrent neural networks, alled the DMLP, are onsidered. Thisnetwork is omposed of the DNM units, whih ontain an addition module be-tween the adder and ativation modules � the IIR �lter. Therefore, basing on theDNM units, one an build a dynami neural network of the multilayer feedforwardarhiteture.It has been shown that evolutionary algorithms are a very e�etive tool forneural models learning both in the MLP and DMLP ases. Espeially, results ofalgorithms from the ESSS family seem to be very promising. Unfortunately, theevolutionary approah to the ANN learning possesses some ritial defet. This isextremely long time of searhing the solution. A hybrid method, whih ombinesEAs with a method of loal optimization, like the EDBP, an be more e�ient.The neural model arhiteture optimization belongs to the lass of disreteoptimization problems. However, there are many proposals of geneti approahesto this tasks, experiments provide the onlusion that the heuristi searh methods,like the simulated annealing, A? algorithm and tabu searh, e�etively ompetewith GA implementations. Espeially in the ase of the DMLP network, wherespae of the of the network arhitetures is represented by a digraph, the resultsobtained for the GA algorithm are so pure in omparison with other algorithmsthat they are not presented in this hapter.



140 5.7. SummaryTab.5.5. The optimal path generated with the Tabu Searh (list length � 10)Filters ordersNetwork No. Network 1st layer 2nd layer Modellingstruture (hidden) (output) quality0 N11;1 � (0) 0.2673252 N11;1 � (1) 0.1718633 N21;1;1 (0) (1) 0.1635889 N21;1;1 (1) (1) 0.16372538 N21;1;1 (2) (1) 0.15225142 N21;2;1 (2 0) (1) 0.16797649 N21;2;1 (2 0) (2) 0.16749454 N21;2;1 (2 1) (2) 0.15164961 N21;2;1 (2 1) (1) 0.15170664 N21;3;1 (2 1 0) (1) 0.15934774 N21;3;1 (2 1 0) (0) 0.15967780 N21;3;1 (2 0 0) (0) 0.16696184 N21;3;1 (2 0 1) (0) 0.15089888 N21;3;1 (2 0 1) (1) 0.15690393 N21;3;1 (2 1 1) (1) 0.16159197 N21;4;1 (2 1 1 0) (1) 0.139015The e�etiveness of an algorithm of an ANN arhiteture optimizationstrongly depends on the e�etiveness of a learning algorithm, whih provides aquality information of an ANN of a given arhiteture. in the ase of the DMLPnetworks, results of experiments presented in this hapter are obtained basing onthe EDBP algorithm as a learning method. This is a drawbak of the presentedimplementations, beause of a low e�ay of the EDBP. Unfortunately, the ap-pliation of an evolutionary learning algorithm instead of the EDBP auses thesudden inrease of time omplexity of onsidered arhiteture optimization meth-ods.



Chapter 6
GENETIC PROGRAMMING APPROACHTO THE FDI SYSTEM DESIGN

There is an inreasing demand for modern tehnologial proesses to beome saferand more reliable. These requirements extend beyond normally aepted safety-ritial systems of nulear reators, hemial plants or airraft to new system suhas autonomous vehiles or fast rail systems. The early detetion of faults anhelp avoid systems shut-down, breakdown and even atastrophes involving humanfatalities and material damage. Therefore, it is lear that the problem of faultdiagnosis onstitutes an important subjet (Korbiz et al. 2002).During the last two deades many investigations were arried out using ana-lytial approahes, based on quantitative models. The idea is to generate signals,termed residuals, that re�et inonsistenies between nominal and faulty systemoperation. Suh signals are usually generated using analytial approahes (Chenand Patton 1999, Patton et al. 2000). Requirements for preise and aurate ana-lytial model imply that any resulting modelling error will a�et the performaneof the resulting Fault Detetion and Isolation (FDI) sheme (Frank 1998, Frankand Köppen-Seliger 1997). This is partiularly true for dynamially non-linear andunertain systems, whih represent the majority of real proesses. Therefore, anumber of researhers have seen arti�ial intelligene methods, like arti�ial neu-ral networks (Himmelblau 1992, Korbiz et al. 1999, Korbiz et al. 2001, Pattonet al. 1994, Sorsa and Koivo 1992), fuzzy logi or neuro-fuzzy systems (Calado etal. 2001, Ko±ielny et al. 1999a, Ko±ielny et al. 1999b, Piezy«ski 1999), expertsystems (Cholewa 2002, Fathi et al. 1992, Piezy«ski 1999) as an alternative wayto represent knowledge about faults.However, there are many tehniques of non-analytial models onstrution, allof them, sooner or later, redue to a set of optimization problems, e.g. their stru-ture optimization or parameter alloation. These problems are usually non-linear,multimodal, sometimes multi-riteria. And standard loal optimization methodsare insu�ient. Evolutionary algorithms, espeially, seem to be an attrative toolto solve these problems (Obuhowiz and Korbiz 2002).



142 6.1. Basi onepts of fault diagnosis systems
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Fig. 6.1 . Automati ontrol system.6.1. Basi onepts of fault diagnosis systemsA fault an generally be de�ned as an unexpeted hange in a system of interest,e.g a sensor malfuntion. All the unexpeted variations that tend to degrade theoverall performane of a system an also be interpreted as faults. Contrary to theterm failure, whih suggests omplete breakdown of the system, the term fault isused to denote a malfuntion rather than a atastrophe.Sine a system an be split into three parts (Frank and Köppen-Seliger1997) (Fig. 6.1): atuators, proess omponents, and sensors, suh a deompo-sition leads diretly to three lasses of faults. Atuators faults an be viewed asany malfuntion of the equipment that atuate the system, e.g. a malfuntion ofan eletro-mehanial atuator for a diesel engine (Blanke et al. 1994). Componentfaults an be interpreted as the ase when some hanges in the system make thedynami relation invalid, e.g. a leak in a tank in the two tank system. Sensorsfaults an be viewed as serious measurements variations. The faults an ommonlybe desribed as inputs. In addition, there is always a modelling unertainty due tounmodelled disturbanes, noise and model mismath. This may not be ritial tothe proess behaviour, but may obsure the fault detetion by rising false alarms.The automati fault detetion and isolation an be viewed as a sequentialproess involving the symptom extration and, basing on atual symptoms and/oradditional knowledge, the deision making about a fault ourrene (detetion) andits type, range and loation (isolation) (Fig. 6.2). There are many fault diagnosismethods. The hoie of the method for a given diagnosis problem depends on itstype. Generally, two lasses of the fault diagnosis systems an be distinguished(Fig. 6.3). The �rst is based on the pattern reognition priniple (Fig. 6.3a). Thesemethods are e�iently applied in the ase of stati diagnosed systems. Measuredsignals are initially proessed in the symptom extration step using, e.g., the timewindows tehnique (Kowal and Korbiz 2000) or neural networks (Mariniak andKorbiz 1999).The seond lass is model-based FDI systems (Fig. 6.3b), where the quality ofthe system strongly depends on the auray of its model. The residual generatorhas to form a suitable signal (residual signal) basing on outputs of the system andits model obtained for the same input signals. The appearane of any fault shoulda�et on the residual signal value. Basing on the residual signals, the system state
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Fig. 6.4 . EAs in the FDI system designis desribed in the residual evaluation module. In order to improve the isolationability of the model-based FDI system, the bank of the models are used, whereeah model is sensitive to a di�erent fault and of them represents the system inthe nominal onditions.If residual signals are properly generated, the fault detetion beomes a rel-atively easy task. Sine without fault detetion it is impossible to perform faultisolation, all e�orts regarding an improvement of residual generation seem to bejusti�ed. This is the main reason why the researh e�ort of this work is orientedtowards fault detetion and espeially towards residual generation.6.2. EA in the FDI system designThere are relatively few publiations of the EA appliations to the FDI systemsdesign. Proposed solutions (Chen and Patton 1999, Chen et al. 1996, Korbiz etal. 1998, Obuhowiz 1999a, Obuhowiz and Korbiz 2002, Witzak et al. 1999,Witzak et al. 2002) (Fig. 6.4) show the high e�ieny of diagnosis systems whihdesign has been aided by EAs.Optimal residual generation via geneti algorithm was �rstly proposed byChen and oworkers (1996). The studied residual generator is based on full-orderobserver. The residual response is a�eted by faults, disturbanes, sensor and inputnoises, and disrimination between them is very di�ult. In order to make theresidual beome insensitive to modelling unertainty and sensitive to sensor faults anumber of performane indies, whih are funtions of gain and weighting matries,are de�ned. The maximization of the �rst index beomes the residual generator themost sensitive of the faults in the required frequeny range. Next indies desribethe in�uene of the sensor noise e�et, the disturbane and the initial onditione�ets and the input noise e�et, respetively, on the residual signal and have tobe minimized. Some indies are de�ned in the frequeny domain to aount for the



