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Notation

Symbols

N set of natural numbers
R set of real numbers
Sym(m) set of all symmetric m×m matrices
NND(m) set of all symmetric, nonnegative definite m×m matrices
PD(m) set of all symmetric, positive definite m×m matrices
t time
x spatial coordinate
ϑ, ϑ̂ unknown parameter vector and its estimate, respectively
m dimension of parameter space
d number of model outputs
ξN ( · ) exact design of an experiment
ξ( · ) continuous design of an experiment
Id d× d identity matrix
0d d× d zero matrix
∆1( · ) T-optimality criterion
N total number of measurements
n number of support points
p vector of design weights
M analytical model
ε measurement error
ε numerical tolerance

Operators and functions

η model response
E expectation
col[ · , . . . , · ] column vector
Diag[ · , . . . , · ] diagonal matrix with given diagonal entries
Cov covariance
Var variance
trace(A) trace of matrix A
det(A) determinant of matrix A
‖ · ‖ Euclidean norm
supp ξ support of a measure ξ
φ( · ) variance prediction function
ψ( · ) sensitivity function



Notation 9

Given a function g defined on a set Y , we write

Arg min
y∈Y

g(y) =
{

y ∈ Y : g(y) = min
y∈Y

g(y)
}

,

i.e., Arg min
y∈Y

g(y) consists of all the y’s that attain the minimum of g over Y . We

will use the symbol
arg min

y∈Y
g(y)

to denote any element of Arg min
y∈Y

g(y). The same convention will apply to maxima.

Abbreviations

ARS Adaptive Random Search
DPS Distributed Parameter System
FIM Fisher Information Matrix
MCMC Monte Carlo Markov Chain
MPI Message Passing Interface
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SIP Semi-Infinite Programming
SMP Symmetric Multi-Processing
SQP Sequential Quadratic Programming
W-F Wynn-Fedorov



Chapter 1

INTRODUCTION

There are many situations where accurate statistical models of real systems are
desirable. For example, engineers often require models for prediction or control
purposes (Goodwin and Payne, 1977; Żak, 2003; Bryson, 1999; Bryson, 2002; Burl,
1999; Bertsekas, 2000; Banks and Kunisch, 1989; Banks et al., 1996; Królikowski,
2004). Other areas of applications include chemistry, pharmaceutics, ecology, eco-
nomics, biology and sociology, cf. e.g., the monographs by (Schittkowski, 2002;
Burnham and Anderson, 2002; Pilling and Seakins, 1995).

Mechanistic models can often be obtained from physical reasoning. But if a
process is not fully known, there may be several plausible models. Then a properly
designed experiment can help in discriminating between the competing models.
However, the ability to obtain an accurate model is limited by the presence of
random fluctuations such as unmeasurable disturbances and measurement errors.
Hence, careful consideration of the error variability while designing the experiment
is crucial for model discrimination. Experimental designs for measurements leading
to efficient and precise estimation of the parameters and also for discrimination
between models have been developed for simple models. An introduction is in
Chapters 18–20 of (Atkinson and Donev, 1992), with a fuller survey by (Atkinson,
1992).

For dynamic systems, the design of the experimental conditions so that the
experiment is maximally informative includes a choice of input and measurement
ports, test signals, sampling instants, presampling filters, and some parameters
such as temperature, pressure, etc., cf. (Goodwin and Payne, 1977; Królikowski
and Eykhoff, 1985; van de Wal and de Jager, 2001; Uciński, 2005; Patan, 2004;
Spall, 2003). Although a substantial literature has accumulated on the theory
of optimum experimental design and numerous results have been applied with
great success in practice over the last three decades (Atkinson and Donev, 1992;
Fedorov, 1972; Fedorov and Hackl, 1997; Kiefer and Wolfowitz, 1959; Pázman,
1986; Pukelsheim, 1993; RafajÃlowicz, 1996; Walter and Pronzato, 1997; Müller,
1998; Schwabe, 1996; Silvey, 1980; Cox and Reid, 2000; Zarrop, 1979; Antony,
2003), much still has to be done, especially in the context of discriminating among
different candidate models of dynamic systems (especially systems described by
ordinary or partial differential equations) for multivariate data, where there are
few useful results. The problem arises when there are two or more rival models and
the purpose of the experiment may be to determine which, if any, of the models
are adequate. The practical potential of the corresponding results could hardly be
overestimated.
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Various design criteria for discrimination between models were considered by
(Box and Hill, 1967; Atkinson and Fedorov, 1975a; Atkinson and Fedorov, 1975b;
Fedorov and Khabarov, 1986; Ponce de Leon and Atkinson, 1991; Felsenstein,
1992; Burke et al., 1994; Müller and Ponce de Leon, 1996; Stewart et al., 1998).
The criterion, called T-optimality, introduced by (Atkinson and Fedorov, 1975a)
and then extended in (Atkinson and Fedorov, 1975b) in a single response case,
has attracted our attention as it has an interesting statistical interpretation as the
power of a test for the fit of a second model when the first one is true.

In this dissertation we consider T-optimum designs for discrimination between
two and more rival multi-response models with observations corrupted by normally
distributed noise with zero mean and a known covariance matrix which may depend
on time and/or unknown parameters. We assume that the observations are not
correlated in time, but we admit of correlations among different responses. The
T-optimality criterion was generalized for this case in (Uciński and Bogacka, 2005;
Uciński and Bogacka, 2004) and its use leads to solving a maximin problem. In
the context of chemical kinetics considered therein, the design factors are the
sampling strategy and experimental conditions such as temperature or the initial
concentrations of reactants. Both affect the accuracy of model discrimination.
Clearly, the inclusion of a variety of experimental conditions complicates both the
mathematical and computational problem of finding an optimum design. However,
their inclusion is very important in applications.

A further difficulty is that the model functions may be given only implicitly,
as solutions, usually numerical, to a system of ordinary, differential-algebraic or
partial differential equations. To overcome all these difficulties, necessary and
sufficient conditions for optimality are usually formulated. These constitute a
generalization of the well-known Equivalence Theorem (Atkinson and Fedorov,
1975a; Atkinson and Fedorov, 1975b; Atkinson and Donev, 1992; Fedorov and
Hackl, 1997). They can be applied when checking potentially optimal designs.

Identification of the correct dynamic model is a process consisting of several
stages, which include data collection, fitting and diagnostic checking. The fitting
and checking may not lead to a unique conclusion if the observations are taken
in parts of the regression region and under the experimental conditions which
suit more than one model. (Box and Hill, 1967) illustrate this problem for a
catalytic reaction which may be consistent with four different mechanisms. They
say “Unfortunately, it is easy to collect data that are well fitted by a large number
of different models. Different research groups commonly claim widely varying
mechanisms for the same mechanical system”. Hence, a planning stage should
precede the data collection. For each specific dynamic system the data collection
needs to be especially designed (tailor-made). It is not really possible to find
a common design which would suit a wide range of dynamic systems, though,
procedures based on general theoretical results can be proposed for calculating
the designs for model discrimination for some classes of models.

The results presented in this dissertation are in general form and they can
be directly applied to various deterministic dynamic systems which constitute our
primary motivation to study T-optimal designs. These systems are continuous-
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time models and we are specifically interested in their largest class given in terms of
ordinary differential equations. To be specific, we consider two competing models
described by the following (possibly nonlinear) equations:

M` :
dv`(t)

dt
= f`(t, v`(t), ϑ`), v`(0) = v0, ` = 1, 2, (1.1)

where t is time, v` stands for a vector-valued function v` : T → Rd (also called the
state), T = [0, tf ] for a given tf , ϑ` ∈ Θ` denotes a vector of constant unknown
parameters, v0 signifies the vector of initial state values, and known functions f` are
required to be continuous, Θ` being a given set. Note that (1.1) defines implicitly
mappings η` : T × Θ` → Rd such that η`( · , ϑ`) coincides with the solution v`( · )
for any fixed ϑ`, ` = 1, 2.

The solutions of mechanistic models (1.1) give the expectations of the two
competing statistical models, where random errors of observations are included.
Discrimination between models M1 and M2 based on an experimental design is
equivalent to discrimination between two statistical models (Uciński and Bogacka,
2005):

S` : yij = η`(ti, ϑ
(0)
` ) + εij , j = 1, . . . , ri, i = 1, . . . , n, ` = 1, 2, (1.2)

where the observations yij ∈ Rd are taken at discrete times t1, . . . , tn, η` being a
solution of the differential equations for some prior values ϑ

(0)
` of the parameters

ϑ`, ri denoting replications of the observations. This leads to the question of
how to select an appropriate sampling strategy. A serious complication here is the
presence of unknown parameter vectors ϑ`. They have to be estimated (if not given
a-priori) and one of several possible approaches is to design an experiment for both
estimation of ϑ` and discrimination between the models (Atkinson, 1992; O’Brien
and Rawlings, 1996). In this dissertation we are interested in model discrimination
where one of the models is assumed to be known completely and the parameters of
the other model are to be estimated. Another complication is that the relationship
η` is defined implicitly through the solution of the ordinary differential equation,
but this obstacle is only of minor importance due to the availability of extremely
efficient solvers performing numerical integration of vector differential equations.

For example, chemists often deal with multi-response data in experimental
studies of chemical reactions. An important special class of the corresponding
nonlinear models is that in which the responses are described by a system of
ordinary differential equations. These models are used very frequently in chemical
kinetics (Bates and Watts, 1988) and constitute a wide class of dynamic systems.
Parameter estimation methods for such chemical kinetic models are relatively well-
developed (Bard, 1974; Seber and Wild, 1989; Schittkowski, 2002). But, as in other
dynamical systems, here too, several alternative models are often proposed for the
same physical phenomenon. We then wish to conduct experiments that would
enable us to select the ‘best’ model, i.e., the one that best fits the data. Each one
of these models implicitly attempts to predict the responses as functions of time
and parameters.
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As an example of this type, consider two chemical reactions: a reaction where
substance A changes into substance B, which in turn changes into substance C,
but the first part of the reaction may be reversible, that is

A
k
(1)
1­

k
(1)
3

B
k
(1)
2→ C, (1.3)

with rate constants k
(1)
1 , k

(1)
2 and k

(1)
3 (for the rate of the reverse reaction) and a

very similar, but irreversible process

A
k
(2)
1→ B

k
(2)
2→ C, (1.4)

with rates k
(2)
1 and k

(2)
2 .

The first part of (1.3) is an opposing reaction where the reverse reaction
may often be questionable. Enzyme catalysis provides examples of such complex
reactions where an enzyme (E) forms a complex (ES) with a substrate (S) which
then reacts to form product (P) and also regenerates the enzyme:

E + S ­ ES → P + E, (1.5)

see Chapter 8 of (Pilling and Seakins, 1995). In many chemical systems the reverse
reaction is often neglected, when it is a very slow one, resulting in a simpler
consecutive model (1.4). Whether this a right thing to do may be examined using
a model discrimination technique. In this dissertation we provide such a technique
for this kind of models. However, the presented results are general and can be
applied to other dynamic systems as well.

The concentrations of any, or all, of the reactants can be measured. The
changes in concentrations are governed by ordinary differential equations. The
first competing model is given implicitly, as a solution of the system

M1 :





d[A]
dt

= −k
(1)
1 [A]λ

(1)
1 + k

(1)
3 [B]λ

(1)
3 , [A]t=0 = a0,

d[B]
dt

= k
(1)
1 [A]λ

(1)
1 − k

(1)
2 [B]λ

(1)
2 − k

(1)
3 [B]λ

(1)
3 , [B]t=0 = b0,

d[C]
dt

= k
(1)
2 [B]λ

(1)
2 , [C]t=0 = c0,

(1.6)

where [A], [B] and [C] are concentrations of chemical compounds A, B and C as
functions of time t, and a0, b0 and c0 stand for initial reactant concentrations. The
λ

(1)
i ’s denote the reaction orders. Similarly, the second model is given implicitly

by

M2 :





d[A]
dt

= −k
(2)
1 [A]λ

(2)
1 , [A]t=0 = a0,

d[B]
dt

= k
(2)
1 [A]λ

(2)
1 − k

(2)
2 [B]λ

(2)
2 , [B]t=0 = b0,

d[C]
dt

= k
(2)
2 [B]λ

(2)
2 , [C]t=0 = c0,

(1.7)
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The parameters k
(`)
i and λ

(`)
i are unknown and they are estimated from the

experimental data. Each of the models (1.6) and (1.7) covers a wide class of
chemical reactions. This is due to allowing for any orders λ

(`)
i . The systems of

differential equations in such a case do not have analytical solutions and, to our
knowledge, they have received little attention in the statistical literature. Designs
for estimation of the model parameters were calculated for the second model by
(Atkinson and Bogacka, 2002) and some approach to discriminate between M1

and M2 was outlined in (Uciński and Bogacka, 2005).
Suppose that we already have estimates ϑ̂1 = (k̂(1)

1 , k̂
(1)
2 , k̂

(1)
3 , λ̂

(1)
1 , λ̂

(1)
2 , λ̂

(1)
3 )T

(obtained e.g. from a preliminary experiment) for the respective parameters k
(1)
i

and λ
(1)
i , i = 1, 2, 3, in model (1.6). We argue that model M1 in (1.6) with the

estimated parameters is correct, but at the same time we wish to test this assertion
against the one saying that the alternative model M2 in (1.7) is true, where the
vector of parameters ϑ2 = (k(2)

1 , k
(2)
2 , λ

(2)
1 λ

(2)
2 )T belongs to a known set Θ2.

Clearly, such model discrimination should be based on additional experimental
observations. The experiment consists therefore in measuring the concentrations
of A, B and C after the reaction had been running for a time t. One experimental
run yields one three-element observation vector yi (measurements of concentrations
[A], [B] and [C]) and the experimental design is a list of N times ti, i = 1, . . . , N ,
N =

∑n
i=1 ri, not necessarily distinct, at which measurements are to be made.

The aim at this point is to discriminate between the competing models. The simple
model is often preferred even though a more complex model is bound to give a
better fit to the data. This preference is tied up with some vague notion of model
cost effectiveness, but this may be difficult to quantify in practical situations. The
problem is compounded by the fact that it will be seldom, if ever, the case that
the true mechanism corresponds to any of the models under study (Goodwin and
Payne, 1977). Here we adopt an approach based on the T-optimality criterion
which has been used since the mid-seventies for single-response models (Atkinson
and Fedorov, 1975a; Atkinson and Fedorov, 1975b). A working assumption in
this method is that one of the competing models, M1 or M2, is the true model,
its number and the corresponding parameters being all known. Although this
may seem to be a somewhat abstract problem, the properties of the designs thus
obtained are useful in real situations, as indicated by (Atkinson and Fedorov,
1975a), when neither the true model nor its parameter values are known.

Consequently, with no loss of generality, we can assume that M1 is true,
i.e., that the true response η( · ) coincides with η1( · , ϑ̃1), where ϑ̃1 is regarded as
known before the experiment (this value could be obtained on the basis of some
preliminary experiment). Then, to design an optimal experiment for discrimina-
tion between M1 and M2 means to select the measurement points t1, . . . , tn so as
to maximize the minimum of the sum of squares for the lack of fit of the second
model:

∆1 = min
ϑ2∈Θ2

n∑

i=1

pi‖η(ti)− η2(ti, ϑ2)‖2, (1.8)

where pi = ri/N, i = 1, . . . , n. In a linear model, the power of the F-test for
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departures from the true model is an increasing function of ∆1 (Atkinson and
Fedorov, 1975a). Furthermore for normally distributed errors and large N , ∆1

is proportional (in mean) to the ratio of the likelihoods associated with both the
models.

In spite of the seemingly simple and intuitively clear form of the criterion (1.8),
its efficient numerical maximization has still been remaining an insoluble problem,
which discourages researchers from attempts to use T-optimum experimental de-
signs in practice. This is surprising and an even more confounded nuisance today,
when new software and hardware tools provide capabilities for intricate analysis of
many difficult performance aspects of systems. These analysis models can be cou-
pled with numerical optimization software to generate better designs iteratively.
Such tools have dramatically increased in sophistication, and engineers are called
to cope with highly complex problems. This was a main stimulus to prepare this
dissertation.

Our main goal was to develop the background needed to solve com-
putational problems and to provide efficient numerical methods of con-
structing T-optimum designs for dynamic processes described by ordi-
nary and partial differential equations.

The success of such an attempt depends strongly on how well the design
problem has been formulated for optimization study, and on how familiar the
designer is with the workings and pitfalls of iterative optimization techniques.
Raw computing power is unlikely to ease this burden of knowledge.

A starting point for this project was the work by (Atkinson and Fedorov,
1975a) who proposed an algorithm for generating approximations to T-optimum
designs, which has remained since then the only known computational tool in this
context. But the major drawback of the method was the lack of its convergence
analysis. In fact, the method, as it was formulated, was not globally convergent,
cf. (Fedorov and Hackl, 1997). The obvious task of the present research was thus
to look closely at Fedorov’s algorithm. This resulted in the formulation of a family
of methods which combine some features of the original Fedorov method and, at
the same time, possess global convergence properties.

The work outlined in this dissertation is intended to develop the underlying
theory and to construct efficient numerical procedures for determining optimal
experimental designs for discriminating between several rival multiple response
nonlinear models. The proposed solutions have been tested on practical process
engineering examples, thereby indicating their potential applications in numerous
disciplines. The following is a concise list of detailed objectives:

1. The most difficult aspect of the structure discrimination problem is to obtain
a meaningful criterion. Thus the very first objective is to introduce appropri-
ate optimality criteria and characterize the corresponding optimal solutions.
Atkinson and Fedorov (1975) introduced designs for discriminating between
single response models and (Uciński and Bogacka, 2005) generalized those
results to the multiresponse framework. In our programme we will further
extend this work to various application-driven situations, e.g., design for
distributed parameter systems or for fault detection in dynamic processes.
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2. We are also interested in providing sequential design algorithms. Initially,
some known algorithms, which are efficient in the single response case, will be
generalized to the multiple response case and to dynamic systems. In addi-
tion, recent advances in semi-infinite optimization will be exploited in order
to make the computation process much more efficient. What is more, a flex-
ible relaxation algorithm RATO will be proposed and its global convergence
in a finite number of steps will be proven. Such an approach constitutes a
major novelty which has not been considered yet in optimum experimental
design.

3. In order to test the proposed methods, various frameworks and applications
to process engineering examples will be considered, thus validating the prac-
tical usefulness of the proposed approach. The problems to be considered
include optimization of observation policies regarding chemical kinetics of re-
actions, optimization of air quality monitoring networks, and fault detection
and isolation for distributed parameter systems.

4. Based on methods elaborated in the dissertation, several portable computer
programs and software packages have been developed in Fortran 95 using the
IMSL numerical library and Matlab for calculation of optimum designs for
selected classes of dynamic systems. These serve not only to demonstrate
the algorithms and the underlying principles but also they might be used
as a basis for implementation of expert systems supporting experimenters
dealing with complex environmental and industrial processes.

The outline of the dissertation structure is as follows:
In Chapter 2 we give a brief introduction to modern optimum experimental

design. The presented material is oriented so as to make the reader familiar with
basic notions and technicalities developed within the framework of optimum design
for parameter estimation.

In Chapter 3 we present a general set-up of the multi-response model dis-
crimination problem and the necessary and sufficient conditions for the optimality
of a design, i.e., the so-called equivalence theorem. The T-optimality criterion
is defined and its properties are exhaustively studied. The usefulness of the in-
corporated equivalence theorem is presented on a few examples when analytical
solutions can be found.

In Chapter 4 we present our main result, namely the numerical algorithms
developed to solve the T-optimum design problem. Particularly, a novel relaxation
algorithm RATO is presented and its convergence in a finite number of steps is
proved. Moreover, a thorough analysis of additional numerical problems associ-
ated with the RATO scheme is presented, including a proposition of appropriate
regularization for non-smooth functions being optimized. Also, the possibility of
using Semi-Infinite Programming to obtain T-optimum designs is delineated. Sev-
eral numerical examples are presented to illustrate the effectiveness of the outlined
approaches.

Chapter 5 deals with some additional extensions to the basic T-optimum de-
sign problem. In particular, the convergence of the Wynn-Fedorov type algorithm



1. Introduction 17

is studied for the newly proposed DT-optimum criterion which provides a rea-
sonable balance between model discrimination and parameter estimation. What
is more, the problem of T-optimum designs on finite design spaces is described
including numerical algorithms to solve it. Also the adaptation of RafajÃlowicz’s
selective random search technique for T-optimum designs is presented. Finally,
a way to parallelize the Wynn-Fedorov algorithm is outlined which constitutes a
very promising result in the context of applications.

Chapter 6 presents some systematic approaches based on T-optimum exper-
imental design and oriented towards applications. First, the problem of discrimi-
nation between several competing models is investigated. Then, a very useful con-
cept of the replication-free designs is considered in the context of discrimination
between models. Finally, the problem of optimum sensor location for discrimina-
tion between models of distributed parameter systems is considered, also in the
context of fault detection in industrial processes and correlated observation errors.

Conclusions are discussed in Chapter 7.



Chapter 2

AN OVERVIEW OF OPTIMUM EXPERIMENTAL
DESIGN THEORY

First problems of the broadly defined optimization of experimental efforts were
formulated almost a hundred years ago (Atkinson and Bailey, 2001). Generally,
optimum experimental design consists in determination of a “best” schedule of
taking observations of the investigated process or phenomenon in the sense of
minimizing some performance criterion or maximizing the confidence of detection
or discrimination.

As regards historical origins, the developed methods were mainly inspired by
real-world optimization problems which can be divided into two groups:

• agricultural or medical experiments,

• industrial experiments.

A typical example of a problem belonging to the former group is a clinical
trial, e.g., the problem consisting in comparing the effectiveness of a new drug with
placebo. Here special techniques of data processing such as blocking are usually
applied (this induces the notion of the so-called block designs) and a “design” is
also understood as a manner of handling available data (Bogacka, 1995; Gilmour
and Trinca, 2000) (in such a problem the treatment factors usually have both
qualitative and quantitative parts, and the resulting optimization problems are of
combinatorial nature). That kind of designs is, however, beyond the scope of this
dissertation. The reader interested in this area of research can be referred, e.g., to
the comprehensive monograph (Bailey, 2004) and the references given therein.

In most cases the methods of the second group are equivalent to optimum
design for regression performed for the parameter estimation of an assumed model
and originate from the ideas set forth by (Kiefer and Wolfowitz, 1959). Here
the design is understood as a collection of variables which completely determine
the strategy of taking measurements or observations of the investigated process
responses or states.

The main effort of this dissertation is concentrated on application of opti-
mum experimental design methods in structural identification which is under-
stood as discrimination between several competing models. However, to provide
the reader with basic ideas and concepts of designing experiments, first we present
a brief overview of the state of the art in that field for parameter estimation.
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It is justified by the fact that a majority of key ideas are common for both
the problems. Since the relevant theory is rather well known and the appro-
priate literature is abundant (Fedorov, 1972; Silvey, 1980; Pázman, 1986; Atkin-
son and Donev, 1992; Pukelsheim, 1993; RafajÃlowicz, 1996; Fedorov and Hackl,
1997; Müller, 1998; Cox and Reid, 2000; Walter and Pronzato, 1987; Walter and
Pronzato, 1997; RafajÃlowicz, 2006; Atkinson et al., 2001), including modern ap-
plications in the field of parameter estimation of distributed parameter systems
(Uciński, 1999; Patan, 2004; Uciński, 2005), we limit ourselves only to basic con-
cepts which will serve as an introduction to further considerations.

2.1. Optimum design for regression

2.1.1. Linear models

For the sake of simplicity, we introduce concepts of convex design theory based on
univariate models which are linear with respect to the unknown parameters. Such
models can be described by the following equation:

η(x, ϑ?) = (ϑ?)Tf(x) =
m∑

i=1

ϑ?
i fi(x), (2.1)

where ϑ? ∈ Rm stands for the true value of the vector of unknown but constant
parameters and f(x) = [f1(x), f2(x), . . . , fm(x)]T denotes the vector of known real-
valued basis functions fi(x), i = 1, . . . ,m which are continuous on a given compact
set X ∈ Rs. Additionally, we impose the restriction that f1(x), f2(x), . . . , fm(x)
must be linearly independent.

The output equation describing the measurements has the form

zi = η(xi, ϑ
?) + εi = (ϑ?)Tf(xi) + εi, i = 1, . . . , N, (2.2)

where xi ∈ X are the points at which the process response y is observed. The εi’s
constitute additive purely random Gaussian errors, i.e., they are zero mean and
independent of each other. The most common assumption about the variances of
disturbances εi is about their equality, that is to say,

Var(εi) = σ2 (2.3)

with a constant, but possibly unknown value of σ > 0. However, the variances
might as well be distinct:

Var(εi) = σ2(xi) = σ2%−1(xi), (2.4)

where σ > 0 is unknown and the sequence of positive values %(xi) is known and
can be interpreted as a relative accuracy of observations at particular points xi.
The xi’s are selected so as to satisfy

rank[f(x1), f(x2), . . . , f(xN )] = m, (2.5)



20 2.1. Optimum design for regression

which actually means that N ≥ m, i.e., the number of measurements must be at
least equal to the number of the estimated parameters.

Equation (2.2) can be alternatively rewritten in matrix form

y = FNϑ? + ε, (2.6)

where

y = [y1, y2, . . . , yN ]T,

ε = [ε1, ε2, . . . , εN ]T,

FN = [f(x1), f(x2), . . . , f(xN )]T.