6. Geneti programming approah to the FDI system design 145fat that modelling unertainty e�ets and faults oupy di�erent frequeny bands.The solution of the simultaneously provided optimizations proedures are obtainedusing the method of inequalities (see (Chen and Patton 1999)). Suh a multi-objetive optimization task annot be solved by the onventional optimizationtehniques. The geneti algorithm has been suessfully applied.Among arti�ial intelligene methods applied to design fault diagnosis systemsarti�ial neural networks are very popular, whih are used for building of neu-ral models as well as neural lassi�ers (Frank and Köppen-Seliger 1997, Köppen-Seliger and Frank 1999, Korbiz et al. 1998). But, the onstrution of the neuralmodel is orresponded to two basi optimization problems: optimization of a neu-ral network arhiteture and its training proess, i.e. searhing the optimal setof network free parameters. Evolutionary algorithms are a very useful tool tosolve both problems, espeially in the ase of dynami neural networks (Korbizet al. 1998, Obuhowiz 1999a, Obuhowiz 2000a). Neural networks approahesto the FDI systems building and EAs approahes to the ANN onstrution arethemes of the previous hapters in this book.The main objetive of residual evaluation is to deide whether and where afault ourred with possible avoidane of wrong deisions ausing false alarms.In this ase, many tehniques an be applied (Frank and Köppen-Seliger 1997),whih an be further improved by using the global optimization via evolutionaryalgorithms, however, below shortly desribed opportunities of the EA approahesto the symptom evaluation proess are only the author's proposals and they havenot be implemented, yet.E�ieny of fault detetion systems in the ase of multi-dimensional symptomvetors may be improved by pre-proessing whih leads to the partitioning of thesymptom domain into subdomains (lusters). Among many well-known prepro-essing methods, EAs haraterize high lustering performane. Let us onernwith multi-dimensional real data that form a set of the so-alled training pairsTd = fpq = (xq; yq) 2 IR j q = 1; :::; pg: (6.1)The goal is to perform an evolutionary luster analysis of data in Td to get at theend a partitioning of Td. The number of lusters is not known in advane. Toevaluate eah o�-spring luster in the population, di�erent loal �tness funtionsmay be used. They ould be the maximal distane of the training pair of theluster from the luster entroid, or a mean variation of all training pairs in theluster. Based on the loal �tness funtion of the luster one an build a global�tness funtion (Kosinski et al. 1998)A fuzzy inferene system is often used as universal approximator for a prob-lem of multi-dimensional data or as ontroller for some industrial appliations(Köppen-Seliger and Frank 1999). A fuzzy modelling approah onsists of twokinds of problem, on�guring fuzzy rules and optimization of the shapes of mem-bership funtions, whih are onsidered to be ombinatorial and numerial op-timization problems, respetively. The EA is able to be applied to both theseproblems. In many researh works (f. (Carse et al. 1996)), however, the EA isapplied only to optimize the on�guration of the fuzzy rules, while another opti-
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r(k)Fig. 6.5 . The GP implementation onsidered in this haptermization algorithm, suh as steepest desent method, is applied to optimize theshapes of the membership funtions.The appliation of the arti�ial intelligene tehniques leads to the oneptof the fault diagnosis expert system where analytial and heuristi informationas well as knowledge proessing are ombined (Frank and Köppen-Seliger 1997).The expert system for fault diagnosis onsists a knowledge base whih usually in-ludes a rule base. The onstrution of the rule base is the main problem for theknowledge engineers, whih has to implement, usually out of order, inomplete andheuristi knowledge of human expert. In this ase the fuzzy tehniques seem to bean e�etive tool to build the knowledge base. Unfortunately, there are many faultdiagnosis problems for whih the human expert knowledge is insu�ient and theautomati optimal seletion of the rule base is needed. Beause of the exponentialomplexity of the problem of the optimal searhing there are no possibilities ofusing a total review method. In this ase, tehniques of geneti algorithms andgeneti programming (Koza 1992) may beome very e�etive tools, assuming thatdeision rules are a set of omplexes (Skowro«ski 1998). Eah omplex is a on-juntion of seletors and eah seletor is a disjuntion of the disrete attributevalues. In this ase, the population of individuals is built of vetors of seletors.The GA omposes the rule base from the sets of attributes and their values. Inorder to use the GP to reate the rule base, two sets have to be de�ned. The �rstone, terminal set, ontains all possible premises and onlusions, the seond oneontains logi operators. Eah rule is represented by a strutured tree, and GP isused to �nd the best sets of rules. Contrary to the GA-based approah, where onlysimple rules (triples) are onsidered, the GP-based approah makes it possible touse arbitrary omplex rules (Koza 1992)The solutions proposed in this hapter are onneted with two lasses of theFDI systems, whih are based on:� input/output models, and� state observers.



6. Geneti programming approah to the FDI system design 147If the physial models are used, the identi�ation problem redues to an es-timation of some parameters. This estimation does not seem to be a di�ultproblem beause these parameters have usually physial interpretations. Unfor-tunately, the omplexity of the modern industrial proesses makes it impossibleto onstrut su�iently exat physial models. In these ases the models, whihre�et the input/output behaviors of the system, are needed. There are many teh-niques, whih an be used to build suh a model. Espeially, neural networks arevery attrative and popular tool to non-linear system modelling (Korbiz 1997, Ko-rbiz et al. 1999). These neural models are �blak boxes� and give only qualitativeinformation. An alternative approah is the geneti programming tehnique. TheGP approahes to modelling of dynami nonlinear systems: via hoie of the gainmatrix of the robust nonlinear observer (Witzak et al. 1999), searhing for theMIMO NARX model (Multi Input Multi Output Nonlinear AutoRegresive witheXogenous variable) (Witzak and Korbiz 2000), seletion of the state spae rep-resentation of the system (Witzak et al. 2002), or via extended unknown inputobserver (EUIO) design (Witzak et al. 2002) (Fig. 6.5). This four GP appliationare presented in details in this hapter.6.3. Tree representation of the funtionAll onsidered in this hapter GP approahes (Fig. 6.5) redue to the problem ofsearhing of analytial forms of some nonlinear relations between a given set ofarguments x and output yy = f(x): (6.2)As it has already been mentioned (see setion 1.2.2), a tree is the main in-gredient underlying the GP algorithm. In order to adapt GP to searhing thefuntion (6.2) it is neessary to represent it as a tree, or a set of trees in the aseof a vetor funtion.Firstly, two sets, the terminal T and funtion F sets, an be distinguishedT = fx1; x2; : : : ; xn; 1; 2; : : : ; sg; F = f+; �; =; �1(�); : : : ; �l(�)g; (6.3)where (i j i = 1; 2; : : : ; s) is a set of onstants, and (�i(�) j i = 1; 2; : : : ; l) is a setnonlinear univariate funtions. The language of the trees in GP is formed by auser-de�ned funtion F and terminal T set, whih form nodes of the trees. Thefuntion should be hosen so as they be a priori useful in solving the problem,i.e. any knowledge onerning the system under onsideration should be inludedin the funtion set. This funtion set is very important and should be universalenough to be apable of representing a wide range of nonlinear systems. Theterminals are usually variables or onstants. Thus, the searh spae onsists of allthe possible ompositions that an be reursively formed from the elements of Fand T . Seletion of variables does not ause any problems, but the handling ofnumerial parameters (onstants) seems very di�ult. Even though no onstantnumerial values are in the terminal set T , they an be impliitly generated, e.g.
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x1x1x1x1 x2x2x2x2+ ++ ��� =p11
p1p2 p3p4 p5 p6 p7p8 p9 p10 p12 p13 p14 p15Fig. 6.6 . An exemplary tree of the two-variable funtion.the number 0:5 an be expressed as x=(x + x). Unfortunately, suh an approahleads to an inrease in both the omputational burden and evolution time. Anotherway is to introdue a number of random onstants into the terminal set, but this isalso an ine�ient approah. An alternative way of handling numerial parameters,whih seems to be more suitable, is alled node gains (Esparia-Alazar 1998). Anode gain is a numerial parameter assoiated to a node, whih multiplies itsoutput value (see Fig. 6.6). Although this tehnique is straightforward, it leadsto an exessive number of parameters, i.e. there are parameters whih are notidenti�able:y = p1�p2�p4(p9x1 + p8x2) + p5p10p11x1x2)�+ p3 p6p12p13x22p7p14p15x21� : (6.4)Thus, it is neessary to develop a mehanism whih prevents suh situations hap-pening. To takle the parameters redution problem, a few simple rules an beestablished (Obuhowiz and Witzak 2002, Witzak et al. 2002)�; =: A node of type either � or = has always parameters set to unity on the sideof its suessors. If a node of the above type is a root node of a tree thenthe parameter assoiated with it should be estimated.+: A parameter assoiated with a node of type + is always equal to unity. If itssuessor is not of type + then the parameter of the suessor should beestimated.�: If a suessor of the node of type � is a leaf of a tree or is of type � or = thenthe parameter of the suessor should be estimated. If a node of type � is aroot of a tree then the assoiated parameter should be estimated.As an example, onsider the tree shown in Fig. 6.6. Following the above rules, theresulting parameter vetor has only four elements p = (p8; p9; p5; p3) (Fig. 6.7),y = p9x1 + p8x2 + p5x1x2 + p3x22=x21: (6.5)
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x1x1x1x1 x2x2x2x2+ ++ ��� =1
11 p31 p5 1 1p8 p9 1 1 1 1 1Fig. 6.7 . The tree of the funtion presented in Fig. 6.6 after redution of the parametersnumber.It is obvious that, although these rules are not optimal in the sense of parameteridenti�ability, their appliation redues the dimension of the parameter vetorsigni�antly thus making the parameter estimation proess muh easier. Moreover,the introdution of parameterized trees redues the terminal set to variables only,i.e. onstants are no longer neessary, and hene the terminal set is given byT = fx1; x2; : : : ; xng: (6.6)In this way the evolutionary proess of the GP searhes only an optimalstruture of the funtion (6.2) represented by a tree, whose parameters have to beestimated using another method. In the ase of parameter estimation, many algo-rithms an be employed, more preisely, as the GP funtion are usually non-linearin their parameters, the hoie redues to one of non-linear optimization teh-niques. Unfortunately, beause trees are randomly generated, they an ontainlinearly dependent parameters (even after the appliation of parameters redu-tion rules), and parameters whih have very little in�uene on the model output.In many ases, this may lead to a very pure performane of the gradient-basedalgorithms. Owing to the above mentioned problems, the spetrum of possiblenon-linear optimization tehniques redues to the gradient-free tehniques whihusually require a large number of ost evaluations. On the other hand, the appli-ation of stohasti gradient-free algorithms, apart from their simpliity, dereasesthe hane to get stuk in a loal optimum, and hene it may give more suitableparameter estimates. Based on numerous omputer experiments, it was foundthat the extremely simple Adaptive Random Searh (ARS) algorithm (Walter andPronzato 1997) is espeially well-suited for that purpose.6.4. Input/output representation of the system via the GP6.4.1. Problem statementThe haraterization of a lass of possible andidate models from whih the systemmodel will be obtained is an important preliminary task in any system identi�-



150 6.4. Input/output representation of the system via the GPation proedure. Knowing that the system exhibits nonlinear harateristi, ahoie of nonlinear model set must be made. In this setion, the NARX was se-leted as the foundation for the identi�ation methodology. The MIMO NARXmodel has the following formŷi;k = gi(ŷ1;k�1; : : : ; ŷ1;k�n1;y ; : : : ; ŷm;k�1; : : : ; ŷm;k�nm;y ;u1;k�1; : : : ; u1;k�n1;u ; : : : ; ur;k�1; : : : ; ur;k�nr;u ;pi);i = 1; : : : ;m: (6.7)Thus the system output is given byyk = ŷk + "k; (6.8)where "k onsists of a strutural deterministi error, aused by the model-realitymismath, and the measurement noise vk. The problem is to determine the setof models M = fMi = (gi(�);pi) j i = 1; 2; : : : ;mg, where gi(�) are unknownfuntions and pi are orresponding parameters vetors, whih have to be estimated.One of the best known of the riteria whih an be employed to selet themodel struture and to estimate its parameters is the Akaike Information Criterion(AIC) (Walter and Pronzato 1997), where the following quality index is minimizedJAIC(Mi) = 12j(Mi(p̂i)) + 1nT dimpi; (6.9)where j(Mi(pi)) = ln det nTXk=1 "k"Tk ; (6.10)p̂i = argminpi j(Mi(pi)) are obtained using the identi�ation data set of nT pairsof input/output measurements6.4.2. The GP approahIn order to adapt GP to system identi�ation it is neessary to represent themodel (6.7) as a tree, or a set of trees. Indeed, the MISO NARX model an beeasily put in the form of a tree, and hene to build the MIMO model (6.7) it isneessary to use m trees. The funtion set F an be hosen in the form (6.3), theterminal set is given byT = fŷ1;k�1; : : : ; ŷ1;k�n1;y ; : : : ; ŷm;k�1; : : : ; ŷm;k�nm;y ;u1;k�1; : : : ; u1;k�n1;u ; : : : ; ur;k�1; : : : ; ur;k�nr;ug:The remaining problem is to selet appropriate lags in the input and output signalsof the model. For that purpose, it is possible to assume that eah ny = nu = n.



6. Geneti programming approah to the FDI system design 151Thus the problem redues to �nding, throughout experiments, suh n for whihthe model is the best replia of the system.If the terminal and funtion sets are given, populations of GP individuals(trees) an be generated, i.e. the set M of possible model strutures is reated.The algorithm works on a set of populations P = �Pi j i = 1; : : : ;m	. Eah ofthe above populations Pi = �bij j j = 1; : : : ; �	 is omposed of a set of � trees bij .Thus, the GP searhes onurrently eah model Mi (i = 1; : : : ;m) of the set Musing m-th independent populations Pi of � trees.Sine the number of populations is given, the GP algorithm an be started(initiation) by randomly generating individuals (see setion 1.2.2), i.e. � indi-viduals are reated in eah population whose trees are of a desired depth nd.Using (6.9), all onsidered models are estimated, estimation of the parametervetor p of eah individual is performed, aording to (6.10) using the ARS algo-rithm. If the model seleted satis�es the prespei�ed requirements, the algorithmis stopped. In the seond step, the seletion proess is applied to reate a newintermediate population of �parent individuals�. For that purpose, various ap-proahes an be employed, e.g. proportional seletion, rank seletion, tournamentseletion (Koza 1992, Mihalewiz 1996). The seletion method used in this workis the tournament seletion. The individuals for the new populations (the nextgeneration) are produed through the appliation of rossover and mutation. Toapply rossover, random ouples of individuals whih have the same position ineah population are formed. Then, with a probability �, eah ouple undergoesrossover, i.e. a random rossover point (node) is seleted and then the orrespond-ing sub-trees are exhanged. Mutation is implemented so that for eah entry ofeah individual, a sub-tree at a seleted point is removed with probability �m andreplaed with a randomly generated tree.The GP algorithm is repeated until the best suited model satis�es the prespe-i�ed requirements ��P(t)�, or until the number of maximum admissible iterationshas been exeeded. It should also be pointed out that the simulation programmemust ensure robustness to unstable models. This an be easily attained when (6.10)is bounded by a ertain maximum admissible value. This means that eah indi-vidual whih exeeds the above bound is penalized by stopping the alulation ofits �tness, and then Jm(Mi) is set to a su�iently large positive number. Thisproblem is espeially important in the ase of input-output representation of thesystem. Unfortunately, the stability of the models resulting from this approahis very di�ult to prove. However, this is a ommon problem with non-linearinput-output models. To overome this problem, an alternative state-spae modelstruture is presented in the subsequent setion.Another reason for using state-spae models in fault diagnosis tasks is thatthis kind of models an be employed together with robust observers, whih makesit possible to inrease the reliability of the entire FDI system by minimizing thein�uene of model unertainty. This is, however, impossible to perform with thenon-linear input-output model struture.