The objective of parameter estimation is to find an estimate ϑ̂ ∈ Θad, Θad being a
set of admissible parameter values for the unknown true parameter vector ϑ?, based
on the set of process observations (2.2) such that the predicted response of the
model η is close enough to these process observations (in the sense of a given quality
measure). Here it is assumed that parameter estimates ϑ̂ are obtained by applying
the weighted least-squares criterion in the form (Seber and Lee, 2003; Montgomery
et al., 2001)

J (ϑ) =
1
2

N∑

i=1

wi

(
yi − ϑTf(xi)

)2
, (2.7)

where wi ≥ 0 constitute weighting coefficients, which yields

ϑ̂ = arg min
ϑ∈Θ

J (ϑ). (2.8)

The vector ϑ̂ thus obtained is called the weighted least-squares estimator. It is
natural to assume that wi = %(xi), i.e., to assign small weights to the points xi

where the variance of disturbances is relatively high.
If ϑ = Rm, it is an easy exercise to show that the necessary condition for the

optimality of ϑ̂ reduces to the system of linear equations

MN ϑ̂ = bN , (2.9)

where

MN = FT
NVNFN , bN = FT

NVNy, VN = Diag[%(x1), . . . , %(xN )]. (2.10)

MN is usually called the Fisher Information Matrix (FIM). Consequently, the
weighted least-squares estimate is

ϑ̂ = M−1
N bN = (FT

NVNFN )−1FT
NVNy (2.11)

provided that MN is not singular.
The least-squares criterion is only one of possible choices, but benefits from its

use, especially valuable properties of the obtained estimators (unbiasedness, i.e.,
E(ϑ̂) = ϑ?, and efficiency, i.e., minimal variance), provide persuasive arguments
to use it.

Also recall other important properties of the weighted least-squares estimator
(RafajÃlowicz, 2006):
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• If the disturbances satisfy the assumption (2.4) and the weights in (2.7) are
chosen such that wi = %(xi)/σ2, then the covariance matrix of the estimator
ϑ̂ is

Cov(ϑ̂) = E
[
(ϑ̂− Eϑ̂)(ϑ̂− Eϑ̂)T

]
= σ2M−1

N . (2.12)

• If the disturbances εi are Gaussian with zero mean and variance σ2, then the
estimator ϑ̂ is Gaussian with mean ϑ? and covariance matrix σ2(FT

NVNFN )−1.

• The estimator of the regression function at point x is given by η̂(x) = ϑ̂Tf(x).
It is unbiased and

Var(η̂(x)) = f(x)TCov(ϑ̂)f(x) = σ2f(x)TM−1
N f(x). (2.13)

Remark 1. The maximum likelihood method is a popular choice for many prac-
titioners (Seber and Wild, 1989; Bates and Watts, 1988). When we assume that
the i-th observation is characterized by a probability density function p(yi|xi, ϑ)
and that observations are independent of one another, the maximum likelihood
estimator has the form (Seber and Wild, 1989)

ϑ̂ = arg max
ϑ∈Θ

n∏

i=1

p(yi|xi, ϑ). (2.14)

As indicated in (Fedorov and Hackl, 1997), the results obtained in experimental
design theory when using least-squares estimators remain valid for the maximum
likelihood estimators, since both the approaches lead to the same structure of
the information matrix MN . Some additional comments concerning benefits and
drawbacks of using the least-squares criterion with further references can be found
in the comprehensive monographs (Seber and Wild, 1989; Bates and Watts, 1988;
Söderström and Stoica, 1988).

For any estimation method, it is obvious, that the applied observation strategy
(here it is understood by the sequence {xi} which we informally call the simplified
design of experiment and denote by ξN ) affects the “accuracy” of the obtained
estimates ϑ̂ (since for different sets ξN we obtain different covariance matrices
Cov(ϑ̂)). This allows us to formulate the problem of observation scheduling so as
to obtain “best” estimates of ϑ?. To this end, it is necessary to construct some
quality measure of observation schedules based on the accuracy of the parameter
estimates obtained from the observations. In the classical theory of optimum
experimental design such a measure is usually constructed based on the notion
of the Fisher Information Matrix (FIM) (Fedorov and Hackl, 1997; Walter and
Pronzato, 1997) which is defined as follows:

Mϑ = Ey|ϑ

{[
∂ log p(y|ϑ)

∂ϑ

]T
∂ log p(y|ϑ)

∂ϑ

}
. (2.15)

This is because, up to a constant, its inverse constitutes a lower bound of the
covariance matrix for the estimates Cov(ϑ̂). This fact is expressed by the so-called
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Cramér-Rao inequality which holds for any unbiased estimator ϑ̂ (Goodwin and
Payne, 1977; Söderström and Stoica, 1988):

Cov(ϑ̂) º M−1
N . (2.16)

In the linear case considered here, the inequality in (2.16) becomes an equality,
cf. (2.12). Note that the FIM (and its inverse) can be easily computed even in the
situations when the exact dispersion matrix of a given estimator is very difficult to
obtain. It is important to note that inequality (2.16) should be interpreted in terms
of the Löwner ordering of symmetric matrices, i.e., A º B means that A−B º 0
(i.e., A− B must be non-negative definite). Direct comparison of covariance ma-
trices or information matrices obtained for two different settings ξ1

N and ξ2
N can be

difficult and inconvenient, since usually such matrices are not comparable in the
sense of Löwner ordering (‘º’ imposes solely partial ordering of information ma-
trices). Thus, in order to compare different FIM’s, it is indispensable to introduce
the appropriate scalar performance index.

Before we present a family of such performance indices known in the literature,
we have to formally define the notion of the design of an experiment and get the
coresponding structure of the FIM.

2.1.2. Definitions of the experimental design

Definition 2.1. The table

ξN
def=

{
x1, x2, . . . , xn

p1, p2, . . . , pn

}
, (2.17)

where pi > 0, pi = ri/N ,
∑n

i=1 pi = 1, xi 6= xj for i 6= j,
∑n

i=1 ri = N , ri > 0
being the number of replicated observations at the location xi, is denoted by ξN

and called the normalized N -observation exact design of the experiment. The xi’s
now are said to be the design or support points. Each pi is called a weight and it
can be interpreted as a proportion of the whole experimental effort which should
be assigned to the corresponding support point xi.

Observe that pi = ri/N are non-negative rational numbers. If we relax this
condition and allow pi’s to be any non-negative reals which sum up to unity,
then we get an extremely useful generalization of the design, namely the so-called
approximate discrete design of experiment:

Definition 2.2. The approximate discrete (or, simply, approximate) design of the
experiment ξ concentrated at n support points is represented by the table

ξ =
{

x1, x2, . . . , xn

p1, p2, . . . , pn

}
, (2.18)

where the xi’s are elements of the design space X and the corresponding weights
satisfy the conditions

pi ≥ 0,

n∑

i=1

pi = 1. (2.19)
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We will denote by supp(ξ) the set of the support points {x1, . . . , xn}.
Conditions (2.19) allow us to treat ξ as a probability distribution on the set

{x1, . . . , xn}, i.e., we may interpret ξ as a discrete random variable which takes
values in the set {x1, . . . , xn} and whose probability mass function is defined by
the corresponding weights {p1, . . . , pn}.

The interpretation of the admissible designs as discrete probability distribu-
tions on finite subsets of X ameliorates to a great extent the tractability of the
optimum experimental design problem. Nevertheless, there still remain many tech-
nicalities which make the resulting calculus rather cumbersome. These difficulties
can be easily overcome by further widening the class of admissible designs to all
probability measures ξ over the design space X.

Definition 2.3. The approximate continuous (or, simply, continuous) design is
any measure ξ defined on the Borel sigma-field B(X) on X for which

ξ(X) =
∫

X

ξ(dx) = 1. (2.20)

The set of all continuous designs will be denoted by Ξ(X).

Clearly, the integration with respect to ξ in (2.20) is to be understood in the
Lebesgue-Stieltjes sense (Carter and van Brunt, 2000).

Note that a continuous design ξ can be non-zero on subsets of X consisting
of single points, i.e., a particular point x ∈ X may have a non-zero probability
mass attached to it. More information on this generalization of the design and
properties of continuous designs is introduced in Chapter 3.

2.1.3. Properties of Fisher Information Matrices

Based on (2.12) and (2.16), we can write down an expression defining the structure
of the information matrix corresponding to a particular exact design ξN . If we use
such a design and estimate parameters using the weighted least-squares method,
we have Cov(ϑ̂) = M−1

N (ξN ), where

MN (ξN ) = σ−2N

n∑

i=1

%(xi)pif(xi)fT(xi). (2.21)

In practice, it is customary to operate on the so-called normalized FIM

M(ξN ) =
σ2

N
MN (ξN ) =

n∑

i=1

%(xi)pif(xi)fT(xi) (2.22)

instead of MN (ξN ). We can then generalize the notion of the normalized infor-
mation matrix to the case when we identify continuous designs as probability
measures on X. Thus,

M(ξ) =
∫

X

%(x)f(x)fT(x) ξ(dx). (2.23)
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Information matrices for continuous designs possess the following properties
which make the further optimization easier (RafajÃlowicz, 2006):

• For each ξ ∈ Ξ(X) the FIM M(ξ) is symmetric and nonnegative definite,
and has dimension m×m, where m = dim (f(x)).

• The information matrix M(ξ) corresponding to a design ξ whose number of
support points is less then m is singular.

• For any approximate discrete design, the information matrix is additive,
i.e., it is the sum of information matrices that correspond to the individual
observations:

M(ξ) =
n∑

i=1

piM(xi), (2.24)

where M(x) = %(x)f(x)fT(x). This important property, which holds also
in nonlinear models, has significant meaning in practice, due to resulting
computational savings.

• The set Ξ(X) is convex. Thus, a convex combination of two designs ξ1 ∈
Ξ(X) and ξ2 ∈ Ξ(X) for 0 ≤ α ≤ 1 can be easily computed: ξ = (1−α)ξ1 +
αξ2 ∈ Ξ(X).
In particular, for

ξ1 =
{

x1
1, x1

2, . . . , x1
n

p1
1, p1

2, . . . , p1
n

}
(2.25)

and ξ2 concentrated at a single point x2,

ξ2 =
{

x2

1

}
, (2.26)

we have

ξ = (1− α)ξ1 + αξ2

=
{

x1
1, x1

2, . . . , x1
n, x2

p1
1(1− α), p1

2(1− α), . . . , p1
n(1− α), α

} (2.27)

if x2 6∈ supp(ξ1), and

ξ = (1− α)ξ1 + αξ2

=
{

x1
1, . . . , x1

i−1, x1
i ,

p1
1(1− α), . . . , p1

i−1(1− α), pi(1− α) + α,

x1
i+1, . . . , x1

n

p1
i+1(1− α), . . . , p1

n(1− α)

} (2.28)

if x2 coincides with x1
i for some i ∈ {1, . . . , n}.
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• Denote by M(X) the set of all information matrices (M(X) = {M(ξ) : ξ ∈
Ξ(X)}). If M1,M2 ∈ M(X) then also (αM1 + (1 − α)M2) ∈ M for each
0 ≤ α ≤ 1. Indeed, M1 and M2 belong to M(X) only if there exist designs
ξ1, ξ2 ∈ Ξ such that M1 = M(ξ1) and M2 = M(ξ2). Thus,

αM1 + (1− α)M2 = M [αξ1 + (1− α)ξ2] (2.29)

Since the set of all continuous designs is convex, (αξ1 + (1− α)ξ2) ∈ Ξ(X),
which implies M [αξ1 + (1 − α)ξ2] ∈ M(X), i.e., the set M(X) is indeed
convex.

• If the design region X is compact and the functions f( · ) and %( · ) are con-
tinuous on X, then the set M(X) is also compact (Pázman, 1986; Uciński,
2005). This property is of paramount importance, since it assures the exis-
tence of solutions to the problem of optimum experimental design.

• Let the assumptions of the last property remain valid. Then for each design
ξ ∈ Ξ(X) there exists an equivalent approximate discrete design ξ

′ ∈ Ξ(X)
such that M(ξ) = M(ξ

′
) and ξ

′
consists of at most m(m + 1)/2 + 1 distinct

support points. Moreover, if M(ξ) lies at the boundary of the set M(X),
then an equivalent approximate discrete design ξ

′
can be found containing

at most m(m + 1)/2 points. This property results from Carathéodory’s
Theorem (Silvey, 1980; Rockafellar, 1997).

2.2. Optimizing the design quality

In this section we present a few optimality criteria which are commonly used in
optimum experimental design to compare different designs.

2.2.1. Comparison of different designs

From the Gauss-Markov theorem (Caines, 1988) it is well known that the least
squares estimator is the best one in the whole class of linear unbiased estimators
in the sense of the Löwner ordering of the covariance matrices. Moreover, the
unbiased linear predictor ŷ(x) = ϑ̂Tf(x) of the regression function ϑTf(x) has
minimal variance in the same class.

The Gauss-Markov theorem is important, since we know that we cannot im-
prove the accuracy in the estimates by simply changing the method of data pro-
cessing. Thus we can:

• decrease the variance of disturbances σ2(x)%−1(x), which requires either
more precise measurement devices or multiple replication of the same ob-
servation and averaging,

• increase the number of measurements N , but usually it also increases the
total cost and time of performing of the experiment,
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• increase the experimental region X, but it is sometimes just impossible or
connected with additional costs.

If none of the above manners is applicable or we need a further increase in the
accuracy of the estimates, all possibilities reduce to an optimal selection of the
experimental design ξN provided that N and X are fixed and the variance of
observations cannot be decreased.

If the assumptions concerning the estimation method, model and noise struc-
ture made in Sec. 2.1.1 still hold, then it can be shown that the likelihood (confi-
dence) ellipsoid for parameter estimates of ϑ? has the structure

(ϑ− ϑ̂)TMN (ξN )(ϑ− ϑ̂) ≤ c, (2.30)

where c denotes some positive constant dependent on the number of observations
N , the number of parameters m, the estimated variance of disturbances and a
confidence level 0 < β < 1. The centre of such an ellipsoid is situated at the
point ϑ̂ and covers the region of the estimated parameters values with probability
β. Changes in the design ξ may influence the orientation of the axes and their
lengths. It is obvious that the “smaller” the ellipsoid (in an adapted sense), the
more accurate the parameter estimates and, consequently, the design for which
the ellipsoid is “smaller” is better. Below, we present some frequently used design
criteria motivated by various properties of the concentration ellipsoid, where ξ1 ¹
ξ2 denotes that a design ξ1 is not better than ξ2 in the sense of the criterion at
hand. Below, we follow the notation of (RafajÃlowicz, 2006).

• Evaluation based on the volume of the likelihood ellipsoid.
The volume of the ellipsoid (2.30) is proportional to

[
det(M−1(ξ))

]1/2. Thus,
based on the determinant of the covariance matrix, we regard the design ξ1

as no better than ξ2 when

ξ1
D¹ ξ2 iff det[M−1(ξ1)] ≥ det[M−1(ξ2)], (2.31)

where the letter ‘D’ is used as an abbreviation for determinant.

• Evaluation based on the average axis length of the likelihood el-
lipsoid.
The average axis length of the ellipsoid (2.30) is proportional to the trace of
M−1(ξ). Thus,

ξ1
A¹ ξ2 iff trace[M−1(ξ1)] ≥ trace[M−1(ξ2)], (2.32)

where the letter ‘A’ derives from the word average.

• Evaluation based on the average p-th power of the axis length.
The method constitutes a generalization of the previous one:

ξ1
Lp¹ ξ2 iff

(
trace[M−p(ξ1)]

)1/p ≥ (
trace[M−p(ξ2)]

)1/p
. (2.33)
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• Evaluation based on the linearly weighted mean.
The method is actually another generalization of the one based on the aver-
age length of the axes of the concentration ellipsoid:

ξ1
L¹ ξ2 iff trace[AM−1(ξ1)] ≥ trace[AM−1(ξ2)], (2.34)

where a non-negative definite matrix A is chosen a priori.

• Evaluation based on the maximum axis length of the likelihood
ellipsoid.
The length of the i-th axis is equal to

2
√

λi(M−1(ξ)), (2.35)

where λi( · ), i = 1, . . . , m denote the eigenvalues of its matrix argument.
Thus,

ξ1
E¹ ξ2 iff max

i
λi(M−1(ξ1)) ≥ max

i
λi(M−1(ξ2)), (2.36)

where the letter ‘E’ is used as an abbreviation for eigenvalue.

The foregoing designs are aimed at improving the accuracy of the parameter
estimates. Alternatively, one could be interested in design comparison with respect
to the quality of estimating the value of the regression function. For unbiased
estimators of y the accuracy of the estimates at a point x is measured using the
variance of prediction Var(ŷ(x)). This variance also depends on the employed
observation schedule (i.e., the design ξ). Indeed, setting ϕ(x, ξ) = Var(ŷ(x)), we
have

ϕ(x, ξ) = f(x)TM−1(ξ)f(x). (2.37)

Most popular functionals constructed based on the function ϕ(x, ξ) are listed be-
low:

• Extrapolation at point x0.
If a point x0 is given a priori and we are interested in a more accurate
estimation of the regression function value, then we can consider the following
choice:

ξ1 ¹ ξ2 iff ϕ(x0, ξ
1) ≥ ϕ(x0, ξ

2). (2.38)

• Evaluation based on the average variance of the output.
Since the variance function is non-negative, its integration gives information
about its average values. Thus, we could simply set

ξ1
Q

¹ ξ2 iff
∫

X

ϕ(x0, ξ
1) dx ≥

∫

X

ϕ(x0, ξ
2) dx. (2.39)

Note that this criterion is equivalent to (2.34) when we choose the matrix A
such that A =

∫
X

f(x)f(x)Tdx.
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• Evaluation based on the maximum variance of the output.
Here we base on the assumption that the quality of the design is measured
by the variance of the output at a point where ϕ(x, ξ) attains its maximum
value. Thus,

ξ1
G¹ ξ2 iff max

x∈X
ϕ(x, ξ1) ≥ max

x∈X
ϕ(x, ξ2). (2.40)

This idea of design ordering is strictly connected with (2.31) (cf. the next
section)

Remark 2. The designs for which ξ1 ¹ ξ2 and simultaneously ξ1 º ξ2 are said to

be equivalent. For example, for the ordering relation
D¹ this means the equal deter-

minants of their covariance (and also information) matrices for both the designs.
Generally, we say that two designs are equivalent in the problem of parameter
estimation of the regression function, and denote this fact by ξ1 ≡ ξ2, when

M(ξ1) = M(ξ2). (2.41)

2.2.2. Generic properties of design criteria

The idea of design ordering presented in the last section can be easily generalized.
Bearing in mind considerations presented at the end of Section 2.1.1, let Ψ denote
a scalar function defined on m×m information matrices and NND(m) denote the
set of all symmetric, non-negative definite m×m matrices. The general conditions
which the function Ψ : NND(m) → R must usually satisfy in order to be used as
an optimality criterion are as follows (Fedorov and Hackl, 1997):

• Homogeneity. For any α > 0 and matrix A ∈ NND(m) we have Ψ(αA) =
s(α)Ψ(A) where s denotes some real-valued, non-negative and nondecreasing
function. As a result, for a matrix MN (ξN ) of the form (2.21), we have

Ψ(MN ) = Ψ(Nσ−2M) = s(Nσ−2)Ψ(M), (2.42)

i.e., maximization of Ψ(MN ) amounts to that of Ψ(M).

• Monotonicity. For any matrices A,B ∈ NND(m) satisfying A º B we
have Ψ(A) ≥ Ψ(B).

• Concavity. For any 0 ≤ α ≤ 1 and A,B ∈ NND(m), we have

Ψ[(1− α)A + αB] ≥ (1− α)Ψ(A) + αΨ(B). (2.43)

• Differentiability. For any nonsingular matrix A ∈ NND(m) there exists

an m×m matrix
◦
Ψ(A) such that

◦
Ψ(A) =

[
∂Ψ(A)
∂aij

]
. (2.44)
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The introduction of an optimality criterion Ψ makes it possible to formulate
the problem of optimum experimental design for regression as an optimization one:
A design ξ? is called Ψ-optimum iff

ξ? = arg max
ξ∈Ξ(X)

Ψ(M(ξ)). (2.45)

The most popular choices of the corresponding criteria are listed below:

• D-optimality criterion
Ψ(M) = ln det(M), (2.46)

• A-optimality criterion

Ψ(M) = −trace(M−1), (2.47)

• E-optimality criterion
Ψ(M) = λmin(M), (2.48)

where λmin( · ) denotes the minimal eigenvalue of its matrix argument,

• The sensitivity criterion

Ψ(M) = trace(M). (2.49)

In contrast to the predecessors, this criterion does not possess a statistical
interpretation in the context of the likelihood ellipsoid. The name is moti-
vated by the fact that its maximization yields the increased sensitivity of the
outputs with respect to parameter changes.

Another class of criteria is formed by functions which refer to the variance
of the prediction of the system output (Dette and O’Brien, 1999). The most
important one is defined as follows:

• G-optimality criterion

Ψ(M) = −max
x∈X

{
f(x)TM−1f(x)

}
. (2.50)

We thus minimize the maximal variance of the prediction for the response.
This criterion is closely connected to the D-optimality one, as shown in the
sequel.

Now we present the fundamental result of the experimental design theory
for regression, i.e., Kiefer and Wolfowitz’s Equivalence Theorem. It reveals the
equivalence between D- and G-optimum designs and provides conditions which
allow us to check whether or not a design ξ? is D- or G-optimal. Moreover, it
plays a vital role in the construction of numerical algorithms used for finding
optimum designs.
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Theorem 2.1 (Kiefer-Wolfowitz). The following design problems are equivalent:
Find ξ? so that

1. ξ? = arg max
ξ∈Ξ(X)

det(M),

2. ξ? = arg min
ξ∈Ξ(X)

max
x∈X

ψ(x, ξ),

3. max
x∈X

ψ(x, ξ?) = m,

where ψ(x, ξ) = fT(x)M−1(ξ)f(x).

The relevant optimum design ξ? exists and we can always find an equivalent design
which is approximate discrete with at most m(m + 1)/2 support points. Moreover,
at all support points x?

i , i = 1, . . . , n of a purely discrete D-optimum design ξ? the
function ψ(x, ξ?) attains its maximum which equals the number of the estimated
parameters, i.e., ψ(x?

i , ξ
?) = m.

The proof of the above theorem, based on differential optimality conditions
for convex functions can be found in numerous monographs (Fedorov, 1972; Fe-
dorov and Hackl, 1997). There exists a generalized version of Theorem 2.1 which
gives optimality conditions for a general optimality criterion Ψ satisfying the as-
sumptions discussed at the beginning of this section (see, e.g., Theorem 2.3.2 from
(Fedorov and Hackl, 1997)). A lot of modifications of the above mentioned general-
ization, established for particular criteria exist, all being also called the equivalence
theorems.

Example 2.1. Using the Kiefer-Wolfowitz Theorem it is easy to show that the
design of the form

ξ? =
{−1, 1

1/2, 1/2

}
(2.51)

is D-optimal for the linear model η(x, ϑ) = ϑ1 + ϑ2x when the design region
is X = [−1, 1]. Indeed, since M(ξ?) = I2, the variance function has the form
ψ(x, ξ?) = 1 + x2 and attains its maximum value on X at the support points ±1.
Moreover, that maximum equals just the number of parameters m = 2.

2.3. Nonlinear models

A more complicated situation takes place when the considered system is not linear
with respect to the parameters. Now we replace the linear response function
ϑTf(x) by a possibly nonlinear response η(x, ϑ), where η : X × Θ → R and
Θ ⊂ Rm is the set of admissible parameters. On the analogy of (2.8), the least-
squares estimates of model parameters are

ϑ̂ = arg min
ϑ∈Θ

1
2

N∑

i=1

wi (yi − η(xi, ϑ))2 . (2.52)
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It is generally not possible to find a closed-form expression for ϑ̂ in most practical
situations. Moreover, the estimator (2.52) is generally biased (i.e., Eϑ̂ 6= ϑ?) and
except for special cases, it is extremely difficult to find an analytical expression
for the covariance matrix Cov(ϑ̂). To derive an approximation to the dispersion
matrix, it is customary to linearize the system response in the vicinity of a prior
estimate ϑ0 of the unknown parameter vector ϑ (Walter and Pronzato, 1997). If ϑ0

is close enough to the true value ϑ?, then the system response can be approximated
by expanding the function η(x, ϑ) in the Taylor series with respect to ϑ. Then,
retaining only linear terms, we have

η(x, ϑ) ∼= η(x, ϑ0) +
∂η(x, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ0

(ϑ− ϑ0) (2.53)

In this way we obtain a counterpart of the observation equation (2.2) for the
nonlinear case:

yi = η(xi, ϑ
0) +

∂η(xi, ϑ)
∂ϑ

∣∣∣∣
ϑ=ϑ0

(ϑ− ϑ0) + εi, i = 1, . . . , N. (2.54)

For wi = σ−2%(xi), the corresponding form of the Fisher Information Matrix being
analogous to (2.22) is

M(ξ) =
n∑

i=1

%(xi)g(xi)g(xi)T, (2.55)

where

g(x) =
(

∂η(x, ϑ)
∂ϑ

)T

ϑ=ϑ0

(2.56)

and is called the sensitivity vector. Its ‘continuous’ version corresponding to (2.23)
is

M(ξ) =
∫

X

%(x)g(x)g(x)T ξ(dx). (2.57)

It is clear that the information matrix (2.55) depends on the prior estimate
ϑ0 around which the model is linearized and is valid only when the approximation
(2.53) is accurate enough. In this sense the results obtained from such an approach
have only local character. However, it can be shown that, under rather mild
assumptions, the estimator (2.52) is strongly consistent (Seber and Wild, 1989),
i.e.,

a.s. lim
N→∞

ϑ̂ = ϑ?, (2.58)

where a.s. lim denotes the almost sure limit (convergence with probability one).
Thus, if both η(x, ϑ) and g(x) are continuous on X×Θ and X, respectively, then all
the results incorporated in the previous sections are directly applicable without
any changes. In particular, we substitute g(x) for f(x), e.g., the G-optimality
criterion takes the form

Ψ(M) = −max
x∈X

{
g(x)TM−1g(x)

}
. (2.59)
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2.4. Numerical approximation of optimum designs

First algorithms for finding numerical approximations to D-optimum designs were
presented at the beginning of the 1970s (Fedorov, 1972; Wynn, 1970). In the
literature they are collectively called the Wynn-Fedorov algorithm. Below we
present the idea and basic scheme of such a procedure in the case of non-linear
models.