152 6.4. Input/output representation of the system via the GPTab.6.1. Spei�ation of the proess variablesF51_01 Thin juie �ow at the inlet of the evaporation stationF5102 Steam �ow at the inlet of the evaporation stationLC5103 Juie level in the �rst setion of the evaporation stationP5103 Vapour pressure in the �rst setion of the evaporation stationP5104 Juie pressure at the inlet of the evaporation stationT5106 Input steam temperatureT5107 Vapour temperature in the �rst setion of the evaporation stationT5108 Juie temperature at the outlet of the �rst setion ofthe evaporation stationTC5105 Thin juie temperature at the outlet of the heater6.4.3. System identi�ation based on the data from the sugar fatoryThe real data from an industrial plant were employed to identify the input-outputmodel of the hosen part of the plant. The plant to be onsidered is the evaporationstation at the Lublin Sugar Fator S. A. (Poland) (Edelmayer 2000). Fig. 6.8shows the sheme of the plant with all available proess variables. These proess
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BxFig. 6.8 . The sheme of the evaporation station.variables are desribed in Tab. 6.1. The model to be obtained is the vapour model(f. Fig. 6.8): the input and output vetors: uk = (T5107), yk = (P5103). Thedata used for the training and test sets were olleted, from two di�erent shifts, inNovember 1998. The data from the �rst one were used to the identi�ation andthe data from the seond one formed the validation data set. Unfortunately, thedata turned out to be sampled too fast (the sampling rate was 10s). Thus, every
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Fig. 6.9 . The system (solid line) and model (dashed line) output for the identi�ation(left) and validation (right) data sets.10-th value was piked, after proper pre�ltering, resulting in the 700-th elementsidenti�ation and validation data sets. After this the o�set levels were removedwith the use of MATLAB Identi�ation Toolbox.6.4.3.1. The vapour modelThe objetive of this setion is to design the input-output vapour model usingGP tehnique. The parameters used during the identi�ation proess are: theprobability of the orssover � = 0:8, the probability of the mutation �m = 0:01,the population size � = 200, the initial depth of trees nd = 10, F = f+; �; =g. Thebest model struture obtained is given byŷk = ((p2uk�2 + p1ŷk�2)u2k�1 + (p5uk�2ŷk�1 + p6u2k�2 + p3ŷ2k�1+p4ŷk�1uk�2 + p9)uk�1p7uk�2ŷ2k�1 + p8ŷk�1u2k�2)=(p10ŷk�1+p11ŷ2k�1 + p12ŷk�1uk�2 + p13): (6.11)The response of the model obtained for both the identi�ation and validationdata sets are given in Fig. 6.9. The omparative study performed for the ARXand GP (NARX) models shows that the GP model is superior to the ARX models(Witzak and Korbiz 2000). From this results it an be seen that the introdutionof the nonlinear model has signi�antly improved modelling performane.The main drawbak to the GP-based identi�ation algorithm onerns itsonvergene abilities. Indeed, it seems very di�ult to establish the onvergeneonditions whih an guarantee the onvergene of the proposed algorithm. On theother hand, many examples treated in the literature, f. (Esparia-Alazar 1998,Gray et al. 1998, Koza 1992) and the referenes therein, as well as the authors'experiene with GP (Witzak et al. 2002) on�rm its partiular usefulness, in
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Fig. 6.10 . The average �tness for the 50 runs of the algorithm.spite of the lak of the onvergene proof. In the ase of the presented example,the average �tness (mean-squared output error for the identi�ation data set),Fig. 6.10, for the 50 runs of the algorithm on�rms the modelling abilities of theapproah.Moreover, based on the �tness attained by eah of the 50 models (resultingfrom 50 runs) it is possible to obtain the histogram representing the �tness valuesahieved (Fig. 6.11) as well as the �tness's on�dene region. Let � = 0:99 denotethe on�dene level then the orresponding on�dene region an be de�ned as�Jm 2 ��jm � t� sp50 ; �jm + t� sp50� (6.12)where �jm = 1:89 and s = 0:64 denote the mean and standard deviation of the�tness of the 50 models, t� = 2:58 is the normal distribution quantile. Aordingto (6.12), the �tness's on�dene region is �Jm 2 [1:65; 2:12℄, whih means thatthere is 99% of probability that the true mean �tness �Jm belongs to this region.On the other hand, owing to the multimodal properties of the identi�ation index,it an be observed (Fig. 6.11) that there are two optima resulting in models ofdi�erent quality. However, it should be pointed out that, on average (Fig. 6.10),the algorithm onverges to the optimum resulting in models of better quality. Theonvergene abilities of the algorithm an be further inreased by the appliationof various parameter, e.g.: �, �m, ontrol strategies (Eiben et al. 1999).The above results on�rm that, even if there is no onvergene proof, theproposed approah an be suessfully used to takle the nonlinear system identi-�ation problem.
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Fig. 6.11 . The histogram representing the �tness of 50 models.6.5. Choie of the gain matrix for the robust non-linear observervia the GP6.5.1. Problem formulationConsider a non-linear disrete systemxk+1 = f (xk;uk;wk) ;yk = h (xk;vk) ; (6.13)where uk is the input, yk is the output, xk is the state, wk and vk represents theproess and measurement noise, and h(�), f (�) are non-linear funtions.The problem is to estimate the state xk of the system (6.13), where a set ofmeasured inputs and outputs and the model of the system are given. The lassialmethods using di�erent kinds of an approximation are often applied (Andersonand Moore 1979, Korbiz and Bidyuk 1993) and an be given as followsx̂k = x̂�k + K k"�k ;"�k = yk � h (x̂k;0) ; (6.14)where "�k denotes a priori output error, x̂k is the state estimate and K k is thegain matrix.The gain matrix K k of the observer (6.14) an be searhed by various methods(e.g.: the Kalman �lter (wk and vk are assumed to be independent, white, andwith normal probability distribution), the Luenberger's observer et.) whih, in



156 6.5. Choie of the gain matrix for the robust non-linear observer via the GPlarge majority of them, onsist of onstant elements. In our approah the gainmatrix is omposed of ertain funtions, i.e. eah entry of the gain matrix isa funtion, whih depends on the a priori output error and the system input.Therefore, it an be written as followsx̂k = x̂�k + K k �"�k ;uk� "�k : (6.15)Thus , the main goal is to obtain an appropriate form of K k �"�k ;uk� based ona set of measured outputs and inputs and the mathematial model of the system.Even if the mathematial model is unertain and/or the initial state is far fromits expeted it seems possible to obtain suh K k �"�k ;uk� to ensure the best �tnessto the real system. For that purpose, the GP tehnique is exploited, where thegain matrix is obtained o�-line from a randomly reated population by means ofevolutionary proess.6.5.2. Proposed algorithmAs it was mentioned in the previous setion, eah entry of the gain matrix is afuntion, and it an be represented easily as a tree in the sense of the GP formalism.It is important to note that the gain matrix onsists of a list of trees. In order toapply the GP algorithm (Setion 1.2.2) the sets of terms T and operators F mustbe de�ned: T = f"�k ;ukg F = f+;�; �; =g:Next, a �tness riterion must be determined. It is assumed that the �tness of thegain matries an be represented by a sum of normalized output errors (i.e., thesmaller sum the better �tness), whih an be obtained by the following algorithm(Witzak et al. 1999)A: Set an initial a priori estimate x̂�0 and set k = 0, s = 0.B: Measurement update"�k = yk � h �x̂�k ;0� ;x̂k = x̂�k + K k �"�k ;uk� "�k ;ŷk = h (x̂k;0) ;s = s+ � (yk � ŷk) :C: Time updatex̂�k+1 = f (x̂k;uk;0)If k = nT then STOP else set k = k + 1 and go to STEP 1.Where ŷk denotes the system output estimate, � : D ! IR+ [ f0g, where D is theoutput spae (e.g., � (yk � ŷk) = (yk � ŷk)2), nt Ts the number of data points,and s is the sum of normalized output errors.The struture of the algorithm used to obtain the gain matrix an be desribedas follows (Witzak et al. 1999)



6. Geneti programming approah to the FDI system design 157A: Initiation1. Choose n0d, �, �m, nmax, x̂�0 , smin, np, and set n = 0.2. Create a random population of the gain matries�K 0i = RANDOM(T ;F) j i = 1; 2; : : : ; �	 ;(eah entry in the gain matrix has an initial length (a number of nodes)n0d).B: Calulate �tnessUsing �tness alulation algorithm, for eah gain matrix in the populationompute the sum of normalized output errorsfKni ! sni j i = 1; 2; : : : ; �g ;if min fsni j i = 1; 2; : : : ; �g < smin then STOP.Set nbest : snnbest = min fsni j i = 1; 2; : : : ; npg.C: Seletion fKni j i = 1; 2; : : : ; �g ! �Kn+1i j i = 1; 2; : : : ; �	where the probability of being extrated is proportional to the �tness.D: CrossoverFor eah entry in eah gain matrix, repeat:1. selet random independent ouples of the same entries in the gain matri-es (Kn+1i;j;k ;Kn+1i;j;l ), where i, j denote the (i; j)-th entry, k; l 2 [1; : : : ; �℄;2. for eah ouple, selet a random rossover pointlross 2 U(2;minflength(Kn+1i;j;k ); length(Kn+1i;j;l )g);3. exhange the sub-trees of the ouple with probability �.E: Mutation1. For eah entry in eah gain matrix, selet a random mutation pointlmut 2 U(1; length(Kn+1i;j ));2. remove a sub-tree at the seleted point lmut and replae it with a ran-domly generated tree with probability �m;3. If n = nmax � 1 then STOP else set n = n+ 1 and go to step B.where U denotes the uniform distribution, n0d is the initial length of the trees,� and �m are the rossover and mutation probabilities, respetively, nmax is themaximum number of iterations, lross and lmut are realization of random indepen-dent variables with the uniform distribution (the rossover and mutation points),smin is the desired �tness value, nbest is the index of the most �ttest gain matrixand � is the population size.



158 6.5. Choie of the gain matrix for the robust non-linear observer via the GP6.5.3. Illustrative experimentTo illustrate the methodology of non-linear observers designing, onsider a seondorder disrete system desribed by equations (Witzak et al. 1999)x1;k+1 = � �ax1;kx2;kx2;k + b � x1;k�+ x1;k ;x2;k+1 = � ��dax1;kx2;kx2;k + b + (� x2;k)uk�+ x2;k;yk = (x1;k + e)x2;k + vk; (6.16)where x1;k,x2;k denote states, yk is the output, vk is a realization of the randomindependent variable representing the measurement noise, uk is the input signal,a, b, , d, and e are system's parameters and � is the sampling period.The input signal is given byuk = 0:07 sin(0:31�k) + 0:38:The output measurement is orrupted by a noise vk with normal distributionN(0; 0:0002). The nominal values of the model parameters are equal to a = 0:55,b = 0:15,  = 0:8, d = 2:0, e = 0:01 and � = 0:5. The initial state is x0 =(0:21; 0:37) for the system to be observed, and x̂�0 = (2:1; 1:6) for the observer.For the sake of omparison, a usual Extended Kalman Filter (EKF) with thesame initial ondition x̂�0 is employed. Moreover, parameters eploited during anevolution of the gain matries are: n0d = 30, � = 40, smin = 0:001, � = 0:5,�m = 0:0001. The population was learned over a sample of nT = 200 simulatedmeasurements.As shown in Fig 6.12, the estimated state x2 approahes the real state for theproposed observer but not for the EKF. Further simulation results have shown thatthe proposed observer has a larger domain of attration that the EKF, i.e., theinitial estimation error may be larger. As it was mentioned, even if the initial stateestimate is known there is still a problem of a model unertainty, e.g. parameterunertainty.Reonsider the non-linear system (6.16) and assume that the values of themodel parameters are slightly modi�ed: a = 0:53, b = 0:17,  = 0:78, d = 2:0,e = 0:0099, and other parameters are the same as previously.For the sake of omparison, it is assumed that the initial a priori state estimateis lose to the real state so as to ensure the stability of the EKF, i.e. x̂�0 = 1. Asshown in Fig. 6.13, that state estimation error ek = xk � x̂k is loser zero for theproposed observer that for the EKF. Further simulation results have shown thatthe proposed observer is less sensitive to the model unertainty that the EKF.
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Fig. 6.12 . The real state x2 (solid line) and its estimates obtained by the proposedobserver (left) and the EKF (right)
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160 6.6. The GP approah to state spae representation of the system6.6. The GP approah to state spae representation of the sys-tem6.6.1. Design of state spae modelsLet us onsider the following lass of nonlinear disrete-time systemsxk+1 = g(xk;uk) +wk;yk+1 = Cxk+1 + vk: (6.17)Assume that the funtion g(�) has the formg(xk;uk) = A (xk)xk + h(uk): (6.18)Thus, the state-spae model of the system (6.17) an be expressed asx̂k+1 = A (x̂k)x̂k + h(uk);ŷk+1 = C x̂k+1: (6.19)Without loss of generality, it is possible to assume thatA (x̂k) = diag[ai;i(x̂k) j i = 1; 2; : : : ; n℄: (6.20)The problem redues to identifying nonlinear funtions ai;i(x̂k); hi(uk) (i =1; : : : ; n), and the matrix C . Assuming maxi=1;:::;n jai;i(x̂k)j < 1 it an be shown(Witzak et al. 2002) that the model (6.19) is globally asymptotially stable. Thisimplies that ai;i(x̂k) should have the following strutureai;i(x̂k) = tanh(si;i(x̂k)); i = 1; : : : ; n; (6.21)where tanh(�) is a hyperboli tangent funtion, and si;i(x̂k) is a funtion to bedetermined.In order to identify si;i(x̂k); hi(uk) (i = 1; : : : ; n), and the matrix C the GPalgorithm desribed in setion 6.4 is applied. The �tness funtion is de�ned by(6.9).6.6.2. The apparatus modelLet us onsider the system desribed in Setion 6.4.3. The objetive of this setionis to design the state-spae apparatus model,uk = (T5106; TC5105; F5101; F5102), yk = (T5108) (Tab. 6.1), aording to theapproah desribed above. The parameters used in the GP algorithm are the sameas in Setion 6.4.3.1. The best model struture obtained is given byx̂1;k+1 = tanh(s1;1) + h1(uk);x̂2;k+1 = tanh(s2;2) + h2(uk); (6.22)
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Fig. 6.14 . The system (solid line) and model (dashed line) output for the identi�ation(left) and validation (right) data sets.where s1;1 = �0:13x̂2;k; s2;2 = x̂2;kx̂1;k(x̂2;kx̂1;k + 2x̂22;kx̂21;k + 1) ;h1(uk) = (u1;k + (u1;k + 2u4;k + u4;ku1;k)(u1;k + u4;k + u3;k++u4;ku1;k))u3;k + u3;k + (u1;k + (u1;k + u4;k + u3;k++u4;ku1;k)(u1;k + u4;ku3;ku1;ku4;k + u2;k + 2u4;k));h2(uk) = u1;k + u2;k;and C = [0:21 � 10�5; 0:51℄:The response of the model obtained for both the identi�ation and validationdata sets is given in Fig. 6.14. The omparative study for the linear model andthe GP model has been performed in (Witzak et al. 2002). from this results itan be seen that the proposed nonlinear state-spae model identi�ation approahan be e�etively applied to various system identi�ation tasks. The average�tness (mean-squared output error for the identi�ation data set), Fig. 6.15, forthe 50 runs of the algorithm on�rms the modelling abilities of the approah.As previously, based on the �tness attained by eah of the 50 models (resultingfrom 50 runs) it is possible to obtain the histogram representing the �tness valuesahieved (Fig. 6.16) as well as the �tness's on�dene region. Aording to (6.12),the �tness's on�dene region is �Jm 2 [0:06; 0:78℄ (for: s = 0:2, �jm = 0:07), whihmeans that there is 99% of probability that the true mean �tness �Jm belongs tothis region. Similarly to the previous setion, it an be observed (Fig. 6.16) thatthere are two optima in the spae of models. However, on average, the algorithmis onvergent to the optima resulting in models of better quality.
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6. Geneti programming approah to the FDI system design 1636.7. GP approah to the EUIO design6.7.1. Problem formulationLet us onsider a lass of nonlinear system desribed by the following equationsxk+1 = g(xk) + h(uk + L1;kfk) + Ekdk;yk+1 = C k+1xk+1 + L2;k+1fk+1; (6.23)where g(xk) is assumed to be ontinuously di�erentiable with respet to xk, fkstates for the fault signal, dk is the unknown input, and L1;k , L2;k , and Ek aretheir distribution matries. Similarly to EKF (Anderson and Moore 1979), theUnknown Input Observer (UIO) (Chen and Patton 1999) an be extended to thelass of nonlinear systems (6.23). This leads to the following struture of theExtended UIO (EUIO) (Witzak et al. 2002):x̂k+1=k = g(x̂k) + h(uk);x̂k+1 = x̂k+1=k + H k+1"k+1=k + K 1;k+1"k; (6.24)Witzak et al. (2002) performed a omprehensive onvergene analysis with theLyapunov method. As a result they obtained the following onditions�� (�k) � 1 = � (A k )�� (A k ) 0� (1� �)� (Pk)�� �A 1;kP0kA T1;k�1A 12 : (6.25)and �� (�k � I)� 2 =  � �C Tk �� (C k )�� �C Tk � �� (C k ) � (Rk )�� �C kPkC Tk + Rk�! 12 : (6.26)where Pk is the state estimate ovariane matrix, andH k+1 = Ek �(C k+1Ek )T C k+1Ek ��1 (C k+1Ek )T : (6.27)A k = �g(xk)�xk ����xk=x̂k : (6.28)Bearing in mind that �k is a diagonal matrix, the above inequalities an beexpressed asmaxi=1;:::;n j�i;k j � 1 and maxi=1;:::;n j�i;k � 1j � 2: (6.29)Sine (Chen and Patton 1999)Pk = A 1;kP0kA T1;k + TkQk�1TTk + H kRkH Tk ; (6.30)