2.4.1. Sequential construction of D-optimum designs

Assume that we have a design ξ0 such that det(M(ξ0)) > 0. Our goal is to find
a design ξ1 which will increase the value of the D-optimality criterion as much as
possible. Because of this, consider a set of designs (1−α)ξ0 +αξnew for 0 ≤ α ≤ 1
and ξnew being some design based on which we wish to improve (increase) the
value of det(M(ξ)). Then we can define the univariate function

ω(α) = Ψ
[
(1− α)ξ0 + αξnew

]
. (2.60)

Its right-hand derivative at 0 is given by

d
dα

Ψ
[
(1− α)ξ0 + αξnew

]∣∣∣∣
α=0+

= trace[M−1(ξ0)M(ξnew)]−m (2.61)

and indicates the ascent of the FIM determinant in the neighborhood of ξ0 when
we move into the direction of ξnew. The search for a convenient candidate ξnew

is a highly complex optimization problem per se, but we may restrict the class of
such designs to the ones concentrated at single points, i.e., the designs of the form
ξnew = { xnew

1 }, where xnew ∈ X. Then we have

d
dα

Ψ
[
(1− α)ξ0 + αξnew

]∣∣∣∣
α=0+

= %(xnew)gT(xnew)M−1(ξ1)g(xnew)−m, (2.62)

where g(x) is defined by (2.56).
Just as in the steepest-ascent method (Bertsekas, 1999), now the goal is to

find a point xnew ∈ X for which the value of %(xnew)gT(xnew)M−1(ξ1)g(xnew)
will be as large as possible. Consequently, such a choice of xnew leads to a locally
highest improvement in the value of the FIM determinant. This idea forms a basis
for the following algorithm.

2.4.2. Wynn-Fedorov algorithm for D-optimum designs

Algorithm 2.1 (Wynn-Fedorov algorithm for D-optimum designs).

Step 1: Choose an initial non-singular design ξ0 (thus it must include at least m
support points) and some positive tolerance ε ¿ 1. Set k = 1.

Step 2: Find
xk = arg max

x∈X
ψ(x, ξk), (2.63)
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where
ψ(x, ξ) = %(x)gT(x)M−1(ξ)g(x). (2.64)

Step 3: If ψ(xk, ξk) ≤ m(1 + ε), then ξ? = ξk, STOP. Otherwise, go to Step 4.

Step 4: Choose an appropriate value of αk with 0 ≤ αk ≤ 1 and compute the
convex combination of designs:

ξk+1 = (1− αk)ξk + αkδ(xk) (2.65)

where δ(xk) is the design concentrated at xk, i.e., δ(xk) =
{

xk

1

}
.

Set k ← k + 1 and go to Step 2.

The choice of the sequence αk is not unambiguous. It can be shown that in
the considered case of single-response systems, the optimum value (assuring the
highest improvement in the D-criterion value) along the line joining ξk with δ(xk)
is given by (Fedorov, 1972; Fedorov and Hackl, 1997)

αk =
ψ(xk, ξk)−m

(ψ(xk, ξk)− 1)m
. (2.66)

When a generalization to multi-response systems is considered, the choice of an
optimum αk value necessitates a line-search procedure (e.g., the simple golden
search (Patan, 2004)). Another common choice is simply setting (Wu and Wynn,
1978)

αk =
1

k + 1
. (2.67)

In general, αk can be chosen using any sequence satisfying the conditions:

lim
k→∞

αk = 0,

∞∑

k=0

αk = ∞,

∞∑

k=0

(αk)2 < ∞. (2.68)

Step 2 constitutes the most critical part of the algorithm, since it involves a
search for a global optimum of a multi-modal function. There exist many modifi-
cations of this basic scheme which aim at reducing the total computational cost.
An interesting approach, called the selective random search, was presented in
(RafajÃlowicz, 1998; RafajÃlowicz, 2006). The idea relies on the observation that,
given ξk, the sensitivity function ψ(x, ξk) after a suitable normalization can be
treated as a probability distribution function on the design region X. Thus, in-
stead of looking for xk = arg max

x∈X
ψ(x, ξk), we generate its approximation as a

random number sampled from this distribution and satisfying ψ(x, ξk) > m.
The presented algorithm belongs to the group of first-order methods, exploit-

ing information only about the gradient of the target function. In practice, support
points close to the optimum ones are selected relatively fast (during a few up to a
dozen or so iterations) but a precise weight determination takes much more time.
Thus, it is worth to speed up this process by additionally optimizing weights during
each iteration of the Wynn-Fedorov procedure. A helpful procedure is described
below.
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2.4.3. Sequential algorithm for designs on a finite set X

There exists a modified version of the Wynn-Fedorov scheme which is suited
for constructing D-optimum designs on a finite set of distinct support points
given a priori. Here, however, we describe a much faster multiplicative algo-
rithm (Titterington, 1976; Silvey et al., 1978; Pázman, 1986; Pukelsheim and
Torsney, 1991).

Assume that we have n fixed points x1, . . . , xn. Then, the design ξ ∈ Ξ(X),
where X = {x1, . . . , xn}, is determined by the set of weights p1, . . . , pn such that∑n

i=1 pi = 1. Then consider the following mapping T which transforms the design
ξ into ξ′ = T (ξ) by modifying only the weights in such a way that

p′i = pi
ψ(xi, ξ)

m
, i = 1, . . . , n. (2.69)

Observe that the Kiefer-Wolfowitz theorem implies that for the optimum design
ψ(xi, ξ

?)/m = 1, i = 1, . . . , n. Therefore the weight vector of the optimum
design ξ? constitutes a fixed point of the mapping T . We can prove the global
convergence of the following algorithm (Pázman, 1986; Uciński, 2005):

Algorithm 2.2 (Weight optimization algorithm for D-optimum designs).

Step 1: Choose an initial non-singular design ξ0 such that p0
i > 0, i = 1, . . . , n.

Select ε ¿ 1, some positive tolerance. Set k = 0.

Step 2: If ψ(xi, ξ
k) ≤ m(1 + ε), i = 1, . . . , n, then set ξ? = ξk and STOP.

Step 3: Calculate the design ξk+1 by modifying the weights of ξk as follows:

pk+1
i = pk

i

ψ(xi, ξ
k)

m
, i = 1, . . . , n. (2.70)

Set k ← k + 1 and go back to Step 2.

This algorithm can be further improved by on-line elimination of points which
fail a special test based on ellipsoidal trimming introduced to identify support
points having no chance to be included in an optimal design (Pronzato, 2003).

2.5. Summary

The material contained in this chapter is aimed at introducing the reader to some
elements of modern optimum experimental design. It will be extensively used in
the next parts of this dissertation, since the methodologies of characterizing and
numerically determining T-optimum designs were introduced in the mid-1970s by
drawing an analogy with those for smooth criteria, such as the D-optimality one.
This constitutes perhaps a main reason for the reported problems with the adopted
Wynn-Fedorov scheme, cf. (Fedorov and Hackl, 1997), which have been tolerated
since the seminal paper by (Atkinson and Fedorov, 1975a). In the sequel, we shall
show that the T-optimum criterion requires a special treatment and conceive new
efficient algorithms for its maximization.



Chapter 3

DESIGN OF EXPERIMENTS TO DISCRIMINATE
BETWEEN RIVAL MODELS

A major problem in the optimum experimental design theory is connected with
structure identification (Burnham and Anderson, 2002; Söderström and Stoica,
1988). It is a common situation in modelling real processes that we obtain sev-
eral plausible models and we wish to discriminate between them. An optimally
designed experiment allows us for certainty maximization of such discrimination.
It also minimizes experimental effort, which is a valuable property when the mea-
surements are expensive or difficult to collect.

3.1. Problem set-up

In the following, we consider a basic scheme when two concurrent models of a
static multi-response process are of interest. This corresponds to the situation in
which observations yij are given by

yij = η(xi) + εij , j = 1, . . . , ri, i = 1, . . . , n, (3.1)

where the function η : Rs → Rd constitutes the true model of the process. In this
description xi stands for a setting of the vector x ∈ X ⊂ Rs of independent vari-
ables (the so-called explanatory or regressor variables), e.g., a time instant and/or
a spatial coordinate of a measurement, xi 6= xκ whenever i 6= κ, X being some
known compact set. The terms εij represent random fluctuations and possibly
errors of measurement resulting from inaccuracies in the measuring devices. The
errors εij are sampled from a distribution satisfying

E
[
εij

]
= 0, E

[
εijε

T
κ`

]
=

{
σ2Id if i = κ and j = `,

0d otherwise,
(3.2)

where Id is the d× d identity matrix, 0d is the (d× d)-dimensional matrix of zeros
and σ2 is a constant positive variance. Without loss of generality, in the theoretical
developments we can take σ2 to be unity.

The additional index j is necessary if the observations are to be repeated sev-
eral times for some settings xi, as in practice repeated experimental runs typically
lead to different observed responses. Here the number of replications for a given
setting xi is denoted by ri and we have

∑n
i=1 ri = N .
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The xi’s are called control variables because they can be chosen by the ex-
perimenter. They define process conditions and may vary from observation to
observation (in (3.1) we thus have n different settings denoted by x1, . . . , xn).

Our basic assumption is that the model response η(x) coincides with either
η1(x, ϑ1) or η2(x, ϑ2), where Rd-valued, possibly nonlinear, functions η1 and η2

are given a priori, ϑ1 ∈ Θ1 ⊂ Rm1 and ϑ2 ∈ Θ2 ⊂ Rm2 being constant parameters
which are fixed but unknown to the experimenter (Θ1 and Θ2 denote some known
compact sets).

The purpose of the experiment is to determine which of the models η1 and
η2 is true. This goal can be realized using the approach based on the notion of
T-optimality (on which we are focus in the main part of the dissertation).

As is well known (Fedorov and Hackl, 1997; Walter and Pronzato, 1997), cf.
also (2.52), the least-squares estimates of the parameters ϑ` are respectively given
by

ϑ̂`N = arg min
ϑ`∈Θ`

n∑

i=1

pi ‖yi − η`(xi, ϑ`)‖2 , ` = 1, 2, (3.3)

where

yi =
1
ri

ri∑

j=1

yij , pi =
ri

N
. (3.4)

There is no loss of generality in assuming that the first model is true, i.e.,
η(x) ≡ η1(x, ϑ?

1), where a fixed value of ϑ?
1 is regarded as known prior to the

experiment (this value could be obtained based on some preliminary experiment
or some nominal value could be used if available). To make the discrimination
between the models η1 and η2 as accurate as possible then amounts to selection
of xi’s and pi’s so as to maximize the so-called non-centrality parameter defined
as follows (Atkinson and Fedorov, 1975a):

∆0
1(ξN ) = min

ϑ2∈Θ2
J 0(ξN , ϑ2), (3.5)

where

J 0(ξN , ϑ2) =
n∑

i=1

pi ‖η(xi)− η2(xi, ϑ2)‖2 (3.6)

and ξN stands for the normalized design of experiment in the form (2.17).
The criterion defined in such a manner is called the T-optimum design one to

emphasize a close connection with hypothesis testing (the letter ‘T’ comes from
‘testing’), since discrimination between the competing models M1 and M2 can be
viewed as testing the following simple non-parametrical hypothesis:

H0 : η(xi) = η1(xi, ϑ1), i = 1, . . . , N, (3.7)

against the alternative

H1 : η(xi) = η2(xi, ϑ2), i = 1, . . . , N. (3.8)
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Fig. 3.1 . Idea of T-optimum design.

Remark 3. In practise, for many complex industrial processes, to allow for repeti-
tions of observations at particular support points is very inconvenient, expensive
or even impossible to realize. Nevertheless, the outlined approach is not useless,
as the weights pi could be interpreted as precisions of measuring devices applied
to take measurements at particular points. A more systematic approach which
can be used in such situations and which exploits the notion of replication-free
designs, will be considered later.

Motivations behind the criterion (3.5) are rather intuitively clear (see Fig.
3.1), as it constitutes a measure of discrepancy between the responses of both the
models: a good design for discriminating between the models will then provide
a large lack of fit in terms of the sum of squares for the second model. What is
more, they are also confirmed by theory, since for normally distributed errors εij

and large N , the noncentrality parameter ∆0
1(ξN ) is proportional (in mean) to the

logarithm of the ratio of the likelihoods associated with both the models. We shall
demonstrate this property later in this chapter.

Clearly, the solutions (designs) depend on the choice of the true model, as well
as on the true values of its parameters (i.e., ϑ?

1). This implies that a construction of
a-priori solutions is impossible and we are faced with a problem which is analogous
to the search for the so-called local designs while trying to optimally estimate
unknown parameters of a nonlinear regression function. We wish to choose a
design which is optimal for some particular value of ϑ1 in the hope that it is not
too bad whatever the true ϑ?

1 happens to be. The dependency of the optimal
solution on the model’s parameters is an unappealing characteristic of nonlinear
experimental designs (Walter and Pronzato, 1997; Atkinson and Donev, 1992).
This predicament can be partially circumvented by relying on a nominal value of
ϑ1, the results of a preliminary experiment or a sequential design which consists
in multiple alternation of experimentation and estimation steps.

Remark 4. The experimenter can possess some prior information about the distri-
bution of the model (models) parameters or even probabilities of each candidate
model to be the true one. That valuable information can be used to construct
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designs which are ‘robust’ to parametric uncertainty using a Bayesian approach
(Atkinson, 1992; Ponce de Leon and Atkinson, 1991).

Note that, similarly to (2.17), the design ξN in (3.5) defines a discrete proba-
bility distribution on its support points x1, . . . , xn, since the corresponding weights
fulfil the conditions

pi ≥ 0, i = 1, . . . , n, (3.9)
n∑

i=1

pi = 1. (3.10)

Thus the pi’s are rational numbers, since both the ri’s and N are integers. This
discrete nature of N -observation exact designs causes serious difficulties, as the
resultant numerical analysis problem is not amenable to solution by standard op-
timization techniques, particularly when N is large. A commonly used device for
this problem is to extend the definition of the design. When N is large, the pi’s
can be considered as continuous in the interval [0, 1] (and not necessarily inte-
ger multiples of 1/N). Therefore, we might think of the designs as all discrete
probability distributions on X for which the number of support points n is not
fixed and constitutes an additional parameter to be determined. This makes the
problem much more tractable since we have the opportunity of exploiting calculus
techniques in solving it. Having the number of support points n and associated
values of x?

i , together with the proportions of measurements assigned to those sup-
port points p?

i where the maximum of the T-optimality criterion occurs, we can
argue that the maximum of the same function over the integer multiples of 1/N
occurs at adjacents to p?

1, . . . , p
?
n. The above reinterpretation of the admissible

designs as discrete probability distributions on finite subsets of X ameliorates to a
significant measure the tractability of the optimum experimental design problem.
Nevertheless, there still remain many technicalities which make the resulting cal-
culus rather cumbersome. Paradoxically, those difficulties can be easily overcome
by widening the class of admissible designs a bit further, i.e., to all probability
measures ξ defined on the Borel sigma-field on X, cf. Section 2.1.2, where the
same generalization was made for other design criteria. By definition they must
satisfy ∫

X

ξ(dx) = 1, (3.11)

where the integration is to be understood in the Lebesgue-Stieltjes sense. The
set of all such measures will be denoted by Ξ(X). This relaxation of the original
optimization problem usually leads only to approximate solutions, but these are
generally accepted in the practice of optimum experimental design. What is more,
this idea leads to some elegant and useful theory.

The corresponding ‘relaxed’ admissible designs are called continuous or ap-
proximate designs and they constitute the foundation of the modern theory of op-
timal experiments (Silvey, 1980; Cox and Reid, 2000; Atkinson and Donev, 1992;
Pázman, 1986; Fedorov and Hackl, 1997) which originates from seminal works by
(Kiefer and Wolfowitz, 1959).
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Accordingly, as a continuous generalization of the noncentrality parameter,
we consider the quantity

∆1(ξ) = min
ϑ2∈Θ2

J (ξ, ϑ2), (3.12)

where

J (ξ, ϑ2) =
∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx). (3.13)

A design satisfying
ξ? = arg max

ξ∈Ξ(X)
∆1(ξ) (3.14)

will then be called the locally T -optimum design.

Remark 5. Continuous designs with support points x1, x2, . . . , xn supply informa-
tion about a relative distribution of measurement frequency at x1, x2, . . . , xn. In
order to use such designs in practice, it is necessary to transform these frequencies
into numbers of experiments which are to be repeated at each support point. Such
a procedure can be implemented as follows:

• Choose a total number of observations N > 0.

• Calculate the numbers r
′
i = Npi for each i = 1, 2, . . . , n.

• Perform the rounding as follows:

– compute the number of repetitions at the i-th point r
′′
i = br′ic, i =

1, 2, . . . , n
( buc denotes the greatest integer no greater than u),

– compute Nr = N −∑n
i=1 r

′′
i ,

– assign Nr remaining measurements to points x1, x2, . . . , xn (e.g., using
random sampling with replacement).

Using the above procedure, we obtain the numbers of observations which should be
acquired at each point xi. The order of acquiring information is not unambiguous.
Depending on the situation at hand it can be realized

• randomly, which, according to Fisher’s suggestions, helps to justify the as-
sumption of normal errors (Atkinson and Bailey, 2001),

• systematically, which can be applied when the randomization cannot be used
or when its use gives additional benefits such as a decrease in the cost or
simplification of computations.

A detailed analysis of the accuracy of the rounding procedure can be found in
(Pukelsheim, 1993).
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3.2. Properties of the T-optimality criterion

In what follows, we provide several important interpretations and characterizations
of the T-optimality criterion. They turn out to be of paramount importance for
numerical algorithms which are going to be outlined in the forthcoming chapters.

3.2.1. A statistical justification for the T-optimality criterion

For simplicity, assume that only one response can be observed, i.e., d = 1, and
then consider the design

ξN =
{

x1, . . . , xN

1/N, . . . , 1/N

}
(3.15)

for some finite N and xi ∈ X, i = 1, . . . , N , and purely random Gaussian mea-
surement errors εi ∼ N (0, σ2). When model M1 is fitted to the data y1, . . . , yN ,
the corresponding likelihood function becomes

L(ϑ1|ξN ,M1) =
N∏

i=1

1√
2πσ

exp
(
−1

2
(yi − η1(xi, ϑ1))2

σ2

)
. (3.16)

In the same situation, but assuming that model M2 is true, we would obtain the
likelihood

L(ϑ2|ξN ,M2) =
N∏

i=1

1√
2πσ

exp
(
−1

2
(yi − η2(xi, ϑ2))2

σ2

)
. (3.17)

Consequently, the ratio of L(ϑ1|ξN ,M1) to L(ϑ2|ξN ,M2) is

L =
L(ϑ1|ξN ,M1)
L(ϑ2|ξN ,M2)

= exp

{
1

2σ2

[
N∑

i=1

(yi − η2(xi, ϑ2))2 −
N∑

i=1

(yi − η1(xi, ϑ1))2
]}

.

(3.18)

Fixing ϑ` at the value of

ϑ̂N
` = arg min

ϑ`∈Θ`

N∑

i=1

(yi − η`(xi, ϑ`))2, ` = 1, 2, (3.19)

we see that

E
[
(yi − η`(xi, ϑ̂

N
` ))2

]
= E

[
(η(xi)− η`(xi, ϑ̂

N
` ) + yi − η(xi))2

]

= (η(xi)− η`(xi, ϑ̂
N
` ))2 + E

[
(yi − η(xi))2

]
.

(3.20)
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Consequently,

2σ2E[log L] = E

[
N∑

i=1

(yi − η2(xi, ϑ̂
N
2 ))2 −

N∑

i=1

(yi − η1(xi, ϑ̂
N
1 ))2

]

=
N∑

i=1

(η(xi)− η2(xi, ϑ̂
N
2 ))2 +

N∑

i=1

E
[
(yi − η(xi))2

]

−
N∑

i=1

(η(xi)− η1(xi, ϑ̂
N
1 ))2 −

N∑

i=1

E
[
(yi − η(xi))2

]

= N∆1(ξN )−
N∑

i=1

(η(xi)− η1(xi, ϑ̂
N
1 ))2,

(3.21)

where

∆1(ξN ) =
1
N

N∑

i=1

(η(xi)− η2(xi, ϑ̂
N
2 ))2. (3.22)

If M1 is true, then η(x) coincides with η1(x, ϑ0
1) for some ϑ0

1 ∈ Θ1. Un-
der some mild and natural regularity conditions, cf. Theorem 1.1 in (Ermakov
and Zhigljavsky, 1987, p. 197), the estimator ϑ̂N

1 is then strongly consistent, i.e.,
ϑ̂N

1 −−−−→
N→∞

ϑ0
1 almost surely. Moreover, the sequence

N∑

i=1

(η(xi)− η1(xi, ϑ̂
N
1 ))2 (3.23)

converges in probability to a constant as N → ∞ and thus it is stochastically
bounded. Therefore, asymptotically,

E(log L) ∼ N

2σ2
∆1(ξN ). (3.24)

For large N (in principle, this is the case considered in this dissertation), maxi-
mization of ∆1(ξ) thus leads to maximization in the average sense of the logarithm
of the likelihood ratio L(ϑ1|·,M1)/L(ϑ2|·,M2). On the other hand, for linear
models the logarithm of this likelihood ratio provides a basis for justification that
N∆1(ξ)/σ2 is the non-centrality parameter of the χ2 distribution of the residual
sum of squares for M2 and that the T-optimum design maximizing ∆1(ξ) provides
the most powerful F-test for lack of fit of M2 when M1 is true. When the mod-
els are non-linear in the parameters, the exact F-test is replaced by asymptotic
results, but we still design to maximize ∆1(ξ) (Atkinson and Donev, 1992).

3.2.2. Weak continuity of ∆1( · )
Further, we present our main theoretical results for which we assume the following:

(A1) X and Θ2 are compact sets.
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(A2) η( · ) is a continuous function on X.

(A3) η2( · , · ) is a continuous function on X ×Θ2.

Here and subsequently, we will use the symbol Ξ(X) to denote the set of all
probability measures on B(X), the σ-algebra of Borel subsets of X.

To shorten notation, we let e(x, ϑ2) stand for ‖η(x) − η2(x, ϑ2)‖2 and write
Θ̂2(ξ) instead of Arg min

ϑ2∈Θ2

∫
X

e(x, ϑ2) ξ(dx). It is easily seen that e(·, ·) is contin-
uous.

We begin with a definition and an auxiliary result which are not commonly
known. We include them for the convenience of the reader, thus making our
exposition self-contained.

Definition 3.1. Let B(X) denote the σ-algebra of Borel subsets of a complete
and separable metric space X. A sequence of probability measures {µk}, defined
on B(X), is said to converge weakly to a probability measure µ, on B(X), if for
every continuous and bounded function g : X → R we have

∫

X

g(x) µk(dx) −−−−→
k→∞

∫

X

g(x) µ(dx). (3.25)

In this case we write ‘µk → µ weakly’. Note that the limit µ is unique.

Lemma 3.1. (Ermakov and Zhigljavsky, 1987, Lemma 1.4, p. 91)
If X ⊂ Rs is compact, then every sequence of probability measures on B(X) has a
subsequence that converges weakly to a probability measure on B(X).

The above result, being an immediate conclusion drawn from Prohorov’s The-
orem (Pollard, 2002) means the so-called sequentially weak compactness of Ξ(X).

The main focus of our study in this section will be the ‘continuity’ property
of ∆1( · ). To this end, we need the following technical result:

Lemma 3.2. Let the Assumptions (A1)–(A3) hold. Suppose that a sequence {ξk}
of Ξ(X) converges weakly to an element ξ̂ ∈ Ξ(X) and a sequence {ϑk

2} of Rm

converges to an element ϑ̂2 ∈ Rm. Then

lim
k→∞

∫

X

e(x, ϑk
2) ξk(dx) =

∫

X

e(x, ϑ̂2) ξ̂(dx). (3.26)

Proof. From Assumptions (A1)–(A3) it follows that the function e(·, ·) is uniformly
continuous on X×Θ2. Therefore, given ε > 0, we must have for some index k̄ ≥ 1

e(x, ϑ̂2)− ε < e(x, ϑk
2) < e(x, ϑ̂2) + ε, ∀x ∈ X, ∀k ≥ k̄. (3.27)

Integrating over X with respect to ξk yields
∫

X

e(x, ϑ̂2) ξk(dx)− ε <

∫

X

e(x, ϑk
2) ξk(dx) <

∫

X

e(x, ϑ̂2) ξk(dx) + ε,

∀k ≥ k̄.

(3.28)
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Letting k →∞, we see that
∫

X

e(x, ϑ̂2) ξ̂(dx)− ε ≤ lim inf
k→∞

∫

X

e(x, ϑk
2) ξk(dx)

≤ lim sup
k→∞

∫

X

e(x, ϑk
2) ξk(dx)

≤
∫

X

e(x, ϑ̂2) ξ̂(dx) + ε.