164 6.7. GP approah to the EUIO designit is lear that an appropriate seletion of the instrumental matries Qk�1 and Rkmay enlarge the bounds 1 and 2, and onsequently the domain of attration.Indeed, if the onditions (6.29) are satis�ed then x̂k onverges to xk.The problem is to obtain an appropriate form of the instrumental matriesQk�1 and Rk in suh a way as to ensure the onvergene of the observer or ade-quately to maximize the bounds of the diagonal elements of the matrix �k.First, let us de�ne the identi�ation riterion onsisting a neessary ingredientof the Qk�1 and Rk seletion proess. Sine the instrumental matries should behosen so as to satisfy (6.25), the seletion of Qk�1 and Rk an be performedaording to(Qk�1 ;Rk ) = arg maxq("k�1);r("k) jobs;1(q("k�1); r("k)); (6.31)where jobs;1(q("k�1); r("k)) = nt�1Xk=0 traePk: (6.32)On the other hand, owing to the FDI requirements, it is lear that the output errorshould be near zero in the fault free mode. In this ase, one an de�ne anotheridenti�ation riterion(Qk�1 ;Rk ) = arg minq("k�1);r("k) jobs;2(q("k�1); r("k)); (6.33)where jobs;2(q("k�1); r("k)) = nt�1Xk=0 "Tk "k: (6.34)Therefore, in order to join (6.31) and (6.33), the following identi�ation riterionis employed(Qk�1 ;Rk ) = arg minq("k�1);r("k) jobs;3(q("k�1); r("k)) (6.35)where jobs;3(q("k�1); r("k)) = jobs;2(q("k�1); r("k))jobs;1(q("k�1); r("k)) (6.36)6.7.2. Inreasing the onvergene rate via GPUnfortunately, an analytial derivation of the Qk�1 and Rk matries seems to bean extremely di�ult problem. However, it is possible to set the above matries asfollows Qk�1 = �1I, Rk = �1I, with �1 and �1 large enough. On the other hand,it is well known that the onvergene rate of suh an EKF-like approah an beinreased by an appropriate seletion of the ovariane matries Qk�1 and Rk , i.e.



6. Geneti programming approah to the FDI system design 165the more aurate (near �true� values) ovariane matries the better onvergenerate. This means that, in the deterministi ase (wk = 0 and vk = 0), both thematries should be zero ones. Unfortunately, suh an approah usually leads todivergene of the observer as well as other omputational problems. To taklethis problem a ompromise between onvergene and onvergene rate should byestablished. This an be easily done by setting the instrumental matries asQk�1 = �1"Tk�1"k�1I+ Æ1I;Rk = �2"Tk "kI+ Æ2I; (6.37)with �1, �2 large enough, and Æ1, Æ2 small enough. Although this approah isvery simple, it is possible to inrease the onvergene rate further. Indeed, theinstrumental matries an be set as followsQk�1 = q2("k�1)I;Rk = r2("k)I; (6.38)where q("k�1) and r("k) are nonlinear funtions of the output error "k (the squaresare used to ensure the positive de�niteness of Qk�1 and Rk ).Thus, the problem redues to identifying the above funtions. To taklethis problem the geneti programming an be employed. The unknown fun-tions q("k�1) and r("k) an be expressed as a tree. In the ase of q(�) and r(�)the terminal sets are T = f"k�1g and T = f"kg, respetively. In both the ases,the funtion set an be de�ned as F = f+; �; =; �1(�); : : : ; �l(�)g, where �k(�) isa nonlinear univariate funtion, and onsequently the number of populations ism = 2. Sine the terminal and funtion sets are given, the approah desribedin Setion 6.4 an be easily adapted for the identi�ation purpose of q(�) and r(�)using the identi�ation riterion (6.36).6.7.3. State estimation and fault diagnosis of an indution motor using EUIOThe numerial example onsidered here is the �fth-order two-phase nonlinearmodel of an indution motor whih has already been the subjet of a large num-ber of various ontrol design appliations (see (Boutayeb and Aubry 1999) and thereferenes therein). Moreover, the above model, unlike the model of Setion 6.6.2,an be used by other researhers and hene a straightforward omparison to otherapproahes an be realized.



166 6.7. GP approah to the EUIO designThe omplete disrete time model in stator �xed (a,b) referene frame isx1;k+1 = x1;k + h(�x1k + KTr x3k +Kpx5kx4k + 1�Lsu1k) + 0:01d1;k;x2;k+1 = x1;k + h(�x2k +Kpx5kx3k + KTr x4k + 1�Lsu2k) + 0:01d1;k;x3;k+1 = x1;k + h(MTr x1k � 1Tr x3k � px5kx4k) + d1;k;x4;k+1 = x1;k + h(MTr x2k � px5kx3k � 1Tr x4k) + d1;k;x5;k+1 = x1;k + h( pMJLr (x3kx2k � x4kx1k)� TLJ );y1;k+1 = x1;k+1; y2;k+1 = x2;k+1: (6.39)where xk = (x1;k; : : : ; xn;k) = (isak; isbk;  rak;  rbk; !k) represents the urrents, therotor �uxes, and the angular speed, respetively. uk = (usak; usbk) is the statorvoltages ontrol vetor, p is the number of pair of poles, TL is the load torque.The rotor time onstant Tr and the remaining parameters are de�ned asTr = LrRr ; � = 1� M2LsLr ; K = M�LsL2r ;  = Rs�Ls + RrM2�LsL2r ; (6.40)where Rs, Rr and Ls, Lr are stator and rotor per-phase resistanes and indu-tanes, respetively, and J is the rotor moment inertia.The numerial values of the above parameters are as follows: Rs = 0:18 
, Rr =0:15 
, M = 0:068 H, Ls = 0:0699 H, Lr = 0:0699 H, J = 0:0586 kgm2, TL =10 Nm, p = 1, and h = 0:1 ms. The initial ondition for the observer andthe system are x̂k = (200; 200; 50; 50; 300) and xk = 0. The unknown inputdistribution matrix isEk = " 0:01 0 1 0 00 0:01 0 1 0 #T ; (6.41)and hene, aording to (6.27), the matrix H k isH k = " 1 0 100 0 00 1 0 100 0 #T ; (6.42)The input signals areu1;k = 300 os(0:03k); u2;k = 300 sin(0:03k): (6.43)



6. Geneti programming approah to the FDI system design 167The unknown input is de�ned asd1;k = 0:002 sin(0:5�k) os(0:3�k); 0:005 sin(0:01k); (6.44)and P0 = 103I.Moreover, the following three ases onerning the seletion of Qk�1 and Rk wereonsideredCase 1: Classial approah (onstant values),i.e. Qk�1 = 0:1, Rk = 0:1Case 2: Seletion aording to (6.37), i.e.Qk�1 = 103"Tk�1"k�1I+ 0:01I; Rk = 10"Tk "kI+ 0:01I; (6.45)Case 3: GP-based approahIn order to obtain the matries Qk�1 and Rk using the GP-based approah (Case3), a set of nt = 300 input-output measurements was generated aording to (6.39).As a result, the following form of the instrumental matries were obtainedQk�1 = �102"21;k�1"22;k�1 + 1012"1;k�1 + 103:45"1;k�1 + 0:01�2 I;Rk = �112"21;k + 0:1"1;k"2;k + 0:12�2 I: (6.46)The parameters used in the GP algorithm were the same as in Setion 6.4.3.1. Itshould be also pointed out that the above matries (6.46) are formed by simplepolynomials. This, however, may not be the ase for other appliations.Simulation results (for all the ases) are shown in Fig. 6.17. The numerial valuesof the optimization index (6.36) are as follows: Case 1 jobs = 1:49 � 105, Case 2jobs = 1:55, Case 3 jobs = 1:2 � 10�16. Both of the above results as well as theplots shown in Fig. 6.17 on�rm the relevane of the appropriate seletion of thegain matries. Indeed, as it an be seen, the proposed approah is superior to thelassial tehnique of seleting the instrumental matries Qk�1 and Rk .6.8. SummaryAlthough there are few appliations of evolutionary algorithms to fault diagnosissystems, a disussion of existing solutions and their possibilities as well as the pos-sibilities of further development have been presented in this hapter. Emphasis hasbeen put on geneti programming approahes to the residual generation moduledesign. In partiular, it has been shown how to represent various model struturesas a parameterized trees and how to identify their struture as well as to estimatetheir parameters. Both the input-output NARX and state-spae model struturesare presented. Moreover, it has been proven that the proposed state-spae model
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Fig. 6.17 . The state estimation error norm kekk2 for Case 1 (dash-dotted line), Case 2(dotted line) and Case 3 (solid line).identi�ation sheme provides asymptotially stable models. The experimentalresults, overing models onstrution of hosen parts of an evaporation station atthe Lublin Sugar Fatory S.A., on�rm the reliability and e�etiveness of the pro-posed framework. The main drawbak to this approah is its omputational ostresulting in a relatively long identi�ation time. However, the model onstrutionproedure is as usual realized o�-line and hene the identi�ation time is not veryimportant.Another GP approah onerns the onept of the Extended Unknown Input Ob-server. It an be shown, with the use of the Lyapunov approah, that the onsid-ered fault detetion observer is onvergent under ertain onditions. Moreover, ithas been shown that an appropriate seletion of the instrumental matries Qk�1and Rk strongly in�uenes the onvergene properties. To takle the instrumen-tal matries seletion problem a geneti programming based approah has beenproposed. It has been shown, by an example with an indution motor, that theproposed observer an be a useful tool for both state estimation and fault diag-nosis problems of nonlinear deterministi systems. This is mainly beause of theonvergene properties of the observer whih on�rm its superiority to the lassialapproahes.



Chapter 7
CONCLUDING REMARKS

Sine the beginning of the human ivilization the tehnologial development hasbeen strongly inspired by the solutions existing in nature. A man building mod-els of observed phenomena wants to detet the priniples lying under them, and,simultaneously, searhes for methods and algorithms for his problems solving. Es-peially, one work of nature is worth notiing: the evolution. The evolution is thereative strength of the animated nature. Thanks to this proess the most inred-ible and ompliated organisms, whih are adapted to live in almost all, even themost extreme, onditions existing on Earth, have been reated. The evolution owesits power to its parallel proessing and soft seletion rules, whih, implementedin the algorithmi form, result in one of the most e�etive tool of ComputationalIntelligene.The appliability of EAs in global optimization tasks, both in the on-tinuous and disrete domain, is not questionable. Many instanes of suess-ful EA implementations are published every year (f. (Bäk 1995, Bäk etal. 1997, Galar 1990, Osyzka 2002, Shaefer 2002)). The main disadvantage ofEAs is their omputational omplexity that these algorithms are suggested to beoptimization methods of �the last resort�, when other, onventional, tehniqueshave disappointed.In this book, the emphasis is put on the ESSS algorithm, whih, thanks toits simpliity, seems to be a very attrative subjet for researh analyzing thebasi properties of the evolutionary onept in the global optimization problems.The simply seletion�mutation model ontains the prinipal idea of the phenotypeevolution (Chapter 1). Basing on this model, properties of di�erent tehniques ofnatural exploration have been tested and analyzed in details.Two lasses of exploration tehniques in EAs an be distinguish in the liter-ature: loal and global ones. The �rst lass is based on the idea that individuals�live� independently and separated and only the natural seletion and randommutation ontrol the evolutionary exploitation and exploration phenomena, re-spetively. This rule is aepted in almost all known implementations of EAs.Most of the solutions proposed in Chapter 2 possess a di�erent and original har-ater. Population evolve like a herd. It is subjet to the seletion and mutationmehanisms as well as to some form of intelligene � �herd instint� � whih on-trols some global behaviors. The trap test for the SVA, IP and DOF mehanisms