(3.29)

Since ε was selected arbitrarily, we get
∫

X

e(x, ϑk
2) ξk(dx) −−−−→

k→∞

∫

X

e(x, ϑ̂2) ξ̂(dx). (3.30)

We can now formulate our main result.

Theorem 3.1. Under Assumptions (A1)–(A3), the T-optimality criterion ∆1( · )
is weakly continuous, i.e., if ξk → ξ̂ weakly in Ξ(X), then ∆1(ξk) → ∆1(ξ̂).

Proof. We first show that ∆1( · ) is weakly lower semicontinuous, i.e., that for any
sequence {ξk} in Ξ(X) such that ξk → ξ̂ weakly, as k →∞,

lim inf
k→∞

∆1(ξk) ≥ ∆1(ξ̂). (3.31)

Note that the limit on the left-hand side of (3.31) is finite owing to the boundedness
of ∆1( · ), which results in turn from the continuity of e(·, ·) on the compact set
X ×Θ2.

For each k = 1, 2, . . . define ϑk
2 such that

∆(ξk) =
∫

X

e(x, ϑk
2) ξk(dx). (3.32)

Let {ξk}K0 , K0 ⊂ N be a subsequence of {ξk} for which we have

lim inf
k→∞

∆1(ξk) = lim
k→∞
k∈K0

∆1(ξk). (3.33)

The compactness of Θ2 implies that we can select a subsequence {ξk}K, K ⊂
K0, such that {ϑk

2}K → ϑ?
2 for some ϑ?

2 ∈ Θ2. Consequently,

∆1(ξ̂) ≤
∫

X

e(x, ϑ?
2) ξ̂(dx) by definition

= lim
k→∞
k∈K

∫

X

e(x, ϑk
2) ξk(dx) by Lemma 3.2 (3.34)

= lim inf
k→∞

∆1(ξk) by (3.33),
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which is the desired conclusion.
Now we shall prove the weak upper semicontinuity of ∆1( · ), which means

that for any sequence {ξk} in Ξ(X) such that ξk → ξ̂ weakly, as k →∞,

lim sup
k→∞

∆1(ξk) ≤ ∆1(ξ̂). (3.35)

The existence of a finite limit on the left-hand side of (3.35) results from the
boundedness of ∆1( · ) on Ξ(X).

For the sake of contradiction, suppose that there is a sequence {ξk} in Ξ(X)
such that ξk → ξ̂ weakly and

lim
k→∞

∆1(ξk) = ∆1(ξ̂) + δ, (3.36)

for some δ > 0. Choosing ϑ̂2 ∈ Θ̂2(ξ̂), we have

∆1(ξ̂) =
∫

X

e(x, ϑ̂2) ξ̂(dx). (3.37)

Since {ξk} converges weakly to ξ̂, we see that

lim
k→∞

∫

X

e(x, ϑ̂2) ξk(dx) =
∫

X

e(x, ϑ̂2) ξ̂(dx). (3.38)

Hence there exists an index k̄ ≥ 1 such that
∫

X

e(x, ϑ̂2) ξk(dx) <

∫

X

e(x, ϑ̂2) ξ̂(dx) +
δ

2

= ∆1(ξ̂) +
δ

2
< ∆1(ξk), ∀k ≥ k̄,

(3.39)

which contradicts the definition of ∆1(ξk).
By (3.31) and (3.35) it is obvious that ∆1( · ) must be weakly continuous.

3.2.3. Weak outer semicontinuity of Θ̂2( · )
This section discusses some properties of the set-valued function

Θ̂2(ξ) = Arg min
ϑ2∈Θ2

∫

X

e(x, ϑ2) ξ(dx). (3.40)

The set Θ̂2(ξ) is sometimes called the ‘answering set’: the elements ϑ2 in Θ̂2(ξ)
‘answer ξ’ (Wong, 1992). The relevant properties will turn out to be of great
importance while examining the convergence of the relaxation algorithm outlined
in Chapter 4.

Theorem 3.2. Under Assumptions (A1)–(A3), for each ξ ∈ Ξ(X) the set Θ̂2(ξ)
is compact.
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Proof. The result follows easily from the continuity of the function

g(ϑ2) =
∫

X

e(x, ϑ2) ξ(dx) (3.41)

defined on Θ2 and the immediate observation that

Θ̂2(ξ) = Arg min
ϑ2∈Θ2

g(ϑ2). (3.42)

In the following definition, we adopt the common terminology regarding set-
valued functions (Polak, 1997, p. 676).

Definition 3.2. Let {ξk} be a sequence in Ξ(X).

(a) The point ϑ̂2 ∈ Θ2 is said to be a limit point of {Θ̂2(ξk)} if

inf
ϑ2∈bΘ2(ξk)

‖ϑ2 − ϑ̂2‖ −−−−→
k→∞

0. (3.43)

(b) The point ϑ̂2 ∈ Θ2 is a cluster point of {Θ̂2(ξk)} if it is a limit point of a
subsequence of of {Θ̂2(ξk)}.

(c) We denote the set of all cluster points of {Θ̂2(ξk)} by Lim sup
k→∞

Θ̂2(ξk) and

call it the outer limit of {Θ̂2(ξk)}.

The following result plays a central role while studying the convergence of
numerical algorithms outlined in this dissertation.

Theorem 3.3. Let Assumptions (A1)–(A3) hold. The mapping Θ̂2( · ) is sequen-

tially weakly outer semicontinuous, i.e., given ξ̂ ∈ Ξ(X) and any sequence
{ξk} such that ξk → ξ̂ weakly, as k →∞, we have

Lim sup
k→∞

Θ̂2(ξk) ⊂ Θ̂2(ξ̂). (3.44)

Proof. Suppose the assertion of the theorem is false, i.e., there exists a point
ϑ̂2 ∈ Θ̂2(ξ̂) and a sequence ξk → ξ̂ weakly, as k → ∞, such that, for some
ϑk

2 ∈ Θ̂k
2(ξk), we have ϑk

2 → ϑ̂2 6∈ Θ̂2(ξ̂), as k →∞. But then Lemma 3.2 implies

∆1(ξk) =
∫

X

e(x, ϑk
2) ξk(dx) −−−−→

k→∞

∫

X

e(x, ϑ̂2) ξ̂k(dx) > ∆1(ξ̂), (3.45)

the last inequality resulting from the non-optimality of ϑ̂2. This, however, contra-
dicts the weak continuity of ∆1( · ).
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3.2.4. Concavity of ∆1( · )
For any probability measures ξ1 and ξ2 on B(X) and any α with 0 ≤ α ≤ 1, we
have that ξ = (1 − α)ξ1 + αξ2 is a probability measure on B(X) too (for it is
immediate that

∫
X

ξ(dx) = (1−α)
∫

X
ξ1(dx)+α

∫
X

ξ2(dx) = 1). This means that
Ξ(X) is convex. We call this ξ the convex combination of ξ1 and ξ2.

The following result will be crucial for characterizing solutions of the T-
optimum design problem:

Theorem 3.4. Under Assumptions (A1)–(A3), the function ∆1( · ) is concave,
i.e., for all ξ1, ξ2 ∈ Ξ(X), and α with 0 ≤ α ≤ 1, we have

∆1((1− α)ξ1 + αξ2) ≥ (1− α)∆1(ξ1) + α∆1(ξ2). (3.46)

Proof. Let us fix some ξ1, ξ2 ∈ Ξ(X), α ∈ [0, 1] and let ξ = (1 − α)ξ1 + αξ2. For
every ϑ2 ∈ Θ2, we have

∫

X

e(x, ϑ2) ξ(dx) = (1− α)
∫

X

e(x, ϑ2) ξ1(dx) + α

∫

X

e(x, ϑ2) ξ2(dx). (3.47)

Taking the minimum over all ϑ2 ∈ Θ2, we conclude that

∆1(ξ) = min
ϑ2∈Θ2

∫

X

e(x, ϑ2) ξ(dx)

≥ (1− α) min
ϑ2∈Θ2

∫

X

e(x, ϑ2) ξ1(dx) + α min
ϑ2∈Θ2

∫

X

e(x, ϑ2) ξ2(dx)

= (1− α)∆1(ξ1) + α∆1(ξ2),

(3.48)

which is our claim.

3.2.5. Existence of a T-optimum design

Clearly, before proceeding to maximize the T-optimality criterion, it is useful to
know that there exists at least one global maximum of ∆1( · ) over Ξ(X). This is
guaranteed by the following result:

Theorem 3.5. Let Assumptions (A1)–(A3) hold. Then there is an element ξ? ∈
Ξ(X) such that

∆1(ξ?) = sup
ξ∈Ξ(X)

∆1(ξ). (3.49)

Proof. The continuity of e(·, ·) on X ×Θ2 yields

c = sup
ξ∈Ξ(X)

∆1(ξ) < ∞. (3.50)

Let {ξk} be a maximizing sequence of elements in (3.50), i.e.,

∆1(ξk) ↑ c as k →∞. (3.51)
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Lemma 3.1 then implies that there exists a subsequence {ξk}K,K ⊂ N of {ξk} and
a probability measure ξ̂ ∈ Ξ(X) such that {ξk}K → ξ̂ weakly. From Theorem 3.1
it follows that {∆1(ξk)}K → ∆1(ξ̂). This, taken in conjunction with (3.50), gives
c = ∆1(ξ̂), which is the desired conclusion.

Note that the element ξ? maximizing ∆1( · ) may not be unique. What is
more, Theorem 3.8 will show that the set of all maximizers of ∆1( · ) is convex.

3.2.6. Directional derivative of ∆1( · )
Modern optimum experimental design theory makes extensive use of the powerful
tool which is the directional derivative of the optimality criterion. Similarly, we
define the one-sided directional derivative of ∆1( · ) at a point ξ ∈ Ξ(X) in the
direction µ ∈ Ξ(X) by

d∆1(ξ; µ) = lim
α↓0

∆1((1− α)ξ + αµ)−∆1(ξ)
α

. (3.52)

The existence of the relevant limit is guaranteed by the following result:

Theorem 3.6. Under Assumptions (A1)–(A3), the directional derivative d∆1(ξ;µ)
exists for all ξ, µ ∈ Ξ(X) and is given by

d∆1(ξ; µ) = min
ϑ2∈bΘ2(ξ)

∫

X

‖η(x)− η2(x, ϑ2)‖2 µ(dx)−∆1(ξ) (3.53)

Proof. Fix ξ, µ ∈ Ξ(X) and define the function f : [0, 1] → R by

f(α) = min
ϑ2∈Θ2

φ(α, ϑ2), (3.54)

where

φ(α, ϑ2) = (1− α)
∫

X

e(x, ϑ2) ξ(dx) + α

∫

X

e(x, ϑ2) µ(dx). (3.55)

Then d∆1(ξ; µ) coincides with the right-hand derivative D+f(α) of f( · ) at α = 0,
i.e.,

d∆1(ξ; µ) = D+f(0) = lim
α↓0

f(α)− f(0)
α

. (3.56)

But D+f(0) can be easily determined based on Danskin’s Theorem (Bertsekas,
1999, Prop. B.25, p. 717):

D+f(0) = min
ϑ2∈eΘ2(0)

[
∂

∂α
φ(α, ϑ2)

]

α=0+

, (3.57)

where

Θ̃2(α) =
{

ϑ2 ∈ Θ2 : φ(α, ϑ2) = min
ϑ2∈Θ2

φ(α, ϑ2)
}

. (3.58)
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We check out at once that

∂

∂α
φ(α, ϑ2) =

∫

X

e(x, ϑ2)µ(dx)−
∫

X

e(x, ϑ2) ξ(dx). (3.59)

Observing that Θ̃2(0) = Θ̂2(ξ), we finally get

d∆1(ξ; µ) = min
ϑ2∈bΘ2(ξ)

{∫

X

e(x, ϑ2)µ(dx)−
∫

X

e(x, ϑ2) ξ(dx)
}

= min
ϑ2∈bΘ2(ξ)

∫

X

e(x, ϑ2)µ(dx)−∆1(ξ).
(3.60)

If Θ̂2(ξ) is a singleton, i.e., it consists of a unique point ϑ̂2, Θ̂2(ξ) = {ϑ̂2},
then

d∆1(ξ;µ) =
∫

X

‖η(x)− η2(x, ϑ̂2)‖2 µ(dx)−∆1(ξ). (3.61)

Furthermore, if µ is the unit-weight design concentrated at a single point x ∈ X,
i.e., µ is the one-point (Dirac) measure δ(x), then (3.61) simplifies to

d∆1(ξ; δ(x)) = min
ϑ2∈bΘ2(ξ)

‖η(x)− η2(x, ϑ2)‖2 −∆1(ξ). (3.62)

Note that, in general, we have

d∆1(ξ; µ) 6=
∫

X

d∆1(ξ; δ(x)) µ(dx), (3.63)

which means that ∆1( · ) does not meet the condition of the so-called linear dif-
ferentiability, the property which substantially simplifies the analysis of smooth
optimum design criteria (Fedorov and Hackl, 1997).

3.2.7. Equivalence theorem for the T-optimality criterion

Hardly anyone would doubt that optimality conditions are fundamental to the
analysis of an optimization problem. In our design problem, the concavity of
∆1( · ) over the convex set Ξ(X) makes it possible to derive then a convenient test
for the T-optimality of intuitively sensible designs.

In what follows, we find a characterization of ξ? which has the property
∆1(ξ?) = max

ξ∈Ξ(X)
∆1(ξ).

Theorem 3.7 (Equivalence theorem for T-optimality designs). Let Assumptions
(A1)–(A3) hold. Then, a necessary and sufficient condition for ξ? to maximize
∆1( · ) over Ξ(X) is the existence of a probability measure ζ? on the σ-algebra of
Borel subsets of the answering set Θ̂2(ξ?) such that, for all x ∈ X,

∫
bΘ2(ξ?)

‖η(x)− η2(x, ϑ2)‖2 ζ?(dϑ2) ≤ ∆(ξ?). (3.64)
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Proof. From the concavity of ∆1( · ) over Ξ(X) it follows that

d∆1(ξ?; µ) ≤ 0, ∀µ ∈ Ξ(X) (3.65)

constitutes a necessary and sufficient condition for ξ? to maximize ∆1( · ) over
Ξ(X). (The proof is standard, cf. e.g., (Uciński, 2005, Thm. B.25, p. 266)). By
Theorem 3.6, this characterization becomes

min
ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2) µ(dx) ≤ ∆1(ξ?), ∀µ ∈ Ξ(X), (3.66)

or equivalently,

max
µ∈Ξ(X)

min
ϑ2∈bθ2(ξ?)

∫

X

e(x, ϑ2)µ(dx) ≤ ∆1(ξ?). (3.67)

Also, setting Σ(ξ?) as the set of all probability measures on the σ-algebra
of Borel subsets of Θ̂2(ξ?), and Σ0(ξ?) as its subset consisting of one-point Dirac
measures, we get

min
ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx)

= min
ζ∈Σ0(ξ?)

∫
bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx) ζ(dϑ2)

≥ min
ζ∈Σ(ξ?)

∫
bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx) ζ(dϑ2)

≥ min
ζ∈Σ(ξ?)

∫
bΘ2(ξ?)

[
min

ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2) µ(dx)

]
ζ(dϑ2)

=

[
min

ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx)

][
min

ζ∈Σ(ξ?)

∫
bΘ2(ξ?)

ζ(dϑ2)

]

= min
ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx),

(3.68)

which leads to

min
ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx) = min
ζ∈Σ(ξ?)

∫
bΘ2(ξ?)

∫

X

e(x, ϑ2) µ(dx) ζ(dϑ2). (3.69)

Similarly, we can show that

max
µ∈Ξ(X)

∫

X

∫
bΘ2(ξ?)

e(x, ϑ2) ζ(dϑ2) µ(dx) = max
x∈X

∫
bΘ2(ξ?)

e(x, ϑ2) ζ(dϑ2). (3.70)
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From (3.69) and (3.70) we have that

max
µ∈Ξ(X)

min
ϑ2∈bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx)

= max
µ∈Ξ(X)

min
ζ∈Σ(ξ?)

∫
bΘ2(ξ?)

∫

X

e(x, ϑ2)µ(dx) ζ(dϑ2)

= min
ζ∈Σ(ξ?)

max
µ∈Ξ(X)

∫

X

∫
bΘ2(ξ?)

e(x, ϑ2) ζ(dϑ2)µ(dx)

= min
ζ∈Σ(ξ?)

max
x∈X

∫
bΘ2(ξ?)

e(x, ϑ2) ζ(dϑ2),

(3.71)

where, additionally, in the second equality a fundamental minimax result of game
theory permitted us to interchange the max and min operators. This establishes
our assertion when substituted in (3.67).

It is thus clear that the optimality of a design ξ? is intimately related to the
existence of a certain probability measure ζ? on the σ-algebra of Borel subsets of
Θ̂2(ξ?). This suggests that the main problem while verifying the optimality of a
design is the ease of finding ζ?. An advantage in the above formulation is that
the problem of verifying the optimality of a design is basically reduced to that of
finding a probability measure defined on the σ-algebra of Borel subsets of Θ̂2(ξ?).
The latter problem is essentially a linear one and therefore should be easier to work
with from the computational standpoint. However, except for trivial problems, a
general analytic solution for ζ? is usually problematic and one needs to resort to
an iterative scheme for determining ζ?.

The optimality condition simplifies to a significant measure when Θ̂2(ξ?) re-
duces to a singleton.

Theorem 3.8. Let Assumptions (A1)–(A3) hold. Given ξ? ∈ Ξ(X), assume that
the minimization problem

min
ϑ2∈Θ2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ?(dx) (3.72)

has a unique solution ϑ?
2 ∈ Θ2. Then:

(i) A necessary and sufficient condition for ξ? to be T-optimal is that for each
x ∈ X

‖η(x)− η2(x, ϑ?
2)‖2 ≤ ∆1(ξ?). (3.73)

(ii) The equality in (3.73) is attained at all support points of ξ?, i.e., in the set

supp(ξ?) =
⋂

A∈B+(X)

A, (3.74)

where B+(X) = {A ∈ B(X) : ξ?(A) > 0}.
(iii) the set of all the optimal measures ξ? is convex.
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Proof. Part (i) follows immediately from Theorem 3.7. As for Part (ii), suppose
that this were false, i.e., that we could find a set X̃ ⊂ supp(ξ?) satisfying ξ?(X̃) > 0
and a scalar ε > 0 such that

e(x, ϑ?
2) < ∆1(ξ?)− ε, ∀x ∈ X̃. (3.75)

But then we have

εξ?(X̃) ≤
∫

X

[∆1(ξ?)− e(x, ϑ?
2)] ξ

?(dx)

= ∆1(ξ?)−
∫

X

e(x, ϑ?
2) ξ?(dx)

= ∆1(ξ?)− min
ϑ2∈Θ2

∫

X

e(x, ϑ2) ξ?(dx) = 0,

(3.76)

which implies ε ≤ 0, a contradiction.
It remains to show Part (iii), i.e., that the set of optimal measures ξ? is convex.

But this is immediate, since ∆1( · ) is concave. This finishes the proof.

Note that for an approximate discrete design ξ the definition of supp(ξ) in
(3.74) reduces to that of Definition 2.2. The functions on the left-hand sides of the
optimality conditions (here ψ(x, ξ) = ‖η(x)−η2(x, ϑ?

2)‖2) are sometimes called the
sensitivity functions. They involve x only and in practice, if X ⊂ R1 or X ⊂ R2,
we can examine their graphs to verify whether or not a given design is optimal.
This procedure is illustrated with the following examples.

3.3. Examples

In order to illustrate the use of the Equivalence Theorem in construction of T-
optimum designs, we present three examples, where it is possible to obtain explicit
expressions defining ξ? (otherwise, designs have to be approximated numerically).

Example 3.1. Let the true linear model have the structure

η(x) = x, x ∈ X = [−1, 1]. (3.77)

We wish to test it against the alternative model

η2(x, ϑ) = ϑ2, ϑ2 ∈ [−1, 1] (3.78)

which produces a constant response.
Since it is impossible to distinguish between the responses of both the models

based on observations at only one support point, suppose that the number of
support points is two, i.e., consider prospective designs of the form

ξ =
{

x1, x2

p1, p2

}
. (3.79)
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Fig. 3.2 . Sensitivity function (solid line) and resultant responses of models
(dashed lines) in Example 3.1.

Then

J (ξ, ϑ2) = p1[η(x1)− η2(x1, ϑ2)]2 + p2[η(x2)− η2(x2, ϑ2)]2

= p1(x1 − ϑ2)2 + (1− p1)(x2 − ϑ2)2,
(3.80)

where p2 = 1− p1 can be eliminated. Therefore

ϑ̂2(ξ) = arg min
ϑ2

J (ξ, ϑ2) = p1x1 + (1− p1)x2. (3.81)

Note that ϑ̂2 depends on both the support points and weights. Furthermore,

∆1(ξ) = J (ξ, ϑ̂2(ξ)) = p1(1− p1)(x1 − x2)2. (3.82)

Since the term p1(1−p1) is maximal at p1 = 1/2 and (x1−x2)2 attains its maximal
value at x1 = −1 and x2 = 1, ∆1(ξ) is maximized at

ξ? =
{−1, 1

1/2, 1/2

}
. (3.83)

Thus we have ∆1(ξ?) = 1, ϑ̂2(ξ?) = 0 and we get the sensitivity function of the
form

ψ(x, ξ?) = [η(x)− η2(x, ϑ̂2(ξ?)]2 = x2. (3.84)

Figure 3.2 shows the sensitivity function and resultant responses of both the mod-
els. It can be seen that the situation is consistent with Theorem 3.8, i.e., the global
maximum of ψ(·, ξ?) over X which equals just ∆1(ξ?), is attained at support points
x?

1 = −1 and x?
2 = 1. Simultaneously, at these support points the square of the

difference between the responses of the true and alternative models is maximal.
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Fig. 3.3 . Sensitivity function (a) and true and alternative model responses (b)
(solid and dashed lines, respectively) in Example 3.2.

Example 3.2. Consider the true model

η(x) = x2 (3.85)

and the alternative model

η2(x, ϑ2) = ϑ21x + ϑ22 (3.86)

for the design region X = [0, 1]. Note that the number of support points in an
optimal discrete design must be at least three, for otherwise, at the worst, it is
impossible to distinguish between the responses.

It is an easy exercise to check that the design

ξ? =
{

0, 1/2, 1
1/4, 1/2, 1/4

}
(3.87)

is T-optimal and it corresponds to the unique minimizer ϑ̂2 = [1,−1/8]T. The
plot of the corresponding sensitivity function ψ(x, ξ?) = (x2 − x + 1/8)2 is shown
in Fig. 3.3 (a). We have ∆1(ξ?) = 0.0156 and this is also the maximal value of
ψ(·, ξ?). Again, at the support points the square of the difference between the
responses of the true and alternative models attains its maximal value, which is
shown in Fig. 3.3 (b).

Example 3.3. Consider the true model

η1(x) = γ, x ∈ X = [−1, 1], (3.88)

producing a constant response and a quadratic alternative model

η2(x, ϑ2) = ϑ21 + ϑ22x + ϑ23x
2 (3.89)



54 3.3. Examples

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

x

ψ(x,ξ*)

∆
1
(ξ*) 

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

x

η(x) 

η
2
(x,ϑ

2
*) 

(a) (b)

Fig. 3.4 . Sensitivity function (a) and true and alternative model responses for
γ = 0.25 (b) (solid and dashed lines, respectively) in Example 3.3.

with parameter vector ϑ2 = [ϑ21, ϑ22, ϑ23]T.

In the absence of any constraints on the parameters of the second model, if
the first model is true, so is the second and designing an experiment for detecting
departures from Model 2 is meaningless. Instead, we employ the constraints

Θ2 =
{
(ϑ21, ϑ22, ϑ23) : ϑ2

22 + ϑ2
23 ≥ 1, ϑ22, ϑ23 ≥ 0

}
. (3.90)

Therefore

∆1(ξ) = min
ϑ2∈Θ2

J (ξ, ϑ2)

= min
ϑ2∈Θ2

∫

X

(
γ − (ϑ21 + ϑ22x + ϑ23x

2)
)2

ξ(dx).
(3.91)

The minimum of the above non-centrality parameter for a given design ξ evidently
occurs on the subset of Θ2 for which ϑ2

22 + ϑ2
23 = 1.

We will find an optimum design within a class of symmetric three-point de-
signs and then use Theorem 3.8 to check that this design is T-optimum amongst
all designs, not just within the restricted class.

Suppose that the design has the form

ξ(p) =
{−1, 0, 1

p/2, 1− p, p/2

}
. (3.92)

We are looking for an optimum value of the parameter p.
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We have

ϑ̂2 = arg min
ϑ2∈Θ2

J (ξ(p), ϑ2) = arg min
ϑ21

ϑ23=
√

1−ϑ2
22

(p

2
(γ − ϑ21 + ϑ22 − ϑ23)2

+ (1− p)(γ − ϑ21)2 +
p

2
(γ − ϑ21 − ϑ22 − ϑ23)2

)

= arg min
ϑ21

0≤ϑ22≤1

(
p

2

(
γ − ϑ21 + ϑ22 −

√
1− ϑ2

22

)2

(3.93)

+ (1− p)(γ − ϑ21)2 +
p

2

(
γ − ϑ21 − ϑ22 −

√
1− ϑ2

22

)2
)

= arg min
ϑ21

0≤ϑ22≤1

(
p

(
γ − ϑ21 −

√
1− ϑ2

22

)2

+ pϑ2
22 + (1− p)(γ − ϑ21)2

)
.

Finally, we obtain
ϑ̂2 = [ϑ̂21, ϑ̂22, ϑ̂23]T = [γ − p, 0, 1]T (3.94)

and
∆1(ξ(p)) = J (ξ(p), ϑ̂2(ξ)) = p(1− p). (3.95)

It is obvious that ∆1(ξ(p)) is maximized for p = 1/2 and the optimum design
within the restricted class has the form

ξ? =
{−1, 0, 1

1/4, 1/2, 1/4

}
. (3.96)

Thus we have ∆1(ξ?) = 1/4 and we get the sensitivity function in the form

ψ(x, ξ?) = (1/2− x2)4. (3.97)

Figure 3.4 depicts it and shows again that the found design is definitely the T-
optimal one. Also the responses of both the models for γ = 1/4 are shown.

3.4. Summary

In this chapter, the T-optimality criterion has been defined and characterized.
Conceptually, for linear models it is proportional to the non-centrality parameter
of the χ2 distribution of the residual sum of squares for the second model. A
T-optimum design leads to the most powerful F-test for lack of fit of the second
model when the first is true. When the models are nonlinear in the parameters,
the exact F-test is replaced by asymptotic results.

This seemingly simple criterion becomes non-differentiable as soon as the
minimum squared difference between the true and predicted responses integrated
with respect to the current design is attained at more than one parameter value
ϑ2. However, the situation is not that hopeless, as we have shown a number
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of characterizations of ∆1( · ) and the corresponding specialized version of the
equivalence theorem. The derivation of those results was made possible at the
cost of using quite advanced mathematical notions, such as weak convergence of
probability measures, but this is an unavoidable price to be paid if we attempt to
attack the problem properly from the mathematical point of view.

In addition to revealing striking minimax properties of T-optimal designs, the
Equivalence Theorem which is our main result in this chapter provides us with a
test for the T-optimality of intuitively sensible designs. However, to exploit its
full potential, we require more that this, namely, we need efficient numerical al-
gorithms which would enable us to construct T-optimum design measures. Note
that the problem is not that standard if we cannot initially identify a finite set
which includes the support points of an optimal measure. In fact, the Equivalence
Theorem says nothing about the number of the support points of an optimal de-
sign and no bound on this number is known in the literature. What is more, there
is no guarantee that an optimal design is unique. In particular, multiple global
solutions ξ? may yield the same maximizing value of ∆1(ξ). Furthermore, there
may be multiple local optima of functions involved in construction of optimum
designs, which highly interferes with the optimization process. Consequently, the
crucial question is: How to efficiently generate approximations to T-optimum de-
signs? Unfortunately, it appears that no known specialized algorithm exists for
constructing T-optimum designs, apart from an adaptation of the Wynn-Fedorov
scheme (Atkinson and Fedorov, 1975a; Fedorov and Hackl, 1997) which suffers
from serious problems with convergence. This computational problem is far from
being satisfactory solved and the remainder of the dissertation is intended as an
attempt to fill this gap.



Chapter 4

ALGORITHMIC METHODS FOR T-OPTIMUM
EXPERIMENTAL DESIGN

In addition to revealing intriguing minimax properties of T-optimal designs, the
equivalence theorems of Chapter 3 provide us with tests for the T-optimality of
intuitively sensible designs. To be specific, consider a design ξ for which the
answering set reduces to a singleton, i.e.,

Θ̂2(ξ) = Arg min
ϑ2∈Θ2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx) = {ϑ̂2} (4.1)

for some ϑ̂2 ∈ Θ2. The T-optimality of ξ can be examined as follows:

1 If the sensitivity function ψ(x, ξ) = ‖η(x)− η2(x, ϑ̂2)‖2 is less than or equal
to ∆1(ξ) for all x ∈ X, then ξ is T-optimal.

2 If the sensitivity function ψ(x, ξ) exceeds ∆1(ξ), then ξ is not T-optimal.

However, in order to exploit fully the salient features of the optimality condi-
tions, we need efficient computational methods which would enable us to construct
T-optimum design measures. In this chapter we consider three such methods and
include a thorough discussion of their effectiveness. We remark that the construc-
tion of a solution to the T-optimum design problem is not straightforward, owing
to the inherent nondifferentiability of the optimality criterion when the answering
set is not a singleton.

Specifically, the adaptation of the classical Wynn-Fedorov algorithm is con-
sidered in Section 4.1. In Section 4.2 we solve the original problem by solving
directly the associated semi-infinite optimization problem. Then, in Section 4.3
we propose a relaxation algorithm which constitutes one of the most important
original contributions made in the dissertation to the development of numerical
algorithms for the T-optimum design problem. In the remainder of this chapter,
an auxiliary problem of selecting global optimizers is discussed. Thus, Section 4.4
outlines a possible choice of the global optimization method being an essential
component of the proposed computational schemes. Chapter 4 concludes with the
consideration of several illustrative examples.
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4.1. Wynn-Fedorov algorithm for constructing T-optimal designs

An iterative algorithm of the Wynn-Fedorov type outlined in Section 2.4 was rec-
ommended by (Atkinson and Fedorov, 1975a) to construct iteratively T-optimum
designs for static single-output systems (Atkinson and Fedorov, 1975a).

Based on the Equivalence Theorem, (cf. Theorem 3.8), this algorithm can be
directly adopted to multi-output dynamic systems. The corresponding numerical
scheme can be represented by the following steps (nk stands for size of the design
in k-th step):

Algorithm 4.1 (Generalized Wynn-Fedorov algorithm for T-optimum designs).

Step 1: Guess an initial design ξ0 of the form ξ0 =
{

x0
1, . . . , x0

n0

p0
1, . . . , p0

n0

}
for some

arbitrary n0. Choose some positive tolerance ε ¿ 1. Set k = 0.

Step 2: Determine

ϑ̂k
2 = arg min

ϑ2∈Θ2

nk∑

i=1

pk
i ‖η(xk

i )− η2(xk
i , ϑ2)‖2,

x̂k = arg max
x∈X

‖η(x)− η2(x, ϑ̂k
2)‖2.

(4.2)

Step 3: If ψ(x̂k, ξk) ≤ ∆1(ξk) + ε, where

ψ(x, ξk) = ‖η(x)− η2(x, ϑ̂k
2)‖2,

∆1(ξk) =
nk∑

i=1

pk
i ‖η(xk

i )− η2(xk
i , ϑ̂k

2)‖2,
(4.3)

then ξ? = ξk and STOP.

Step 4: Choose the appropriate value of αk, 0 ≤ αk ≤ 1, and compute the convex
combination of designs:

ξk+1 = (1− αk)ξk + αkδ(x̂k), (4.4)

where δ(x̂k) is the design concentrated only at one support point x̂k.
Set k ← k + 1 and go to Step 2.

A slight complication compared with the case of a single-response system con-
sists in the necessity of calculation of the Euclidean distance between the responses
instead of the absolute value. In contrast to the D-optimum counterpart, even in
the single response case, selection of an optimum value of the steplength αk for
∆1(ξk+1, ϑ̂k

2), i.e., finding

αk = arg max
α∈[0,1]

∆1((1− α)ξk + αδ(x̂k)),
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necessitates a numerical search. To this end (since α ∈ [0, 1]) a simple search
procedure, e.g., the golden section method (Press et al., 1996) can be used. Alter-
natively, like in the D-optimum case, another common choice is

αk =
1

k + 1
(4.5)

or, in general, αk can be chosen using any sequence satisfying the conditions
(Fedorov and Hackl, 1997)

lim
k→∞

αk = 0,

∞∑

k=0

αk = ∞,

∞∑

k=0

(αk)2 < ∞. (4.6)

Generally, the convergence speed of the presented scheme is rather low, since it
actually belongs to the group of first-order algorithms. In practice, the optimum
support points usually are found relatively quickly (when using efficient global
optimizers during Step 2 of the algorithm), but a precise determination of the
corresponding weights takes much more time. In the literature there have been
some attempts to modify the basic scheme so as to enhance the convergence speed
(Fedorov and Hackl, 1997). The resulting heuristics are intended mainly for the
D-optimum design criterion, but with minor changes they can be adapted to the
T-optimum criterion.

For example, one of the characteristic features of the algorithm is that the
weights of the non-optimal support points are gradually decreased. This eventually
results in the existence of support points with negligible weights. Moreover, in each
iteration a new support point is additionally included into the design. Usually,
after several iterations, the location of the new points becomes similar or very
close to the existing ones. This is caused by the numerical inaccuracies of the
optimization process. In order to obtain minimal-support solutions it is worthwhile
to equip the implementation with procedures aimed at removing support points
with negligible weights from the current design and replacing clustered points by
a single support point. The weights of the points to be replaced are added in
each cluster and the clustered points are substituted by only one point with the
weight equal to the resulting sum. Then removing points with negligible weights
can be performed. The thresholds defining a maximal radius of the clusters (and,
consequently, the number of the replaced points) and a minimum acceptable weight
are parameters which should be set a priori. The appropriate choice can speed up
the convergence, but it may happen that by setting excessively high thresholds we
will obtain the effect of repeatedly removing and adding the same points into the
design (and, consequently, the lack of the convergence of the entire scheme). In
the case of D-optimality a useful test exists (Pronzato, 2003) which allows for a
safe removal of points which have no chance to be located in the optimum design.
Unfortunately, there is no such counterpart here and the appropriate thresholds
should be chosen empirically.

For dynamic systems described by ordinary differential equations we can di-
rectly use the presented algorithm while interpreting x as time. Application to
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systems with spatio-temporal dynamics described by partial differential equations
is additionally complicated by the necessity of additional integration with respect
to the time variable (Kuczewski, 2005). This topic will be discussed in the Chap-
ter 6.

The presented computational scheme still constitutes a basis for practitioners.
However, it suffers from some impediments outlined above. It seems that the
most confounded nuisance which limits applications consists in a possible lack of
convergence when non-unique minimizers ϑ̂k

2 exist for a given ξk. This phenomenon
should not be surprising, since using the formulae for both the maximizer x̂k in
Step 2, and the sensitivity function ψ(x, ξk) in Step 3, we take implicitly for
granted that the answering set Θ̂2(ξk) = Arg min

ϑ2∈Θ2

∫
X
‖η(x) − η2(x, ϑ2)‖2 ξk(dx)

is a singleton. To see this, it is sufficient to compare the form of the stopping
criterion in Step 3 with the optimality conditions of Theorem 3.8. A detailed
proof of the convergence, from which it would be clearer, is not provided here (by
the way, to the best of the author’s knowledge, it does not seem to be published,
at least in the English literature), but it proceeds on the same lines as that for the
algorithm dedicated to the DT-optimality criterion, cf. Chapter 5. The form of the
optimality conditions for the general case is rather awkward, cf. Theorem 3.7, and
consequently, they can hardly be used to alter the foregoing exchange algorithm
so as to make it reliable. This was one of the main motivations to write this
dissertation.

Example 4.1. In this contrived example, consider the true model having the
structure

η(x) = sin(x) + cos(2x), x ∈ X = [−1, 1]. (4.7)

We wish to test it against the alternative quadratic model which is linear with
respect to the unknown parameters:

η2(x, ϑ2) = ϑ20 + ϑ21x + ϑ22x
2. (4.8)

Starting with a randomly chosen three-point uniformly distributed (i.e., with all
weights equal to 1/3) initial design and the numerical accuracy set to ε = 0.0002,
Algorithm 4.1 found in 100 iterations the four-point T-optimal design of the fol-
lowing form (the values were rounded to the third fractional digit and some addi-
tional modifications of the basic procedure, like a removal of clusters and points
with negligible weights, were also applied):

ξ? =
{−1.000, −0.673, 0.071, 0.827

0.257, 0.472, 0.247, 0.023

}
. (4.9)

The relevant computer program was implemented using Maple 10 as a set of Maple
procedures. Figure 4.1 displays the resultant sensitivity function ψ(x, ξ?) as a
function of the x variable (ϑ?

2 = [ϑ?
20, ϑ

?
21, ϑ

?
22]

T = [0.913, 0.909,−1.349]T). Again,
it can be observed that the situation is consistent with the developed equivalence
theorem which confirms the optimality of the found approximation (up to the
assumed numerical accuracy ε).
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Fig. 4.1 . Sensitivity function in Example 4.1.

Example 4.2. Consider two types of chemical reactions which turn substance A
into C and proceed with creation of indirect reagent B. The first model is called
the consecutive irreversible reaction A → B → C and is described by the system
of ordinary differential equations

d[A]
dt

= −k1[A]λ1 ,

d[B]
dt

= k1[A]λ1 − k2[B]λ2 , (4.10)

d[C]
dt

= k2[B]λ2 ,

with initial conditions

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0,

where [A], [B], [C] denote the concentrations of the reagents A, B and C, respec-
tively, a0, b0 and c0 being the corresponding initial concentrations. Such a scheme
is typical, e.g., for the phenomenon of radioactive decay. Another type of reaction
is described by the system of ODE’s

d[A]
dt

= −k1[A]λ1 + k3[B]λ3 ,

d[B]
dt

= k1[A]λ1 − k2[B]λ2 − k3[B]λ3 , (4.11)

d[C]
dt

= k2[B]λ2 ,

with initial conditions

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0.
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Fig. 4.2 . Sensitivity function (a) and responses of true and alternative models (b)
(continuous and dashed lines, respectively) obtained in Example 4.2. The dashed
vertical lines correspond to the location of two optimal support points (the third
point is just the end of the observation horizon).

These are kinetic equations of a reversible first-order reaction followed by an
irreversible reaction A ­ B → C, where the transitional substance B achieves an
initial balance with reagent A.

We assume that the true model is described by (4.11) for the setting

ϑ1 = (k1, k2, k3, λ1, λ2, λ3) = (0.7, 0.2, 0.1, 2.0, 2.0, 1.0).

The reaction described by (4.10) constitutes the alternative model. The purpose
of the design consists in determining a T-optimal schedule (here, time instances)
of measurements of reagent concentrations which will allow us to maximize the
certainty of the discrimination between the above two competing models. The
design range and initial concentrations were respectively set to T = [0, 10] and
(a0, b0, c0) = (1, 0, 0) for both the models. The set of feasible values of the al-
ternative model parameters was set to 0.55 ≤ k1 ≤ 0.85, 0.05 ≤ k2 ≤ 0.35,
1.5 ≤ λ1 ≤ 2.5, 1.5 ≤ λ2 ≤ 2.5. The program implementing Algorithm 4.1 was
written in Lahey-Fujitsu Fortran 95 compiler v.5.6 using the IMSL library. In much
the same way as in Example 4.1, additional modifications of the basic procedure
were applied. To solve the implied global optimization problems, the Adaptive
Random Search (ARS) method was utilized, cf. Section 4.4. The resultant design
has the form

ξ? =
{

0.73, 2.71, 10.00
0.194, 0.365, 0.441

}
. (4.12)

This means that, e.g., about one fifth of the whole experimental effort should
be concentrated at time instant t = 0.73. The least profitable values of the al-
ternative model parameters with respect to the T-optimum design ξ? are ϑ?

2 =
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(k1, k2, λ1, λ2) = (0.847, 0.198, 1.575, 1.981). For ε = 0.00001 convergence was
achieved in 89 iterations. The plot of the obtained sensitivity function ψ(t, ξ?) =
‖η(t) − η2(t, ϑ?

2)‖2 is shown in Fig. 4.2. The same figure illustrates also the re-
sponses of both the models.

4.2. Semi-infinite programming

The problem of finding T-optimum designs can be transformed to the so-called
Semi-Infinite Programming one (SIP) and then efficiently solved using one of the
dedicated methods. That approach has one decided advantage over the Wynn-
Fedorow scheme, namely, the theory in SIP, as well as the numerical SIP methods
have expanded very fast during the last years (Reemtsen and Rückmann, 1998). In
turn, a serious drawback is that the knowledge of an upper bound on the number
of support points in the optimal design is required, which may be problematic in
applications. Nevertheless, the approach is attractive, especially when the Wynn-
Fedorov algorithm fails.

A typical semi-infinite programming problem has the following form (Žaković
and Rustem, 2003; Hettich and Kortanek, 1993):

min
u∈U

f(u)

G(u, v) ≤ 0, ∀v ∈ V,
(4.13)

where u ∈ U ⊂ Rr, v ∈ V ⊂ Rρ, f ∈ C2(U), G ∈ C2(U × V ;Rr+ρ), U and V
being some nonempty compact sets. The term semi-infinite programming derives
from the fact that although we have a finite number of decision variables in the
target function f , the condition G(u, v) ≤ 0, ∀ v ∈ V represents an infinite set of
constrains on u.

Interest in the SIP problem dates back to the late 1940 and since then it
has been extensively studied in the literature (the reader is referred, e.g., to the
survey (Hettich and Kortanek, 1993) and the references therein). Applications
of SIP include, among other things, minimax and saddle point problems. Also,
their applications to numerous problems in science and engineering are extensive
(e.g., some problems in mechanics, environmental sciences or engineering design,
cf. (Polak, 1987)).

Popular numerical processing tools such as Matlab often include ready-to-
use procedures for solving SIP problems. As an example, consider the Matlab
fseminf procedure included in Matlab Optimization Toolbox, which is capable
of solving small-scale SIP problems (MathWorks, 2005).

4.2.1. T-optimum design as an SIP problem

It is well known (Žaković and Rustem, 2003), that a typical minimax problem

min
u∈U

max
v∈V

f(u, v) (4.14)
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can alternatively be expressed as the problem




min
u∈U,α

α

subject to max
v∈V

f(u, v) ≤ α,
(4.15)

which finally leads to some SIP problem
{

min
u∈U,α

α

subject to f(u, v)− α ≤ 0, ∀ v ∈ V.
(4.16)

Such a transformation allows us to handle a large class of minimax problems
arising in numerous disciplines (e.g., engineering, finance, decision making under
uncertainty) as SIP problems.

Also the original problem (3.14) of T-optimum design

∆1(ξ?) = max
ξ∈Ξ(X)

min
ϑ2∈Θ2

J (ξ, ϑ2), (4.17)

where J (ξ, ϑ2) =
∫

X
‖η(x) − η2(x, ϑ2)‖2 ξ(dx), can be similarly transformed into

an ‘SIP-like’ formulation{
max

ξ∈Ξ(X),α
α

subject to J (ξ, ϑ2) ≥ α, ∀ϑ2 ∈ Θ2,
(4.18)

or equivalently,
{

min
ξ∈Ξ(X),β

β

subject to −β − J (ξ, ϑ2) ≤ 0, ∀ϑ2 ∈ Θ2,
(4.19)

which fits snugly into the general problem (4.13) if the number of the support
points in ξ is fixed a priori.

Indeed, assuming that a T-optimal design has the discrete form

ξ =
{

x1, . . . , xn

p1, . . . , pn

}

for a fixed n which should be chosen as a sufficiently large number (in practice,
we may only guess this value, as no theoretical results exist regarding the number
of support points in T-optimal designs), we can define

U =

{
(x1, . . . , xn, p1, . . . , pn, β) ∈ Xn × [0, 1]n × [−c, 0] :

n∑

i=1

pi = 1

}
⊂ Rns+n+1

V = Θ2 ⊂ Rm, (4.20)

where c is a sufficiently large positive number, and write

f(u) = β,

G(u, v) = −β −
n∑

i=1

pi‖η(xi)− η2(xi, ϑ2)‖2.
(4.21)
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This means that numerical methods for SIP can be directly applied to find ap-
proximations to the sought T-optimal designs.

4.2.2. Numerical methods for SIP

Generally, numerical solution of SIP problems usually consists in generating a
sequence of finitely constrained auxiliary optimization problems suitable for being
solved by standard algorithms for finite constrained optimization. Depending on
the way in which those auxiliary problems are generated, the following three classes
of applicable algorithms can be distinguished (Hettich et al., 2001):

• exchange methods (including cutting plane methods which are applicable
only for convex problems),

• discretization methods,

• methods based on local reduction.

In order to present the scheme of the exchange and discretization methods,
we rewrite the initial SIP problem (4.13) in the form

S(V )





min
u∈eU

f(u)

Ũ =
{

u ∈ U : G(u, v) ≤ 0, ∀y ∈ Y
}

.
(4.22)

Problem S(V ) is then approximated by finitely constrained auxiliary problems
S(V k) in the form

S(V k)





min
u∈Uk

f(u)

Uk =
{

u ∈ U0 : G(u, v) ≤ 0, ∀v ∈ V k
}

,
(4.23)

where U0 is a convex compact set, U0 ⊂ U and V k ⊂ V is a set containing a finite
number of elements.

Before we get into details of the above-mentioned methods, it is worth of notic-
ing that there also exists a different approach to solving SIP problems. Namely,
by transforming the constraints G(u, v) ≤ 0, ∀v ∈ V into max

v∈V
G(u, v) ≤ 0, the

problem may be treated in the framework of non-differentiable optimization. The
interested reader is referred to the survey paper (Polak, 1987).

In the sequel, we assume that both f and G are smooth and twice continuously
differentiable functions.

4.2.2.1. Exchange methods

The name of the whole family of such methods originates from the fact that during
the k-th iteration of the procedure, an exchange of constraints takes place, i.e.,
the set V k+1 is obtained from V k by addition of at least one new constraint and
(usually) deletion of some of the constraints, i.e., elements of the V k set.
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The general scheme of an exchange procedure can be described by the follow-
ing steps (Hettich and Kortanek, 1993):
During the k-th iteration

¶ For given V k ⊂ V find a solution ûk of the problem S(V k).

· Find some (or all) maxima v̂k
1 , . . . , v̂k

qk
of the subproblem Q(ûk) defined as

follows:
Q(ûk) : max

v∈V
G(ûk, v). (4.24)

¸ If
G(ûk, v̂k

j ) ≤ 0, j = 1, . . . , qk, (4.25)

then STOP (ûk is the optimum solution), otherwise construct V k+1 such
that

V k+1 ⊂ V k ∪ {v̂k
1 , . . . , v̂k

qk
}, (4.26)

set k ← k + 1 and proceed to the next iteration.

The condition necessary for convergence of the scheme is

max
j=1,...,qk

G(ûk, v̂k
j ) = max

v∈V
G(ûk, v) (4.27)

i.e., we need to find a global optimum of the subproblem Q(ûk) which for higher
dimensions of the V set may be very costly.

A lot of realizations of the presented scheme exist in the literature (see, e.g.,
references in (Hettich et al., 2001)), including suggestions to use the cutting plane
algorithm for linear problems (Wu et al., 1998) and convex problems (Kortanek and
No, 1993). The particular realizations differ mainly in a manner of constructing
the set V k+1, e.g., in (Hettich and Kortanek, 1993) the convergence of the above
scheme is proved in the case when no constraint is deleted from V k.

It seems that the simplest implementation of the exchange method consists
in keeping all old constraints and adding only one new constraint in each iteration
(i.e., V k+1 ⊂ V k ∪ {v̂k}) satisfying v̂k = max

v∈V
G(ûk, v). In the next section we

adapt this procedure to solve the T-optimum SIP problem (4.19).

4.2.2.2. Discretization methods

Methods belonging to this family generate a finite number of constraints by scat-
tering the V set using a grid which is usually regular. Consequently, a sequence
of problems S(V k) is generated, where V k is an hk-grid on V such that

sup
v∈V

dist(v, V k) ≤ hk, (4.28)

where hk > 0 defines the maximal stepsize over all the dimensions.
Since the grid can generate a huge number of constraints, due to efficiency

reasons the key idea is to choose in the k-th iteration only a subset V̄ k of the
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whole V k. The set V̄ k is consequently enlarged as long as the solution ûk of the
problem S(V̄ k) is feasible also for V k. Then, the grid is refined: hk+1 = γkhk

with γk ∈ (0, 1), and the next iteration proceeds. Such a scheme is repeated until
a prescribed number of iterations is achieved.

Generally, the algorithm can be described by the following steps:
During the k-th iteration, given hk−1, the last set V̄ k−1 ⊂ V k−1 and the solution
ûk−1 to the problem S(V̄ k−1)

¶ Choose hk = γkhk−1 and generate V k,

· Select V̄ k ⊂ V k,

¸ Compute a solution ūk to S(V̄ k). If ūk is also feasible for S(V k) within a
given accuracy, then set ûk = ūk and go to Step 4. Otherwise, repeat Step 2
for a new choice of V̄ k, enlarging the old one,

¹ If k > kmax, where kmax is an arbitrarily chosen number of grid refinement
steps, then STOP (ûk is the optimum solution). Otherwise, set k ← k + 1
and go to Step 1 (repeat the procedure again).

An important aspect of that type of algorithms as regards efficiency is the use
of as much information as possible from the previous grids while solving S(V̄ k).
Implementations differ mainly in the choice of V̄ k, but a common suggestion is to
select

V̄ k ⊃ V k
ς = {v ∈ V k : G(ûk, v) ≥ −ς} (4.29)

with some threshold ς > 0 selected a priori. The choice of ς is ambiguous. Its
too large value leads to many constraints in S(V̄ k), which decreases efficiency.
However, a too small ς may lead to multiple repetition of the second and third
steps of the algorithm during each iteration. There exist adaptive strategies of
gradually decreasing ς (Painter and Tits, 1989). Also the coefficient γk responsible
for the grid refinement can be chosen in many ways (e.g., based on the information
about last setting V̄ k−1 and solution ûk−1 (Polak and He, 1992)).