170 7. Conluding remarksas well as the FDM tehnique an be treated as some forms of this idea implemen-tations. However, the ideas of most mehanisms proposed in this book are known,but two of them: the erosion mehanism (ESSS-DOF) and the fored diretionof mutation (ESSS-FDM) are new. In the ESSS-DOF algorithm, the populationerodes a urrently oupied peak. Owing to this fat, already exploited areas arejust unattrative for the population, whih runs away toward new territories. Thismethod allows to searh the widest area of the domain in a given number of itera-tions in omparison with other onsidered tehniques. The ESSS-FDM algorithmhas been mainly proposed for adaptation tasks in non-stationary environments.Basing on it, the extremely e�etive learning method for the DMLP network hasbeen designed.The multi-dimensional Gaussian mutation is the most popular mutation teh-nique in evolutionary algorithms based on the �oating point representation of in-dividuals. In the ase of a one-dimensional mutation, the most probable loationof the o�spring is the nearest neighbourhood of the parent individual. But in thease of n-dimensional one, the most probable loation moves from the enter ofmutation to the �ring� of the radius proportional to the norm of the standard de-viation vetor, whih inreases with landsape dimension whenever the standarddeviation of eah entry is �tted.In reent years, the multi-dimensional Cauhy mutation has attrated a lot of re-searh attention. Evolutionary algorithms whih use the Cauhy mutations seemto be more e�etive in omparison to algorithms with the Gaussian mutation, inthe ase of most global optimization problems. But the multi-dimensional Cauhydensity funtion obtained as a produt of n independent one-dimensional Cauhydensity funtions is not isotropi. The onvergene of the density funtion shape tothe zero value is di�erent for di�erent diretions in the n-dimensional real spae.However, the non-spherial symmetry of the Cauhy mutation is well-known inthe statistial literature, the in�uene of the symmetry e�et on a phenotype evo-lutionary algorithm e�ieny needs detailed studies. The author has not foundany mention of the surrounding e�et, thus it is supposed that this problem is notommonly known. Both phenomenons are investigated in Chapter 3. Simulationexperiments prove that both e�ets are pro�table from the exploration propertypoint of view, but their exploitation abilities derease with the inrease of thelandsape dimension, espeially in the ase of narrow peaks. Proposed modi�edversions of the Gaussian and Cauhy mutation are deprived of this disadvantage.Evolutionary algorithms, espeially in their phenotype manner, are very inter-esting from eonomi analyzers point of view. There are many suggestions that soalled �free market� is subjet of the evolution priniple (Galar 1990). Simulationsof the simple phenotype evolution, like the ESSS algorithm, may be the soure ofthe information about eonomi trends and behaviors. The main harateristi ofthe �eonomi environment� is its non-stationarity and ontinual interation witheonomi entities. Reently, the problem of adaptation in the non-stationary en-vironments as well as the models of a population�environment interation seemto be very attrative for bigger and bigger number of researhes. The numberof publiation suessively inreases. Unfortunately, the diverse methodology and



7. Conluding remarks 171terminology ause most of results being not omparable. An analysis and lassi�-ation of these problems, review of the existing measures and some propositions ofnew ones are presented in Chapter 4. We hope, that they an bring better under-standing of the onsidered problem and optimization tool behavior, and thereforeprovide more satisfying results.The problem of the neural model designing is mainly onneted with two opti-mization proesses (see Chapter 5): a learning proess and an optimal arhiteturealloation. The nature of the both proesses is di�erent. The learning proess be-longs to a lass of global optimization in a multi-dimensional ontinuous domain.The spae of neural networks arhitetures is disrete and in�nite.In order to model a dynami systems, a dynami neural networks should be used.One of the most interesting solution is appliation a loally reurrent neural net-work: the DMLP. Suh a network is organized in the well-known MLP strutureand dynami is inluded in the partiular DNM units. Similarly to the lassialMLP, the DMLP allows to onstrut the learning algorithm based on the BP prin-iple: the Extended Dynami Bak-Propagation algorithm. This algorithm trainsthe weights of synapti onnetions as well as feedforward and feedbak parametersof IIR �lters ontained in eah DMN unit. The main disadvantage of the EDBPalgorithm is its loal manner. As well as all algorithms based on the �gradientdesent� method, the EDBP usually gets stuk in one of loal optima of a multi-modal mean square error funtion. Thus, the methods of global optimization, likeevolutionary algorithms, an improve the e�etiveness of learning proess.The disrete nature of the ANN arhitetures spae suggests that the methodsof disrete optimization are a proper tool for alloation of the optimal neuralmodel arhiteture. Four of them: Simulating Annealing, Geneti Algorithms, A?algorithm and Tabu Searh, are intensively studied in this book. Simulation ex-periments suggest that the A? algorithm seems to be the most attrative tool foroptimization of the DMLP arhiteture. All experiments prove that the e�ienyof the optimal arhiteture searhing algorithms is strongly dependent on the ef-�ieny of the learning method, the result of whih in�uenes a quality index ofa given arhiteture. If obtained set of trained network parameters is only a loaloptimal solution and far of the global one, the information about a quality of aonsidered network arhiteture an be falsi�ed.The last part of this book illustrates the appliability of EAs in the one of themost important domains of the modern industrial proesses: the fault diagnosis.Presented examples prove that appliation of the EA tehnique, in partiular theGP method, to design of FDI systems signi�antly improve their e�etiveness,espeially in the ase when a non-linear dynami system is diagnosed.The following is a onise summary of the ontribution provided by this workto the evolutionary omputing theory and appliation:� Proposes a new mehanism, alled trap test, whih allows to detet the endof the ative phase of the evolutionary proessing and to apply proedures,whih aelerate the exploration ability of the ESSS algorithm.� Presents a onept of a population�environment interation in the form the



172 7. Conluding remarkserosion tehnique (ESSS-DOF). This proedure prevents a ylially visitingof neighbouring peaks by a population.� Introdues a new modi�ed version of Gaussian mutation (applied in theESSS-FDM algorithm) with the nonzero expetation vetor, whih is parallelto the latest population drift.� Formulates and experimentally analyzes the geographially loal seletionoperator.� Investigates the in�uene of the surrounding and symmetry e�ets of theGaussian and Cauhy mutations on the e�etiveness of phenotype EAs. Pro-poses and analyzes modi�ed version of Gaussian and Cauhy mutation de-prived above e�ets.� Systematizes problems of the adaptation in non-stationary environments tak-ing into aount both the problem spei�ation and intensity of an environ-ment hanges riteria.� De�nes two new measures for algorithms proessing in the non-stationaryenvironments: the �aeptability� and �aeptability distane�, whih rewardalgorithms keeping the adaptation proess on an aeptable level.� Develops, basing on the ESSS-FDM algorithm, the on-line evolutionarylearning method for the DMLP network.� Proposes a asade-redution sheme for the geneti algorithm and simu-lated annealing approah, based on the diret representation, to the ANNarhiteture optimization.� Extends the digraph representation of the spae of MLP strutures, proposedby Doering et al. (Doering et al. 1997), to the digraph representing the spaeof DMLP arhitetures.� Investigates the appliability of the SA, A? and Tabu Searh algorithmsto the DMLP arhiteture optimization through searhing the digraph ofDMLP strutures.� Systematizes existing appliation of the EAs in the FDI systems, and alsoproposes possible diretions of this task development.� Shows how to represent various model strutures as a parameterized treesand how to identify their struture using the GP algorithm as well as toestimate their parameters.� Presents the methodology of the input-output MIMO NARX and asymp-totially stable state-spae models design using above version of the GPapproah.� Basing on the fat that instrumental matries strongly in�uene the on-vergene properties of the Extended Unknown Input Observer, proposes theGP approah to the these matries seletion problem.



A Saddle rossing problem
In this book the saddle rossing problem is de�ned as follows. Let us onsider thesum of two Gaussian peaks
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174 �s(x) = exp�� 5 nXi=1 x2i�+ 12 exp�� 5�(1� x1)2 + nXi=2 x2i��; (A1)where n is the landsape dimension. The funtion �s(x) is omposed of twoGaussian peaks. The lowest one possesses its optimum at the point (1; 0; : : : ; 0).The global optimum is loated at the point (0; 0; : : : ; 0).It was assumed that the saddle is rossed by the population if the mean valueof the �rst entry taken over all elementshx1i = 1n nXk=1 �xk�1 < s � 0:42; (A2)it means that most individuals are loated on the higher peak (Fig. A.2).The initial point of searhing for the algorithm tested is hosen in the loaloptimum of the funtion �s(x). If the population did not rossed the saddleduring a given proessing time tmax, then, in order to alulate �, the rossingtime is �xed to tmax.



B Benhmarks for the global optimization problem
Funtion f1 � sum of two Gaussian peaks. (Fig. A.1)f1(x1; x2) = exp(�x21 � x22) + 12 exp(�(x1 � 1)2 � x22); (B1)
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