4.2.2.3. Local reduction methods

The methods of this type are founded on the assumption that, under appropri-
ate conditions, the original continuum of constraints can be replaced by finitely
many constraints which are locally sufficient to describe the feasible solution re-
gion U . Thus, against the original one, the reduced problem is being solved in
each iteration. The basis for that reduction can be presented as follows (Hettich
et al., 2001):

Let the f and G be smooth and twice continuously differentiable functions
(f ∈ C2(Rr), G ∈ C2(Rr×V )), ū ∈ Rr be a given point and v̄1, . . . , v̄q(ū), q(ū) <
∞, be all local solutions to the problem Q(ū) : max

v∈V
G(ū, v). It is obvious that

ū is feasible iff G(ū, v̄j) ≤ 0, j = 1, . . . , q(x̄). Furthermore, assume that there
exist a neighborhood N̄ of ū and twice continuously differentiable functions:

vj : N̄ → V, vj(ū) = v̄j , j = 1, . . . , q(ū) (4.30)
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such that for every u ∈ N̄ we have that vj(u) are all local solutions of Q(u). Then,
with

Gj(u) = G(u, vj(u)), j = 1, . . . , q(ū), (4.31)

we have
Gj ∈ C2(N̄ ) (4.32)

and
U ∩ N̄ = {u ∈ N̄ : Gj(u) ≤ 0, j = 1, . . . , q(ū)}. (4.33)

This means that in N̄ the original problem S(V ) can be replaced by the reduced
finite one in the form

Sū(V )





min
u∈U0

f(u)

U0 =
{

u ∈ U : Gj(u) ≤ 0, j = 1, . . . , q(ū)
}

.
(4.34)

The general scheme of this type of algorithm can be expressed by the following
steps:
During the k-th iteration, given ûk−1 (not necessarily feasible),

¶ Find all local maxima v̂k
1 , . . . , v̂k

qk
of the subproblemQ(ûk) defined as follows:

Q(ûk) : max
v∈V

G(ûk, v) (4.35)

· Apply some algorithm of finite programming to get the solution uk of the
reduced problem Sk,

Sk





min
u∈Uk

f(u)

Uk =
{

u ∈ U : Gj(u) ≤ 0, j = 1, . . . , qk

}
,

(4.36)

where
Gj(u) = G(u, v̂j(u)) (4.37)

and the functions v̂j(u) are defined in a neighbourhood of ûk−1.

¸ Set ûk ← uk, k ← k + 1 and proceed to the next iteration.

Computationally, Step 1 is the most costly since it requires a global search
for all maxima of Q(ûk). Hence in practical realizations the execution of this step
should be avoided as much as possible. A basic assumption of the reduction method
is that there exist a finite number of such maxima. If it fails, the method is not ap-
plicable. Step 2 necessitates the use of some method of finite non-linear program-
ming. Effective Sequential Quadratic Programming (SQP) methods have been
widely used in this context, especially the ones using the augmented Lagrangian
function and quasi-Newton updates of their Hessians. Since SQP methods are
only locally convergent, some authors use hybrid techniques and combine robust
globally convergent ascent methods with the SQP approach. For further details,
the reader is referred to (Hettich and Kortanek, 1993) and references therein.
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4.2.3. Adaptation of the exchange SIP method for the T-optimum design
problem

Due to the relatively simple idea and, in consequence, the simplicity of the imple-
mentation, the algorithm proposed here to solve the problem (4.13) with (4.20)
and (4.21) makes use of the exchange method. Since the use of global optimizers is
necessary to ensure convergence, to this end the Adaptive Random Search (ARS)
scheme has been integrated into the algorithm, cf. Section 4.4 for further details.
The k-th auxiliary problem has the form

S(Θk
2)





min
u∈Uk

f(u)

Uk =
{

u ∈ U ∈ Rns+n+1 : G(u, ϑ2) ≤ 0, ∀ϑ2 ∈ Θk
2

}
,

(4.38)

where u, f and G have the forms given by (4.20) and (4.21). Then the proposed
algorithm is as follows:

Algorithm 4.2 (SIP based algorithm for T-optimum designs).

During the k-th iteration:

Step 1: Given Θk
2 ⊂ Θ, find a global solution ûk of the problem S(Θk

2).

Step 2: Find a global maximum ϑ̂k
2 of the subproblem Q(ûk) defined as follows:

Q(ûk) : max
ϑ2∈Θ2

G(ûk, ϑ2). (4.39)

Step 3: If
G(ûk, ϑ̂k

2) ≤ 0, (4.40)

then STOP (ûk is the optimum solution), otherwise construct Θk+1
2 such

that
Θk+1

2 ⊂ Θk
2 ∪ {ϑ̂k

2}, (4.41)

set k ← k + 1 and go to Step 1 (repeat the procedure again).

The strategy of constructing the set Θk
2 consists in simply adding a single

most violated constraint and no deletion of the existing constraints. Since usually
the set Θ2, defining the admissible parameter values of the alternative model, is
a hypercube, the simplest way to construct the starting set Θ1

2 is to form it from
the centre of this hypercube.

If we only assume that there exists 0 < Γ < ∞ such that

Uk(Θk
2) =

{
u ∈ U : G(u, ϑ2) ≤ 0, ∀ϑ2 ∈ Θk

2 and ‖u‖∞ ≤ Γ
}

, (4.42)

i.e., the solution of Q(ûk) is bounded and Uk is a compact set contained in a ball
around zero with radius Γ, the convergence of the proposed scheme can be proved
in much the same way as in (Hettich and Kortanek, 1993, pp. 410–411). Note that
in our case this condition is satisfied.
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During the first step of the algorithm, the ARS scheme is used as the global
optimizer for the constrained problem S(Θk

2). To this end the conversion of S(Θk
2)

to an equivalent unconstrained problem is performed. We take advantage of the
fact that the original problem

{
min

ξ∈Ξ(X),β
β

subject to −β − J (ξ, ϑ2) ≤ 0, ∀ϑ2 ∈ Θk
2 ,

(4.43)

is equivalent to

β? = min
ξ∈Ξ(X)

{
− min

ϑ2∈Θk
2

(
J (ξ, ϑ2)

)}
. (4.44)

Since Θ2 is most often a hypercube, the ARS can be directly used as the
global optimizer during the search for the most violated constraint in the second
step of the algorithm.

When dealing with multiresponse dynamic systems models, we must remem-
ber that the most costly part of the target function evaluation during optimization
is concentrated on numerical calculation of the responses of the alternative model
for varying parameter values. Thus for the efficiency of an implementation it is
crucial to avoid such response calculation as much as possible. Hence, during the
optimization performed in the second step of the proposed scheme, the responses
η2 should be computed for each ϑ2 ∈ Θk

2 once and stored in computer memory.
Unfortunately, optimization performed during the second step of algorithm with
respect to the parameters of the alternative model requires such calculations each
time once the target function is evaluated (a continuous search over Θ2 is unavoid-
able).

Remark 6. Generally, bear in mind that, e.g., if we deal with the models of dis-
tributed parameter systems described by adequate partial differential equations
(PDEs), the evaluation of the target function is involved with a sequence of un-
avoidable numerical approximations (numerical solution of the PDE, its interpo-
lation between grid points, integration of the complex criterion function, etc.).
The accuracy of such approximations affects the optimization process and, conse-
quently, implicitly the accuracy of the overall solution (optimum design). However,
it is obvious that an improvement in accuracy can drastically increase computa-
tion time. Fortunately, by applying the Equivalence Theorem, we are always able
to check the quality of the obtained solutions.

The above comment remains valid in the case of any algorithm used in the
numerical search for approximations of optimum designs.

Example 4.3. Consider the state-space model of a simple pendulum

dϕ(t)
dt

= ω(t), ϕ(0) = π/4,

dω(t)
dt

= −10sin(ϕ(t)), ω(0) = 0,

(4.45)
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where ϕ(t) stands for the angle of pendulum swing at time t and ω(t) denotes the
angular velocity. The alternative model has the linear structure

dϕ(t)
dt

= ω(t), ϕ(0) = π/4,

dω(t)
dt

= −ϑ2ϕ(t) ω(0) = 0,

(4.46)

where ϑ2 stands for an unknown, but constant, parameter value. It was assumed
that the design region was T = [0, 0.94], the set of admissible parameter values
Θ2 ∈ [7, 11], and the design size n = 3 (i.e., it consisted of three time instants).
Using the approach described above, we obtained the optimum design

ξ? =
{

0.1789, 0.5309, 0.1789
0.2034, 0.5351, 0.2615

}
, (4.47)

which obviously reduces to the two-point design

ξ? =
{

0.1789, 0.5309
0.4649, 0.5351

}
. (4.48)

The worst value of the alternative model parameter with respect to ξ? is ϑ?
2 =

9.2957. Figure 4.3 shows the respective sensitivity function ψ(t, ξ?) = ‖η(t) −
η2(t, ϑ?

2)‖2 as a function of time and the responses of both the models. The
program to calculate this numerical approximation of the optimum design was
written using Lahey-Fujitsu Fortran 95 compiler v.5.6 with the aid of procedures
from IMSL Fortran 90 MP Library v.4.0 (e.g., the DNCONF function implementing
the sequential quadratic programming (SQP) method for nonlinearly constrained
optimization).

4.3. Relaxation procedure for solving T-optimum design problems

As was already indicated in (Fedorov and Hackl, 1997, p. 95), the classical sequen-
tial Wynn-Fedorov algorithm tailored to tackle the T-optimality criterion may
suffer from the lack of convergence if a global minimizer for the problem

min
ϑ2∈Θ2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx), (4.49)

which has to be solved when computing ∆1(ξ), is not unique. Although this
phenomenon has been well known for many years, no viable alternative for this
scheme has been proposed in the optimum experimental design literature so far.
The only improvements concern a kind of regularization recommended in (Fedorov
and Hackl, 1997). Namely, the authors suggest to replace successive designs ξk by
ξ̄k = (1 − γ)ξk + γξ̄, where 0 < γ ¿ 1 and ξ̄ is a regular design, i.e., the design
for which the minimization problem

min
ϑ2∈Θ2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ̄(dx), (4.50)
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Fig. 4.3 . Sensitivity function (a) and true and alternative model responses (con-
tinuous and dashed lines, respectively) (b) with the location of the support points
(dashed vertical lines) obtained in Example 4.3. The upper two lines in (b) stand
for the angle ϕ, whereas the lower ones signify the angular velocity ω.

possesses a unique solution. But this is only a vague hint whose utility has never
been formally proved and it can only be qualified as a heuristic which may fail (at
any rate, it is possible to provide examples when this is the case).

In what follows, we outline a relaxation procedure which is robust to the
presence of non-unique minimizers for (4.49). What is more, we give the proof
of its convergence in a finite number of steps. A similar procedure has been used
for numerically solving semi-infinite programming problems since the 1970s, cf.
(Shimizu and Aiyoshi, 1980), but in the context of Euclidean spaces. Conceptu-
ally, it is an exchange SIP method as discussed in Section 4.2.2. The most serious
complication which seems to prevent its use for determination of T-optimum de-
signs is the necessity of operating on a space of probability measures in lieu of
a finite-dimensional Hilbert space. Yet, below, we show that this obstacle can
be overcome at the cost of additional efforts put forth to manage the technicali-
ties related to the notion of weakly convergent probability measures. As a result,
the original T-optimum design problem with a constraint set Θ2 consisting of an
infinite number of elements is decomposed into a sequence of substantially sim-
pler ‘relaxed’ T-optimum design problems with finite-element constraint sets. The
presented technique can be regarded as a kind of nonlinear cutting plane method
(Bertsekas, 1999).

4.3.1. Relaxation algorithm and its convergence

Algorithm RATO (Relaxation Algorithm for T-Optimality)

Algorithm 4.3 (RATO).
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Step 1: (Initialization)
Choose any initial point ϑ1

2 ∈ Θ2 and define the initial set of representative
parameter values Θ1

2 =
{
ϑ1

2

}
. Select 0 < ε ¿ 1, a parameter used in the

stopping rule, and set k = 1.

Step 2: (Solution of the relaxed problem)
Determine

ξk = arg max
ξ∈Ξ(X)

∆k
1(ξ), (4.51)

where
∆k

1(ξ) = min
ϑ2∈Θk

2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx). (4.52)

Step 3: (Determination of a candidate for the next representative parameter)
Find

ϑk+1
2 = arg min

ϑ2∈Θ2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξk(dx) (4.53)

and store the corresponding value

∆1(ξk) =
∫

X

‖η(x)− η2(x, ϑk+1
2 )‖2 ξk(dx). (4.54)

Step 4: (Termination check)
Terminate if ∆1(ξk) ≥ ∆k

1(ξk) − ε. Otherwise, set Θk+1
2 = Θk

2 ∪
{
ϑk+1

2

}
,

replace k by k + 1 and go back to Step 2.

Roughly speaking, the algorithm is initiated from Θ1
2 =

{
ϑ1

2

}
and then it

iteratively seeks to maximize ∆1( · ) by alternating between two phases: maxi-
mization of the ‘relaxed’ T-optimality criterion, i.e., the criterion computed for
a finite set of representative parameters Θk

2 , and then comparison of the so ob-
tained optimal value with that of the genuine T-optimality criterion at the same
‘relaxed’ T-optimum design. If both the values do not differ (up to a small positive
scalar ε standing for the desired degree of accuracy), then we terminate the itera-
tions. Otherwise, the minimizer determining the value of the genuine T-optimality
criterion at the current ‘relaxed’ T-optimum design is added to the set of represen-
tative parameters and the process of maximization is then rerun. This procedure
of maximization and verification is thus repeated over and over.

It is a simple matter to show that the sequence of ‘relaxed’ values
{
∆k

1(ξk)
}

is nonincreasing, i.e., ∆k+1
1 (ξk+1) ≤ ∆k

1(ξk) for each k = 1, 2, . . . If the above
computational scheme is convergent, then ∆k

1(ξk) → ∆1(ξ?) from above, where
ξ? is a sought T-optimum design. In order to show this and to validate the
termination criterion, observe first that, for each ξ ∈ Ξ(X), we have that

min
ϑ2∈Θk

2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx) ≥ min
ϑ2∈Θ2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx), (4.55)

which implies
∆k

1(ξ) ≥ ∆1(ξ), ∀ξ ∈ Ξ(X). (4.56)
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Taking the maxima of both the sides, we get

∆k
1(ξk) ≥ ∆1(ξ?) ≥ ∆1(ξk), (4.57)

the latter inequality resulting from the definition of ξ? as a global maximizer of
∆1( · ). Consequently, if it happens that ∆k

1(ξk) ≈ ∆1(ξk), then we can rightly
claim that we are reasonably close to ξ? in the sense that ∆1(ξk) ≈ ∆1(ξ?).

Theorem 4.1. Let Assumptions (A1)–(A3) of p. 41 hold. Then, for any given
ε > 0, Algorithm RATO terminates in a finite number of iterations.

Proof. Denote

J (ξ, ϑ2) =
∫

X

‖η(x)− η2(x, ϑ2)‖2 ξ(dx). (4.58)

Since Θk
2 ⊂ Θk+1

2 , we have

min
ϑ2∈Θk

2

J (ξ, ϑ2) ≥ min
ϑ2∈Θk+1

2

J (ξ, ϑ2), ∀ξ ∈ Ξ(X), (4.59)

or equivalently,
∆k

1(ξ) ≥ ∆k+1
1 (ξ), ∀ξ ∈ Ξ(X). (4.60)

Taking the maxima of both the sides over Ξ(X) yields

∆k
1(ξk) ≥ ∆k+1

1 (ξk+1), (4.61)

i.e., the sequence
{
∆k

1(ξk)
}

is nonincreasing and zero is its lower bound.
From this, the sequential weak compactness of Ξ(X) and the compactness of

Θ2, there must be a subsequence
{

ξki
}

of
{
ξk

}
such that

ξki −−−→
i→∞

ξ̄ weakly, (4.62)

∆ki

1 (ξki

) −−−→
i→∞

∆̄1, (4.63)

ϑki+1
2 −−−→

i→∞
ϑ̄2 (4.64)

for some ξ̄ ∈ Ξ(X), ∆̄1 ≥ 0 and ϑ̄2 ∈ Θ2.
Consider the relaxed problem in the (ki+1)-th iteration. Clearly, since ki+1 ≥

ki + 1, we see that ϑki+1
2 ∈ Θki+1

2 and hence

J (ξki+1
, ϑki+1

2 ) ≥ ∆ki+1

1 (ξki+1
), ∀i ∈ N. (4.65)

Letting i →∞ and applying Lemma 3.2, we obtain

J (ξ̄, ϑ̄2) ≥ ∆̄1. (4.66)

Observe that, for each i = 1, 2, . . . , we have that

ϑki+1
2 ∈ Θ̂2(ξki

) = Arg min
θ2∈Θ2

J (ξki

, ϑ2) (4.67)
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and hence ϑ̄2 is a cluster point of the sequence
{

Θ̂2(ξki

)
}

. The sequential weak

outer semicontinuity of Θ̂2( · ), cf. Theorem 3.3, then implies

ϑ̄2 ∈ Lim sup
i→∞

Θ̂2(ξki

) ⊂ Θ̂2(ξ̄). (4.68)

Consequently,
∆1(ξ̄) = min

ϑ2∈Θ2
J (ξ̄, θ2) = J (ξ̄, ϑ̄2). (4.69)

From (4.66) we thus have
∆1(ξ̄) ≥ ∆̄1. (4.70)

The weak continuity of ∆1( · ) yields

lim
i→∞

∆1(ξki

) = ∆1(ξ̄) ≥ ∆̄1. (4.71)

This means that there exists some index i′ such that

∆1(ξki

) ≥ ∆̄1 − ε

2
, ∀i ≥ i′. (4.72)

On the other hand, from (4.63) we deduce that there must be some index i′′ for
which

∆̄1 ≥ ∆ki

1 (ξki

)− ε

2
, ∀i ≥ i′′. (4.73)

Therefore, for any i ≥ max{i′, i′′}, we have

∆1(ξki

) ≥ ∆̄1 − ε

2
≥ ∆ki

1 (ξki

)− ε

2
− ε

2
= ∆ki

1 (ξki

)− ε, (4.74)

i.e., the termination criterion in Step 4 is satisfied in a finite number of iterations.
This completes the proof.

It goes without saying that, in order to implement Algorithm RATO, it is
necessary to detail numerical solution of the relaxed problem given in Step 2.

4.3.2. Numerical maximization of the ‘relaxed’ T-optimum design criterion

The following result turns out to be extremely useful while numerically solving the
‘relaxed’ T-optimum design problem

Theorem 4.2. Under Assumptions (A1)–(A3), a purely discrete design

ξk = arg max
ξ∈Ξ(X)

∆k
1(ξ) (4.75)

exists, comprising no more than k + 1 support points.



76 4.3. Relaxation procedure for solving T-optimum design problems

Proof. Fixing ς = ∆k
1(ξk), we have that the design ξk satisfies the following system

of linear inequalities: 



∫

X

f1(x) ξk(dx) ≥ ς,

...∫

X

fk(x) ξk(dx) ≥ ς,

(4.76)

where fi(x) = ‖η(x)−η2(x, ϑi
2)‖2, which can equivalently be represented in vector

form ∫
g(x) ξk(dx) ≥ 0 (4.77)

with g(x) = (f1(x)− ς, . . . , fk(x)− ς).
Then the left-hand side of (4.77) defines an element of the convex hull of the

set S =
{
g(x) : x ∈ X

} ⊂ Rk, defined as

conv(S) =
{∫

X

g(x) ξ(dx) : ξ ∈ Ξ(X)
}

. (4.78)

Hence, from Carathéodory’s theorem (Silvey, 1980, p.72),
∫

X
g(x) ξk(dx) can be

expressed as a convex combination of no more than k + 1 elements of S, i.e.,

∫

X

g(x) ξk(dx) =
k+1∑

i=1

pk
i g(xk

i ), (4.79)

where

pk
i ≥ 0, i = 1, . . . , k + 1,

k+1∑

i=1

pk
i = 1, (4.80)

xk
i , i = 1, . . . , k + 1 being some points of X. This means that we may rightly

identify ξk with the approximate discrete design
{

xk
1 , . . . , xk

k+1

pk
1 , . . . , pk

k+1

}
. (4.81)

The above theorem simplifies the maximization of Step 2 to a search among
discrete designs with a limited number of support points. This can be cast as the
finite-dimensional maximin problem

max
xi,pi

min

{
k+1∑

i=1

pi‖η(xi)− η2(xi, ϑ
1
2)‖2, . . . ,

k+1∑

i=1

pi‖η(xi)− η2(xi, ϑ
k
2)‖2

}
, (4.82)
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subject to

xi ∈ X, i = 1, . . . , k + 1,

pi ≥ 0, i = 1, . . . , k + 1, (4.83)
k+1∑

i=1

pi = 1,

or the equivalent smooth nonlinear programming problem

max
xi,pi,ς

ς (4.84)

subject to

k+1∑

i=1

pi‖η(xi)− η2(xi, ϑ
`
2)‖2 ≥ ς, ` = 1, . . . , k,

xi ∈ X, i = 1, . . . , k + 1, (4.85)
pi ≥ 0, i = 1, . . . , k + 1,

k+1∑

i=1

pi = 1.

The optimality of ξk can be checked using the general optimality conditions
given in Theorem 3.7. Since Θk

2 has only k elements, probability measures ζ on

Θ̂k
2(ξk) = Arg min

ϑ2∈Θk
2

∫

X

‖η(x)− η2(x, ϑ2)‖2 ξk(dx) = {ϑi1
2 , . . . , ϑi`

2 }

are just discrete and (3.64) converts into the following set of conditions:

min
q1,...,q`

max
x∈X

∑̀

j=1

qj‖η(x)− η2(x, ϑ
ij

2 )‖2 ≤ ∆k
1(ξk) (4.86)

subject to

qj ≥ 0, j = 1, . . . , `, (4.87)

∑̀

j=1

qj = 1.

Their verification may constitute a rather costly problem from the computational
viewpoint if k gets large and X is high-dimensional. Therefore, below we present a
simple approach which consists in smoothing the ‘relaxed’ T-optimality criterion.
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4.3.2.1. Smooth concave approximation to the ‘min’ function

It is well known that the function f : Rk → R defined as

f(v) = min{v1, . . . , vk} (4.88)

is not differentiable, which inevitably gives rise to extreme difficulties in extending
classical optimization methods often using the information of the gradient and
Hessian of the objective function.

In what follows, we propose to approximate it using the following parameter-
ized, smooth exponential penalty function:

fλ(v) = −λ ln

(
k∑

i=1

exp
(
−vi

λ

))
, (4.89)

where λ > 0 is a parameter.
An analogous function was originally proposed as an exponential penalty func-

tion for constrained optimization, and then it was successfully applied in a smooth-
ing method for minimax problems (Polak, 1997; Chen et al., 2004; Xu, 2001). The
following result characterizes its interesting uniform approximation properties.

Lemma 4.1. We have the following properties:

(i) Given v ∈ Rk, the mapping λ 7→ fλ(v) is nonincreasing in (0,∞).

(ii) For all v ∈ Rk we have

f(v) ≥ fλ(v) ≥ f(v)− λ ln(k). (4.90)

(iii) Given λ > 0, fλ( · ) is twice continuously differentiable. Its gradient and
Hessian are

∇fλ(v) = µλ(v), (4.91)

∇2fλ(v) =
1
λ

[
µλ(v)µT

λ (v)−Diag(µλ(v))
]
, (4.92)

respectively, where

µλ(v) = col[µλ1(v), . . . , µλk(v)], (4.93)

µλi(v) =
exp(−vi/λ)

k∑
j=1

exp(−vj/λ)
∈ (0, 1), i = 1, . . . , k, (4.94)

and Diag(µλ(v)) signifies the diagonal matrix with its i-th diagonal entry
µλi(v) for each i = 1, . . . , k.

(iv) Given λ > 0, fλ( · ) is concave.

(v) Given λ > 0, fλ( · ) is nondecreasing, i.e., fλ(v) ≤ fλ(w) whenever v ≤ w.
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Proof. Part (i): Given v ∈ Rk, it may be concluded that

∂

∂λ
fλ(v) =

∂

∂λ

[
−λ ln

(
k∑

i=1

exp
(
−vi

λ

))]

= − ln




k∑

j=1

exp
(
−vj

λ

)

−

k∑

i=1

vi

λ
µλi(v),

(4.95)

where the weighting coefficients µλi(v) are defined by (4.94). Since the µλi’s sum
up to unity, it follows that

∂

∂λ
fλ(v) = −

k∑

i=1


vi

λ
+ ln




k∑

j=1

exp
(
−vj

λ

)




 µλi(v) ≤ 0 (4.96)

because

ln




k∑

j=1

exp
(
−vj

λ

)

 ≥ ln

(
exp

(
−vi

λ

))
= −vi

λ
, i = 1, . . . , k. (4.97)

Consequently, λ 7→ fλ(v) is nonincreasing.

Part (ii): By definition, given λ > 0, we have

f(v)− fλ(v) = λ ln
(

exp
(

f(v)
λ

))
+ λ ln

(
k∑

i=1

exp
(
−vi

λ

))

= λ ln

(
k∑

i=1

exp
(

min{v1, . . . , vk} − vi

λ

))
.

(4.98)

But

1 ≤
k∑

i=1

exp
(

min{v1, . . . , vk} − vi

λ

)
≤ k, (4.99)

which gives
0 ≤ f(v)− fλ(v) ≤ λ ln(k). (4.100)

Part (iii): Formulae (4.91) and (4.92) are easy to verify by direct differentiation.

Part (iv): The assertion will be shown if we prove that the Hessian ∇2fλ(v) is
negative semidefinite for all v ∈ Rk, i.e., if

yT∇2fλ(v)y ≤ 0, ∀y ∈ Rk. (4.101)

From Part (iii) we deduce that

yT∇2fλ(v)y =
1
λ




(
k∑

i=1

αiyi

)2

−
k∑

i=1

αiy
2
i


 , (4.102)
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where αi = µλi(v), i = 1, . . . , k. Observing that α1, . . . , αk > 0 and
∑k

i=1 αi = 1,
for any convex function g : R→ R we must have

g

(
k∑

i=1

αiyi

)
≤

k∑

i=1

αig(yi), (4.103)

which is a special case of Jensen’s inequality (Pollard, 2002, p. 29). Setting g(z) =
z2, we get (

k∑

i=1

αiyi

)2

−
k∑

i=1

αiy
2
i ≤ 0, (4.104)

which implies (4.101).

Part (v): Let v, w ∈ Rk satisfy v ≤ w and λ > 0 be fixed. Then for each
i = 1, . . . , k we have vi ≤ wi and thereby −vi/λ ≥ −wi/λ. Since both the
exponential and logarithm functions are increasing, it follows that

λ ln

(
k∑

i=1

exp
(
−vi

λ

))
≥ λ ln

(
k∑

i=1

exp
(
−wi

λ

))
, (4.105)

which yields the desired conclusion after multiplying both the sides by −1.

4.3.2.2. Smoothing method for maximization of ∆k
1( · )

Note that writing

Ji(ξ) =
∫

X

‖η(x)− η2(x, ϑi
2)‖2 ξ(dx), i = 1, . . . , k, (4.106)

we obtain
∆k

1(ξ) = min {J1(ξ), . . . ,Jk(ξ)} . (4.107)

Clearly, this form coincides with (4.88) and this observation, owing to excellent
approximation properties of the exponential penalty function (4.89), cf. Part (ii)
of Lemma 4.1, suggests transformation of the T-optimum design problem into the
smooth problem consisting in maximizing

∆k
1λ(ξ) = −λ ln

(
k∑

i=1

exp
(
−Ji(ξ)

λ

))
(4.108)

for a fixed 0 < λ ¿ 1. The probability measures maximizing ∆k
1λ( · ) will be called

Tk
λ-optimum designs.

The essential fact is that the design criterion ∆k
1λ( · ) possesses the same prop-

erties as other smooth criteria commonly used in optimum experimental design. In
particular, given ξ ∈ Ξ(X), we can define the following vector being a counterpart
of the Fisher information matrix:

v(ξ) = col
[J1(ξ), . . . ,Jk(ξ)

]
=

∫

X

ϕ(x) ξ(dx), (4.109)
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where

ϕ(x) = col
[‖η(x)− η2(x, ϑ1

2)‖2, . . . , ‖η(x)− η2(x, ϑk
2)‖2], (4.110)

and the set
v(X) = {v(ξ) : ξ ∈ Ξ(X)} . (4.111)

Consequently, in much the same way as Lemmas 3.2 and 3.3 in (Uciński, 2005),
we can prove the following two results.

Lemma 4.2. The set v(X) is compact and convex.

Lemma 4.3 (Bound on the number of support points). For any v0 ∈ v(X) there
always exists a purely discrete design ξ with no more than k+1 support points such
that v(ξ) = v0. If v0 lies on the boundary of v(X), then the number of support
points is less than or equal to k.

Lemma 4.3 justifies restricting our attention only to approximate discrete
designs with a limited number of supporting points, and this proves again that
the introduction of continuous designs, which may have seemed at first sight a
superfluous complication, leads to implementable results from a practical point of
view.

The following characterizations are of paramount importance:

Lemma 4.4. Let Assumptions (A1)–(A3) hold. Given λ > 0, we have the follow-
ing properties:

(i) ∆k
1λ( · ) is concave.

(ii) If v, w ∈ v(X) are such that v ≤ w, then ∆k
1λ(v) ≤ ∆k

1λ(w). (Monotonicity)

(iii) For any ξ, ν ∈ Ξ(X), we have

∂

∂λ
∆k

1λ[v((1− α)ξ + αν)]
∣∣∣∣
α=0+

=
k∑

i=1

µλi(v(ξ))[Ji(ν)− Ji(ξ)]. (4.112)

Proof. Part (i): Since the mapping fλ( · ), cf. (4.89), is concave and the mapping
v( · ) is linear, their composite fλ(v( · )) = ∆k

1λ( · ) must be concave.

Part (ii): It follows immediately from Part (v) of Lemma 4.1.

Part (iii): Part (iii) of Lemma 4.1, when combined with application of the chain
rule of differentiation, yields

∂

∂λ
∆k

1λ[v((1− α)ξ + αν)] =
∂

∂λ
∆k

1λ[(1− α)v(ξ) + αv(ν)]

= µT
λ ((1− α)v(ξ) + αv(ν))(v(ν)− v(ξ)) (4.113)

=
k∑

i=1

µλi((1− α)v(ξ) + αv(ν))[Ji(ν)− Ji(ξ)],

which implies the postulated form of the directional derivative.
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The above properties make it legitimate to treat the Tk
λ-optimum design prob-

lem in the usual framework of the optimum experimental design theory for smooth
optimality criteria (Atkinson and Donev, 1992; Fedorov and Hackl, 1997; Walter
and Pronzato, 1997; Pukelsheim, 1993; Pázman, 1986; Uciński, 2005). Conse-
quently, the following results can be directly obtained. Their proofs are standard,
cf. e.g. (Uciński, 2005), and therefore they are omitted.

Theorem 4.3 (Equivalence theorem for ∆k
λ( · )). The following characterizations

are equivalent in the sense that each implies the other two:

(i) the design ξ? maximizes ∆k
λ( · ),

(ii) the design ξ? minimizes max
x∈X

k∑
i=1

µλi(ξ)
[‖η(x)− η2(x, ϑi

2)‖2 − Ji(ξ)
]
, and

(iii)
k∑

i=1

µλi(ξ?)‖η(x)− η2(x, ϑi
2)‖2 ≤

k∑
i=1

µλi(ξ?)Ji(ξ?), ∀x ∈ X,

where µλi(ξ) = exp(−Ji(ξ)/λ)/
∑k

j=1 exp(−Jj(ξ)/λ), i = 1, . . . , k.

Theorem 4.4. Let Assumptions (A1)–(A3) hold. Then:

(i) A Tk
λ-optimal design exists comprising no more than k points (i.e., one less

than predicted by Lemma 4.3).

(ii) The set of Tk
λ-optimal designs is convex.

(iii) For any purely discrete Tk
λ-optimal design ξ?, the function∑k

i=1 µλi(ξ?)‖η(x) − η2(x, ϑi
2)‖2 attains its maximal value equal to∑k

i=1 µλi(ξ?)Ji(ξ?) at all support points corresponding to nonzero weights.

As we have repeatedly stated, the equivalence theorems in optimum exper-
imental design constitute the characterization of an optimal measure ξ? which
solves the design problem. Theorem 4.3 is not an exception in this respect. But,
additionally, we have to address the question of how to generate ξ?. As was al-
ready mentioned in Chapter 2, there are several iterative schemes for this task,
each of the following genre:

Algorithm 4.4 (Successive maximization of ∆k
1λ( · )).

Step 1: Let ξ0 be a discrete starting design. Fix 0 < λ ¿ 1 and choose some
positive tolerance ε ¿ 1. Set q = 0.

Step 2: Find

x̂q = arg max
x∈X

ψ(x, ξq), (4.114)

where

ψ(x, ξq) =
k∑

i=1

µλi(ξq)‖η(x)− η2(x, ϑi
2)‖2. (4.115)
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If ψ(x̂k, ξq) ≤
k∑

i=1

µλi(ξq)Ji(ξq) + ε, then STOP.

Step 3: For an appropriate value of 0 < αq < 1, update the design measure in
accordance with the rule

ξq+1 = (1− αq)ξq + αqδ(x̂q), (4.116)

where δ(x̂q) places measure one at point x̂q. Increment q by one and go to
Step 2.

In the same way as for the classical first-order algorithms in common use for
many years, the following choices for the sequence

{
αq

}
yield the convergence of

the above algorithm:

(i) Diminishing stepsize (Wynn’s algorithm):

lim
q→∞

αq = 0,

∞∑
q=0

αq = ∞. (4.117)

(ii) Limited maximization rule (Fedorov’s algorithm):

αq = arg max
0<α<1

∆k
1λ ((1− α)ξq + αδ(x̂q)) . (4.118)

Example 4.4. A motivation for this numerical example comes from industrial
processes diagnosis, cf. Section 6.5. A majority of methods for fault detection use
a system model to extract departures from a normal state and, in consequence, to
generate an appropriate residuum signal (Korbicz et al., 2004). If a true mathe-
matical description of the system is complicated or an adequate model is hard to
implement, T-optimum experimental designs can be helpful in finding a simpler
alternative model. The system of two tanks shown schematically in Fig. 4.4 was
considered as an example of a nonlinear, dynamic multiresponse system.

The system consists of two connected cylindrical tanks and a coil pipe fulfilling
a delay unit. The nominal outflow Qn is situated in the second tank. The liquid is
supplied into the first tank by a pump with flow speed Q1. Both tanks are equipped
with sensors measuring liquid levels N1 and N2. The valves VE , V1, V2, V3, V4

are switched manually. During the nominal work V1 and V4 are closed. By an
appropriate combination of valve switchings, we can model faults, i.e., leakiness of
the first tank. The above system can be described by a set of equations forming
the so-called flow model (Heiming and Lunze, 1999):

dN1(t)
dt

=
1

A1

(
Q1(t)−K1

√
N1(t)

)
,

dN2(t)
dt

=
1

A2

(
K1

√
N1(t)−K2

√
N2(t)

)
,

(4.119)

where N1 and N2 stand for liquid levels in the first and second tanks, respectively.
A1 and A2 can be interpreted as an averaged-by-height areas of a cut for each tank
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Fig. 4.4 . Two tank system.

and parameters K1 and K2 as normalized averaged cuts of reducers supplying the
liquid into tanks. The above model was considered as the true model of the two-
tank system. The idea of the experiment is to obtain a design so that it allows
for rejection of the alternative model, being in this case a linearized version of the
flow model of the form

dN1(t)
dt

=
Q1(t)
ϑ21

− ϑ23

ϑ21

(√
ϑ25 +

N1(t)− ϑ25

2
√

ϑ25

)
,

dN2(t)
dt

=
ϑ23

ϑ22

(√
ϑ25 +

N1(t)− ϑ25

2
√

ϑ25

)
− ϑ24

ϑ22

(√
ϑ25 +

N2(t)− ϑ25

2
√

ϑ25

)
.

(4.120)

Parameters ϑ21 up to ϑ24 have the same interpretation as parameters A1, A2,
K1, K2 of the true model. In both the models the influx Q1 into the first tank
can, in general, be time-varying. In the experiment this quantity was fixed at
a constant level of Q1 = 15 cm3/s. The time horizon and initial values of the
state variables were assumed as t = [0, 100] and N1(0) = 10, N2(0) = 5, respec-
tively. The parameters of the true model were fixed as ϑ1 = (A1, A2, K1, K2) =
(315.0, 315.0, 28.0, 28, 0), while the ranges for the parameter values in the alterna-
tive model were set as Θ2 =

{
[250, 350]× [250, 350]× [25, 35]× [25, 35]× [0.1, 100]

}
.

The Fortran 95 program to calculate approximation of the optimum design using
Algorithm 4.3 with ε = 0.01 and Algorithm 4.4 incorporated in order to regularize
the relaxed problems with λ = 0.005 was run using the Lahey-Fujitsu Fortran
95 compiler v5.6 with IMSL library. To solve the respective global optimization
problem, the Adaptive Random Search (ARS) method was utilized. The resulting
optimum design has the form

ξ? =
{

13.67, 59.08, 100.00
0.434, 0.251, 0.315

}
. (4.121)
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Fig. 4.5 . Sensitivity function (a) and true and alternative model responses (b)
(solid and dashed line, respectively) obtained in Example 4.4 (the location of the
optimal support points is shown with dashed vertical lines).

This means that, e.g., about a quarter of the measuring effort should be as-
signed to the time t = 59.08 s. The corresponding least profitable vector of param-
eters of the alternative model was ϑ?

2 = (325.51, 337.31, 27.47, 28.50, 0.48). The
sensitivity function ψ(t, ξ?) = ‖η(t) − η2(t, ϑ?

2)‖2 has the form shown in Fig. 4.5.
It is worth of noticing that the support points are located in the places where the
sensitivity function achieves its upper bound equal to ∆1(ξ?) which is consistent
with the theory developed. The resultant design contains a minimal number of
support points to guarantee non-singularity, i.e., the identifiability of the system
parameters (the number of support points multiplied by the number of system
outputs must be greater than or equal to the number of unknown system param-
eters in ϑ2). The responses of the true and alternative models are also shown in
Fig. 4.5.

4.4. Solving global optimization subtasks

A vital role in the iterative algorithms presented in this chapter is played by an
efficient global optimization method. Since common nonlinear programming algo-
rithms are known to converge to local optima, we have turned our attention to a
stochastic optimization method called the adaptive random search (ARS), which is
widely used in the engineering optimization literature (Walter and Pronzato, 1997).
Based on numerous computer experiments it was found that this extremely simple
strategy is especially suited for the purpose of global optimization problems arising
while looking for numerical approximations of optimum designs. Thus it was used
while implementing numerical procedures incorporated in the dissertation.

Originally, the algorithm solves a maximization problem max
v∈V

J(v) for the

admissible set V being a hypercube, i.e., the admissible range for vi, i = 1, . . . , q
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is in the form
vi min ≤ vi ≤ vi max. (4.122)

We include the details from (Walter and Pronzato, 1997) in order to make our
presentation self-contained.

The routine chooses the initial point v0 at the centre of V . After r iterations,
given the current best point vr, a random displacement vector ∆v is generated
and the trial point

v+ = ΠV (vr + ∆v) (4.123)

is tested, where ∆v follows a multinormal distribution with zero mean and covari-
ance

Cov{∆v} = diag[σ1, . . . , σq], (4.124)

ΠV being the projection onto V ,

Π(v)i =





vi min if vi < vi min,
vi if vi min ≤ vi ≤ vi max,

vi max if vi > vi max.
(4.125)

If J(v+) < J(vr) then v+ is rejected and, consequently, we set vr+1 = vr,
otherwise v+ is taken as vr+1.

The adaptive strategy consists in repeatedly alternating two phases. During
the first one (variance selection) the diagonal of Cov{∆v} is selected from among
the sequence 1σ, 2σ, . . . , 5σ, where

1σ = vmax − vmin (4.126)

and

iσ = (i−1)σ/10, i = 2, . . . , 5. (4.127)

With such a choice, 1σ is large enough to allow for an easy exploration of
V , whereas 5σ is small enough for a precise localization of an optimal point. In
order to allow a comparison to be drawn, all the possible iσ’s are used 100/i times,
starting from the same initial value of v. The largest iσ’s, designed to escape local
maxima, are therefore used more often than the smaller ones.

During the second (exploration) phase, the most successful iσ in terms of the
criterion value reached during the variance selection phase is used for 100 random
trials started from the best v obtained so far. The variance-selection phase then
resumes, unless the decision to stop is taken.

A detailed scheme of the ARS algorithm is as follows:

Algorithm 4.5 (Adaptive Random Search algorithm).

Step 1: Initialization Choose v0, Nmax, imax, jmax (usually imax = 5, jmax =
100), 1σ, and set vbest = v0, N = 1, i = 1.

Step 2: Variance-selection phase
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2.1 Set j = 1, vj = v0 and iσ = 1σ10−i+1.

2.2 Perturb vj according to (4.123) to get a new trial point vj+.

2.3 If J(vj+) ≥ J(vj) then vj+1 = vj+, otherwise vj+1 = vj .

2.4 If J(vj+) ≥ J(vbest) then vbest = vj+, ibest = i.

2.5 If j ≤ jmax/i then set j ← j + 1 and go to 2.2.

2.6 If i < imax then set i ← i + 1 and go to 2.1.

Step 3: Variance-exploitation phase

3.1 Set j = 1, vj = vbest, i = ibest and iσ = 1σ10−i+1.

3.2 Perturb vj according to (4.123) to get a new trial point vj+.

3.3 If J(vj+) ≥ J(vj) then xj+1 = xj+, otherwise vj+1 = vj .

3.4 If J(vj+) ≥ J(vbest) then vbest = vj+.

3.5 If j ≤ jmax then set j ← j + 1 and go to 3.2.

3.6 If N = Nmax then STOP.

3.6 Set N ← N + 1, v0 = vbest and repeat from 2.1.

The parameter Nmax allows for a possible multiple repetition of the whole
2-phase stage, but starting from the best point obtained so far.

The ARS does not use the information about the gradient of the performance
index. Thus a significant numerical efficiency could hardly be expected. However,
because of its valuable properties regarding global convergence and simplicity, the
ARS seems to be more flexible and suitable in the case of dynamic systems (espe-
cially distributed parameter systems) than many classical non-linear programming
approaches. Furthermore, gradient evaluation can be very costly or approxima-
tion of the gradient may fail to be satisfactory (e.g., there may occur some scaling
problems or insufficient smoothness of the underlying functions). Nevertheless,
the performance of the ARS can be improved by combination with various other
methods. For example, since the smallest 5σ corresponds to very small displace-
ments in V , so occasionally we can switch to local maximization in order to make
the results more accurate.

Two more issues require some comment. The first one concerns the usability
of the ARS when solving constrained problems. As can be seen in Section 4.2,
such problems can be transformed to unconstrained ones. Since the ARS belongs
to the group of non-gradient methods, possible non-smoothness of the resulting
transformed criterion function does not exclude the usability of the scheme. An-
other problem is that in practical situations the search space V may not be a
hypercube (e.g., during the search over the spatial area Ω on which an adequate
PDE describing some DPS is defined). That impediment can be overcome by em-
bedding V in some set V ′ being a hypercube such that V ⊆ V ′. Then a suitable
penalty function can be constructed and the modified criterion can be maximized.
Due to the reasons mentioned just before, the possible lack of smoothness of the
resulting function to be maximized has no influence on the performance.
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Finally, one more benefit of the ARS strategy is the possibility of its relatively
simple parallelization, which is very important in the context of the efficiency of
computations. We shall return to this question in Chapter 5

4.5. Concluding remarks

In summary, this chapter has dealt with three iterative numerical techniques for
constructing approximations to T-optimum experimental designs. The key idea in
all of them is to accomplish the solution by hill climbing on the T-optimality crite-
rion. First, the classical Fedorov scheme tailored to the computation of T-optimal
designs was discussed. Although it is practically the only tool to generate solutions
in the literature involved with the considered design problem, it has been criticized
to a significant measure even by its inventor. This is because the algorithm may
diverge if the T-optimality criterion fails to be smooth, which is the case when,
given a design ξ, the corresponding global minimizer in the set of admissible pa-
rameters for the alternative model, which is encountered in the definition of the
T-optimality criterion, is not unique. A way out can be the conversion of the
original problem into a semi-infinite programming one. This approach is very ap-
pealing in the light of the recent advances in this area of non-smooth optimization.
Unfortunately, a weakness of this method is the lack of an adaptation mechanism
regarding the number of support points, which should be set here a priori. Con-
sequently, prior to computations, we must guess an upper bound on this number,
which may result in excessive time of computations if the guess is too high, or in
a nonoptimal solution if it is too small. The drawbacks of both the approaches
were addressed in the final part of the chapter, where a novel relaxation algorithm,
called RATO, was introduced that had been derived from an exchange method for
solving SIP problems by a non-trivial generalization to the framework of the space
of probability measures on X. The algorithm makes an iterative refinement to the
existing solution at each step and adapts the number of support points if neces-
sary. Since it reduces the problem to solving a sequence of simpler finite maximin
problems, it is also easier to control the algorithm performance and to verify the
optimality of the current design. The most distinctive feature is, however, the
guaranteed convergence in a finite number of steps. In the author’s opinion, this
is the main contribution of this dissertation to the state of the art in algorith-
mic methods of optimum experimental design. Although the numerical examples
presented to confirm the effectiveness of the presented approach are clearly not
real-world problems and their purpose is primarily to illustrate our considerations
in an easily interpretable manner, they are complex enough to provide evidence
for the effectiveness of the proposed approach.



Chapter 5

SPECIAL TOPICS OF ALGORITHMIC OPTIMAL
DESIGN

The T-optimum experimental design problem has been posed as an optimization
one, that of maximizing a functional defined on a space of all admissible designs
which are identified with probability measures on B(X), the sigma-algebra of Borel
subsets of X, the design space. The indicated maximization is accomplished by the
appropriate choice of a ‘maximizing’ sequence of designs, which can be obtained
using the algorithms outlined in the previous chapter. It goes without saying that
those methods constitute only a conceptual framework for prospective implemen-
tations in practice and numerous involved problems still have to be addressed.
The purpose of this chapter is to indicate some of them for a variety of situations
motivated by practical applications. Clearly, these considerations by no means
cover all aspects of the reality and many difficult problems still remain open. Here
we focus attention on settings which are expected to become fields of laborious
research in the near future.

5.1. DT-optimum designs

Optimum designs for discrimination between models may have poor properties for
estimation of parameters in chosen models. There exist a number of papers looking
for a reasonable balance between model discrimination and parameter estimation
(Biswas and Chaudhuri, 2002; Waterhouse et al., 2004). However, there exists
no ideal, universal solution to this problem. An interesting approach, called DT-
optimality, combining properties of D- and T-optimum designs has recently been
proposed by (Atkinson, 2005). It what follows, we briefly characterize it, propose
a Wynn-Fedorov-type numerical algorithm for constructing DT-optimal designs
and give a proof of its convergence.

To combine D- and T-optimality criteria, a common scale of comparison is
necessary, since both the criteria are different in behaviour. To this end, Atkinson
proposed the so-called efficiencies. The T-efficiency of any design ξ relative to
T-optimum design ξ?

T is

ET
f (ξ) =

∆1(ξ)
∆1(ξ?

T)
, (5.1)
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whereas its D-efficiency relative to a D-optimum design ξ?
D is

ED
f (ξ) =

{
det(M1(ξ))
det(M1(ξ?

D))

}1/m1

, (5.2)

m1 standing for the number of parameters in model M1 and M1(ξ) being the
Fisher information matrix defined as

M1(ξ) =
∫

X

f1(x)fT
1 (x) ξ(dx) (5.3)

and corresponding to model M1 linearized around the assumed ‘true’ parameter
value ϑ̃1, i.e., for every x ∈ X there holds η(x) = η1(x, ϑ̃1), so that we have

f1(x) =

(
∂η1(x, ϑ̃1)

∂ϑ1

)T

. (5.4)

Then, to obtain the appropriate optimality criterion for both discrimination and
parameter estimation, Atkinson postulates to maximize a weighted product of the
efficiencies:

(
ET

f (ξ)
)1−κ (

ED
f (ξ)

)κ
=

(
∆1(ξ)
∆1(ξ?

T)

)1−κ (
det(M1(ξ))
det(M1(ξ?

D))

)κ/m1

,

0 ≤ κ ≤ 1, (5.5)

where κ is a fixed coefficient weighting the importance attached to the particu-
lar criteria when combining them into one aggregate criterion. Note that for the
extreme values of κ = 0 and κ = 1 we obtain T- and D-optimality, respectively.
Then, taking logs in (5.5) and observing that terms involving ξ?

T and ξ?
D are con-

stants when a maximum is found over ξ(X), we obtain the following convenient
form of the criterion to be maximized

ΦDT
1 (ξ) = (1− κ)ln(∆1(ξ)) + (κ/m1)ln

(
det(M1(ξ))

)
, (5.6)

and designs maximizing (5.6) are called the DT-optimum ones and are denoted by
ξ?
DT.

What is more, based on the fact that the DT-optimality criterion constitutes
a linear combination of concave criteria, Atkinson proves the following equivalence
theorem for the case of single-response models:

Theorem 5.1 (Equivalence theorem for DT-optimality).

(i) A necessary and sufficient condition for a design ξ?
DT to be DT-optimum is

the fulfilment of the inequality

ψ
(DT)
1 (x, ξ?

DT) ≤ 1, x ∈ X, (5.7)

where

ψ
(DT)
1 (x, ξ) =

1− κ

∆1(ξ)
{η(x)− η2(x, ϑ2)}2 +

κ

m1
fT
1 (x)M−1

1 (ξ)f1(x). (5.8)
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(ii) The upper bound of ψ
(DT)
1 (x, ξ?) in (5.7) is achieved at the points of the

optimum design.

(iii) For any non-optimum design ξ, that is, a design for which Φ(DT)
1 (ξ) <

Φ(DT)
1 (ξ?

DT),

sup
x∈X

ψ
(DT)
1 (ξ) > 1. (5.9)

Note that Theorem 5.1 is valid on the assumption that the answering set

Θ̂2(ξ?
DT) = Arg min

ϑ2∈Θ2

{∫

X

{η(x)− η2(x, ϑ2)}2 ξ?
DT(dx)

}
(5.10)

consists of a unique element, i.e., it is a singleton. If this is not the case, then a
necessary and sufficient condition for ξ?

DT to be DT-optimal is the existence of a
probability measure ζ defined on the sigma-algebra of Borel subsets of Θ̂2(ξ?

DT)
such that

ψ
(DT)
1 (x, ξ?

DT) ≤ 1, ∀x ∈ X, (5.11)

where

ψ
(DT)
1 (x, ξ)

=
1− κ

∆1(ξ)

∫
bΘ2(ξ)

{
η(x)− η2(x, ϑ2)

}2
ζ(dϑ2) +

κ

m1
fT
1 (x)M−1

1 (ξ)f1(x). (5.12)

In what follows, we wish to adopt the Wynn-Fedorov algorithm to numerically
determine DT-optimal designs. For convenience, let us introduce the following
notation: R+ stands for the set of nonnegative real numbers, and R++ stands for
the set of positive real numbers. We will use the symbol Sym(n) to denote the set
of symmetric n×n matrices, NND(n) to denote the set of symmetric nonnegative
definite n×n matrices, and PD(n) to denote the set of symmetric positive-definite
n× n matrices. Given A,B ∈ Sym(n), the notation A º B (resp. A Â B) means
that A−B ∈ NND(n) (resp. A−B ∈ PD(n)).

5.1.1. Numerical construction of DT-optimum designs

Theorem 5.1 provides us with a test for optimality and it is employed to check
whether or not an intuitively sensible design measure is DT-optimal. In practice,
we require more than this, i.e., we need algorithms which enable us to construct
DT-optimal design measures. In what follows, we limit ourselves to an adaptation
of the Wynn-Fedorov scheme whose structure is as follows:

1 Guess an initial design ξ0 such that Φ(DT)
1 (ξ0) > −∞.

2 Iteratively compute a sequence of designs
{
ξk

}
weakly converging to ξ? as

k →∞, the design ξk+1 being obtained by a small perturbation of the design
ξk, while still requiring Φ(DT)

1 (ξk+1) > −∞.
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3 Stop computing
{
ξk

}
after a finite number of steps if ξk can be qualified as

almost optimal, e.g., in accordance with Theorem 5.1.

A grave difficulty encountered while trying to adapt those results in our case
lies in the maximin form of the DT-optimality criterion.

The aim of this section is to study the convergence of the following procedure:

Algorithm 5.1 (Iterative construction of DT-optimum designs).

Step 1: Guess a discrete starting design measure ξ0 satisfying ∆1(ξ0) > 0 and
det(M1(ξ0)) > 0. Choose some positive tolerance ε ¿ 1. Set k = 0.

Step 2: Find

ϑ̂k
2 = arg min

ϑ2∈Θ2

∫

X

{η(x)− η2(x, ϑ2)}2 ξk(dx). (5.13)

Step 3: Determine
x̂k = arg max

x∈X
ψ

(DT)
1 (x, ξk), (5.14)

where

ψ
(DT)
1 (x, ξk) =

1− κ

∆1(ξk)
{η(x)−η2(x, ϑ̂k

2)}2+
κ

m1
fT
1 (x)M−1

1 (ξk)f1(x). (5.15)

If ψ
(DT)
1 (x̂k, ξk) ≤ 1 + ε, then STOP.

Step 4: For an appropriate value of 0 < αk < 1, set

ξk+1 = (1− αk)ξk + αkδ(x̂k), (5.16)

where δ(x) stands for the unit-weight design concentrated at x. Increment
k by one and go to Step 2.

We can state these steps simply as follows:

1 Select any nondegenerate starting design.

2 Compute the parameter which minimizes the squared difference between the
true and predicted responses integrated with respect to the current design.

3 Find a point of maximum sensitivity ψ
(DT)
1 ( · , ξk)

4 Add the point of maximum sensitivity to the design with measure propor-
tional to its sensitivity.

Note that for ε = 0 the criterion for terminating the iterations, cf. Step 3,
is nothing but the optimality condition of Theorem 5.1. Since, theoretically, in
this case the above method is not finitely convergent (i.e., it is impossible to have
ψ

(DT)
1 (x̂k, ξk) ≤ 1 after a finite number of iterations), setting ε as a small positive

scalar assures that we terminate reasonably close to an optimal design.
Step 4 raises the question of how to appropriately select the step size αk. In

the sequel, we shall consider the following choices:
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(i) Limited maximization rule (Fedorov’s algorithm):

αk = arg max
α∈[0,1]

Φ(DT)
1 ((1− α)ξk + αδ(x̂k)), (5.17)

(ii) Armijo rule: Given fixed scalars β, σ, s ∈ (0, 1), we set

αk = βrks, (5.18)

where rk is the first nonnegative integer r for which

Φ(DT)
1 ((1− βrs)ξk + βrsδ(x̂k))− Φ(DT)

1 (ξk)

≥ σβrs
(
ψ

(DT)
1 (x̂k, ξk)− 1

)
. (5.19)

Usually σ is chosen close to zero (e.g., σ ∈ [10−5, 10−1]) and the reduction
factor β is usually chosen from 1/2 to 1/10, cf. (Bertsekas, 1999, p. 29) for
details. The directional differentiability of Φ(DT)

1 ( · ) guarantees that this
stepsize is well defined and will be found after a finite number of trial eval-
uations (5.19).

Further, we present our main results regarding convergence, for which we
assume the following:

(B1) X and Θ2 are compact sets.

(B2) η( · ) and f1( · ) are continuous functions on X.

(B3) η2( · , · ) is a continuous function on X ×Θ2.

Here and subsequently, we will use the symbol Ξ(X) to denote the set of all
probability measures on B(X), the σ-algebra of Borel subsets of X. To shorten
notation, we let e(x, ϑ2) stand for {η(x) − η2(x, ϑ2)}2 and write Θ̂2(ξ) instead
of Arg min

ϑ2∈Θ2

∫
X

e(x, ϑ2) ξ(dx). It is easily seen that e is continuous and Θ̂2(ξ) is

compact. Similarly, we abbreviate arg min
ϑ2∈Θ2

∫
X

e(x, ϑ2) ξ(dx) to ϑ̂2(ξ).

Our convergence result for Algorithm 5.1 relies on the following lemma:

Lemma 5.1. Let
{
ξk

}
be an arbitrary sequence of designs from Ξ(X) such that

Φ(DT)
1 (ξk) → c ∈ R as k → ∞. Then there is a design ξ̄ ∈ Ξ(X) satisfying

c = Φ(DT)
1 (ξ̄). Moreover, there exists a subsequence

{
ξk

}
K of

{
ξk

}
, K ⊂ N,

satisfying the following properties:

(i)
{
ξk

}
K → ξ̄ weakly.

(ii)
{
ϑ̂k

2

}
K → ϑ̄2 for some choice of minimizers ϑ̂k

2 ∈ Θ̂2(ξk), k ∈ K and ϑ̄2 ∈
Θ̂2(ξ̄).

(iii)
{
M1(ξk)

}
K → M1(ξ̄) Â 0.
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(iv)
{
∆1(ξk)

}
K → ∆1(ξ̄) > 0.

(v)
{
Φ(DT)

1 (ξk)
}
K → Φ(DT)

1 (ξ̄).

(vi) Furthermore, if Θ̂2(ξk), k ∈ K and Θ̂2(ξ̄) are singletons, then

{
ψ

(DT)
1 (x̂(ξk), ξk)

}
K → ψ

(DT)
1 (x̂(ξ̄), ξ̄)

{
= 1 if ξ̄ is DT-optimal,
> 1 otherwise,

(5.20)

where
x̂(ξ) = arg max

x∈X
ψ

(DT)
1 (x, ξ). (5.21)

Proof. First, observe that, possibly up to a finite number of terms, the sequence{
Φ(DT)

1 (ξk)
}

is bounded because it is convergent. Therefore, we may assume that
for each k = 1, 2, . . . we have ∆1(ξk) > 0 and M1(ξk) Â 0.

Consider the sequence
{
ϑ̂k

2

}
, where ϑ̂k

2 is any fixed element of Θ̂2(ξk). Since
Θ2 is compact, it follows that there is a subsequence

{
ϑ̂k

2

}
K0 of

{
ϑ̂k

2

}
, K0 ⊂ N,

which converges to some ϑ̄2 ∈ Θ2. Furthermore, from Lemma 3.1, we deduce
that there must be a subsequence

{
ξk

}
K of

{
ξk

}
K0 , K ⊂ K0, which convergences

weakly to some ξ̄ ∈ Ξ(X).
Consequently, Definition 3.1 clearly forces

{∫

X

e(x, ϑ̄2) ξk(dx)
}

K
→

∫

X

e(x, ϑ̄2) ξ(dx) (5.22)

and

{
M1(ξk)

}
K → M1(ξ̄). (5.23)

By the weak continuity of ∆1( · ), cf. Theorem 3.1, we must also have
{
∆1(ξk)

}
K → ∆1(ξ̄). (5.24)

On account of (5.23) and the continuity of the determinant, we thus have
{
Φ(DT)

1 (ξk)
}
K → Φ(DT)

1 (ξ̄). (5.25)

Obviously, neither ∆1(ξ̄) nor det
(
M1(ξ̄)

)
is zero, since otherwise we would have

Φ(DT)
1 (ξ̄) = −∞, which is impossible.

It remains to show Part (vi). To this end, assume that Θ̂2(ξk), k ∈ K and
Θ̂2(ξ̄) are singletons. Define

q(ϑ2, r,D) = max
x∈X

v(x, ϑ2, r,D), (5.26)

where
v(x, ϑ2, r,D) =

1− κ

r
e(x, ϑ2) +

κ

p1
fT
1 (x)Df1(x). (5.27)
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Since v is continuous on X ×Θ2×R++×PD(p1), Corollary 5.4.2 of (Polak, 1997,
p. 683) shows that q is continuous on Θ2 × R++ × PD(p1). Thus

ψ
(DT)
1 (x̂(ξk), ξk) = q(ϑ̂k

2 , ∆1(ξk),M−1
1 (ξk)), ∀k ∈ K (5.28)

and, since
{
ϑ̂k

2

}
K → ϑ̄2,

{
∆1(ξk)

}
K → ∆1(ξ̄),

{
M−1

1 (ξk)
}
K → M−1

1 (ξ̄), (5.29)

we get {
ψ

(DT)
1 (x̂(ξk), ξk)

}
K → ψ

(DT)
1 (x̂(ξ̄), ξ̄). (5.30)

The method of choosing x̂(ξ̄) implies that

ψ
(DT)
1 (x̂(ξ̄), ξ̄)− 1 =

∂Φ(DT)
1

(
(1− α)ξ̄ + αδ(x̂(ξ̄))

)

∂α

∣∣∣∣∣
α=0+

= lim
α↓0

1
α

(
Φ(DT)

1

(
(1− α)ξ̄ + αδ(x̂(ξ̄))

)− Φ(DT)
1 (ξ̄)

)
≥ 0.

(5.31)

If ψ
(DT)
1 (x̂(ξ̄), ξ̄) = 1, then ξ̄ must be optimal, cf. Theorem 5.1. For a nonoptimal

ξ̄ we thus get ψ
(DT)
1 (x̂(ξ̄), ξ̄) > 1. This completes the proof.

We can now formulate our main result regarding convergence.

Theorem 5.2. Let
{
ξk

}
be a sequence of designs generated by Algorithm 5.1 with

αk chosen by the Armijo rule. Morever, assume that the sets Θ̂2((1−α)ξk+αδ(x̂k))
are singletons for each k = 0, 1, . . . and for all α ∈ [0, s], s < 1. Then the sequence{
Φ(DT)

1 (ξk)
}

is nondecreasing and converges to max
{
Φ(DT)

1 (ξ) : ξ ∈ Ξ(X)
}
.

Proof. Based on Lemma 3.1, it is easy to check that the set
{
M1(ξ) : ξ ∈ Ξ(X)

}
is compact. This, taken in conjunction with the continuity of e( · , · ) on X ×
Θ2, implies that Φ(DT)

1 (ξ) < ∞ for all ξ ∈ Ξ(X). Consequently,
{
Φ(DT)

1 (ξk)
}

is
bounded.

With the notation x̂k = arg max
x∈X

ψ
(DT)
1 (x, ξk), the definition of the Armijo

rule yields

Φ(DT)
1 (ξk+1)− Φ(DT)

1 (ξk) ≥ σαk
(
ψ

(DT)
1 (x̂k, ξk)− 1

)
, k = 0, 1, . . . (5.32)

and hence the sequence
{
Φ(DT)

1 (ξk)
}

is monotonically nondecreasing and thus it
converges to a finite value c.

It is clear that for each k = 0, 1, . . . there must be

∂Φ(DT)
1 ((1− α)ξk + αδ(x̂k))

∂α

∣∣∣∣
α=0+

= ψ
(DT)
1 (x̂k, ξk)− 1 ≥ 0. (5.33)
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Since ψ
(DT)
1 (x̂k0 , ξk0) = 1 for some index k0 means that ξk0 is a DT-optimum

design and the computation can be interrupted, we can assume that for each
k = 0, 1, . . . we have ψ

(DT)
1 (x̂k, ξk) > 1.

For the sake of contradiction, assume that c < max
{
Φ(DT)

1 (ξ) : ξ ∈ Ξ(X)
}
.

From Lemma 5.1 we know that c = Φ(DT)
1 (ξ̄) for some ξ̄ ∈ Ξ(X) and there exists

a subsequence
{
ξk

}
K, K ⊂ N, which converges weakly to ξ̄.

Since
{
Φ(DT)

1 (ξk)
}

is convergent, it follows that
{

Φ(DT)
1 (ξk+1)− Φ(DT)

1 (ξk)
}
→ 0. (5.34)

Conseqently, by the Armijo rule,
{

αk
(
ψ

(DT)
1 (x̂k, ξk)− 1

)}
→ 0. (5.35)

Moreover, {
ψ

(DT)
1 (x̂k, ξk)− 1

}
K
→ ω > 0 (5.36)

because ξ̄ is nonoptimal, cf. Part (vi) of Lemma 5.1.
Hence {

αk
}
K → 0. (5.37)

Therefore, by the definition of the Armijo rule, for some index k′ ≥ 0 we must
have

Φ(DT)
1 ((1− ᾱk)ξk + ᾱkδ(x̂k))− Φ(DT)

1 (ξk) < σᾱk
(
ψ

(DT)
1 (x̂k, ξk)− 1

)
,

∀k ∈ K, k ≥ k′, (5.38)

where ᾱk = αk/β. In practice, this means that the initial stepsize s will be reduced
at least once for all k ∈ K, k ≥ k′. If there were no such reductions, this would
contradict (5.37).

We get

1
ᾱk

(
Φ(DT)

1 ((1− ᾱk)ξk + ᾱkδ(x̂k))− Φ(DT)
1 (ξk)

)

< σ
(
ψ

(DT)
1 (x̂k, ξk)− 1

)
, ∀k ∈ K, k ≥ k′. (5.39)

Define

gk(α) = (1− κ) ln
(
∆1((1− α)ξk + αδ(x̂k))

)

+
κ

p1
ln

(
det(M1((1− α)ξk + αδ(x̂k)))

)
. (5.40)

We claim that under the assumptions of the theorem, g is continously differen-
tiable. Indeed, there is no problem with the second term on the right-hand side
of (5.40) and the only tricky question is the differentiability of

gk
1 (α) = ∆1((1− α)ξk + αδ(x̂k)) = min

ϑ2∈Θ2
%k(α, ϑ2), (5.41)
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where
%k(α, ϑ2) = (1− α)

∫

X

e(x, ϑ2) ξk(dx) + αe(x̂k, ϑ2). (5.42)

Writing
Θ̃k

2(α) = Arg min
ϑ2∈Θ2

%k(α, ϑ2), (5.43)

we conclude from Danskin’s theorem (Bertsekas, 1999, Prop. B.25, p. 717) that

d
dα

gk
1 (α) = min

ϑ2∈eΘk
2 (α)

∂%k(α, ϑ2)
∂α

. (5.44)

But on account of the valid assumptions, Θ̃k
2(α) is a singleton, i.e.,

Θ̃k
2(α) =

{
ϑ̃k

2(α)
}
, (5.45)

which gives

d
dα

gk
1 (α) =

∂%k(α, ϑ̃k
2(α))

∂α
= e(x̂k, ϑ̃k

2(α))−
∫

X

e(x, ϑ̃k
2(α)) ξk(dx). (5.46)

Since ϑ̃k
2( · ) is continuous on [0, 1], cf. Theorem 5.4.3 of (Polak, 1997, p. 684), it

follows that gk
1 is continuously differentiable, and consequently, so is gk. Therefore

we can apply the Mean Value Theorem to get

gk(ᾱk)− gk(0)
ᾱk

=
dgk

dα
(ᾰk) (5.47)

for some ᾰk ∈ (0, ᾱk), i.e.,

1
ᾱk

(
Φ(DT)

1 ((1− ᾱk)ξk + ᾱkδ(x̂k))− Φ(DT)
1 (ξk)

)

=
(1− κ)

∆1((1− ᾰk)ξk + ᾰkδ(x̂k))

(
e(x̂k, ϑ̃k

2(ᾰk))−
∫

X

e(x, ϑ̃k
2(ᾰk)) ξk(dx)

)

+
κ

m1

(
fT
1 (x̂k)M−1

1 ((1− ᾰk)ξk + ᾰkδ(x̂k))f1(x̂k)

− trace
{
M−1

1 ((1− ᾰk)ξk + ᾰkδ(x̂k))M1(ξk)
})

(5.48)

From (5.39) we see that

(1− κ)
∆1((1− ᾰk)ξk + ᾰkδ(x̂k))

(
e(x̂k, ϑ̃k

2(ᾰk))−
∫

X

e(x, ϑ̃k
2(ᾰk)) ξk(dx)

)

+
κ

p1

(
fT
1 (x̂k)M−1

1 ((1− ᾰk)ξk + ᾰkδ(x̂k))f1(x̂k)

− trace
{
M−1

1 ((1− ᾰk)ξk + ᾰkδ(x̂k))M1(ξk)
})

< σ
(
ψ

(DT)
1 (x̂k, ξk)− 1

)
, ∀k ∈ K, k ≥ k′. (5.49)
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It is an easy exercise to check that, as k →K ∞, we finally get

ω ≤ σω (5.50)

or
(1− σ)ω ≤ 0. (5.51)

But σ < 1, and hence
ω ≤ 0. (5.52)

This contradicts (5.36), and the theorem is proved.

The proof of the convergence for the limited maximization rule proceeds on
the same lines. The following numerical example serves as a vehicle for the display
of some salient features of the above solution technique.

Example 5.1. Let consider the process of chemical conversion of substance A
into B and C in a batch reactor. Two rival models are considered for this system:

Model 1: A reversible first-order reaction followed by an irreversible reaction

A
k1­
k3

B
k2→C, which is described by the equations

d[A]
dt

= −k1[A] + k3[B],

d[B]
dt

= k1[A]− k2[B]λ − k3[B],

d[C]
dt

= k2[B]λ,

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0,

(5.53)

where [A], [B] and [C] denote concentrations of reagents A, B and C, re-
spectively, and a0, b0, c0 stand for initial concentrations.

Model 2: Consecutive irreversible reactions A
k1→B

k2→C described by the equa-
tions

d[A]
dt

= −k1[A]λ1 ,

d[B]
dt

= k1[A]λ1 − k2[B]λ2 ,

d[C]
dt

= k2[B]λ2 ,

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0.

(5.54)

Model 1 is assumed to be the true one with parameters (k1, k2, k3, λ) =
(0.7, 0.2, 0.1, 2.0). The acceptable range of parameters of Model 2 which is con-
sidered alternative is set as 0.55 ≤ k1 ≤ 0.85, 0.05 ≤ k2 ≤ 0.35, 1.5 ≤ λ1 ≤ 2.5,
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1.5 ≤ λ2 ≤ 2.5. The time horizon (the design region) and initial concentrations
are respectively set to T = [0, 10] and x0 = (a0, b0, c0) = (1, 0, 0) for both the
models.

In order to determine DT-optimum designs, a program was written using the
Lahey-Fujitsu Fortran 95 compiler v.5.6 with IMSL 4.0 library. The attendant
problems of global optimization were solved using the ARS scheme supplemented
with a local optimizer (modified Levenberg-Marquardt algorithm) from the IMSL
library (DBCLSJ subroutine). The obtained results are presented in Figs. 5.1 and
5.2. Figure 5.3 shows the plot of an exemplary sensitivity function obtained for
κ = 0.5.
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Fig. 5.1 . Structure of designs as κ varies: (a) support points ti, (b) corresponding
design weights wi. There are four points of support, except of three-point designs
for κ = 0 and κ = 1, the T-optimum and D-optimum designs, respectively.

5.2. T-optimum designs on finite design spaces

The basic assumption in this section is that the set of admissible support points
X, where the observations are possible, is finite, i.e., X = {x1, . . . , xn} where
xi, i = 1, . . . , n are given a priori. Because the allowable measurement points are
fixed, any design ξ ∈ Ξ(X) has the form

ξ =
{

x1, . . . , xn

p1, . . . , pn

}
(5.55)

and is uniquely determined by the values of the weights p1, . . . , pn. Thus, the
problem simply reduces to the optimization of the design weights and it will cause
no confusion if we use the symbol ∆1(p) to designate the value of the genuine
T-optimality criterion ∆1(ξ) at the design of the form (5.55).
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Fig. 5.2 . Efficiencies of designs as κ varies: ◦ T-efficiency; ¦ D-efficiency. The
D-efficiency increases as κ increases, whereas the T-efficiency decreases.
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Fig. 5.3 . Exemplary sensitivity function in Example 5.1 for κ = 0.5. Vertical
dashed lines reflect the location of the optimal support points (the fourth point is
just the end of the observation horizon).

In this nomenclature, the problem may be stated as follows: Find the weight
vector p ∈ Rn that maximizes

∆1(p) = min
ϑ2∈Θ2

J (p, ϑ2), (5.56)

where

J (p, ϑ2) =
n∑

i=1

pi‖η(xi)− η2(xi, ϑ2)‖2, (5.57)
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subject to

p ∈ S =
{

p = (p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n;
n∑

i=1

pi = 1
}

. (5.58)

This is a finite-dimensional optimization problem over the canonical simplex S.

5.2.1. Gradient projection algorithm

Obviously, it is always possible to exploit some general constrained optimization
approaches in order to solve the problem formulated above (cf. the next section).
However, due to a relatively simple form of the constraints, a more straightforward
procedure can be proposed, which reduces to using a gradient projection method
(Bertsekas, 1999, p. 223). The first step is to find a feasible direction, i.e., the one
which guarantees an increase in the value of the criterion ∆1( · ) and then a step
is taken along this line. The result is projected on S, thereby obtaining a new
feasible weight vector.

Generation of a new candidate point can be formalized as follows:

pk+1
+ = ΠS

[
pk + αkdk

]
, (5.59)

where dk ∈ Rn is the vector representing a feasible direction of weight modification,
αk is some positive coefficient which controls the correction process, and ΠS[ · ]
stands for the orthogonal projection onto the canonical simplex S.

If the answering set Θ̂2(pk) = Arg min
ϑ2∈Θ2

J (p, ϑ2) =
{
ϑk

2

}
, i.e., it is a singleton,

then by Danskin’s Theorem (Bertsekas, 1999, Prop. B.25, p. 717) the criterion
∆1( · ) is differentiable at pk and the derivatives

∂∆1(pk)
∂pi

= ‖η(xi)− η2(xi, ϑ
k
2)‖2, i = 1, . . . , n (5.60)

are extremely easy to calculate, so the very first idea is to choose the direction dk

determined by the gradient ∇(
∆1(p)

)∣∣
p=pk as in steepest ascent. Also note that

there exist many possible choices of determining the step coefficient αk. It can be
taken as a suitable constant. Also its value can be adjusted according to

αk = arg max
α>0

∆1

(
ΠS

(
pk + αdk

))
(5.61)

However, the computational effort to determine such an optimum value can easily
outgrow potential benefits.

A reasonable approach consist in an adaptive line search using the Armijo rule
(Bertsekas, 1999). Here, fixed scalars s, β and σ, with 0 < β < 1, and 0 < σ < 1
are chosen, and we set αk = βrks, where rk is the first nonnegative integer r for
which

∆1

(
pk + βrsdk

)−∆1(pk) ≥ σβrs
∂∆1(pk)

∂p
dk. (5.62)
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Finally, we should remind that each iteration of the rule (5.59) must be pre-
ceded with calculation of ϑk

2 , which implies a global minimization process.
Then, summarizing, the following steepest-ascent type algorithm can be de-

veloped:

Algorithm 5.2 (Weight optimization algorithm for T-optimum designs, v.1).

Step 1: Guess a starting set of weights p0 ∈ S. Choose some positive tolerance
ε ¿ 1. Set k = 0.

Step 2: Compute

ϑ̂k
2 = arg min

ϑ2∈Θ2

n∑

i=1

pk
i ‖η(xi)− η2(xi, ϑ2)‖2 (5.63)

and

pk+1 = ΠS
[
pk + αkdk

]
(5.64)

where

dk =



‖η(x1)− η2(x1, ϑ̂

k
2)‖2

...
‖η(xn)− η2(xn, ϑ̂k

2)‖2


 (5.65)

and αk is computed according to the rule (5.62).

Step 3: If the condition
‖pk+1 − pk‖ < ε (5.66)

is satisfied, then STOP. Otherwise, increment k by one and go to Step 2.

At first sight, the gradient projection procedure above is rather easy in im-
plementation due to its simplicity, but unfortunately, it inherits all the drawbacks
of steepest-ascent-like algorithms. For example, the convergence rate dramatically
decreases in the vicinity of the minimum. This can be avoided to some extent with
a suitable choice of the step length αk (like in the proposed Armijo rule). As for
projection onto the canonical simplex S, an algorithm can be developed which is
almost as simple as a closed-form solution. Indeed, the point p̃ = ΠS[p] is defined
as the solution to the problem:
Minimize

n∑

i=1

(pi − p̃i)2 (5.67)

subject to

p̃i ≥ 0, i = 1, . . . , n,

n∑

i=1

p̃i = 1. (5.68)



5. Special topics of algorithmic . . . 103

An elegant and simple algorithm for solving this task is described by (Tuenter,
2001). Without loss of generality, assume that p1 ≥ p2 ≥ · · · ≥ pn, since this is
only a matter of reordering the elements of p.

Finding a sought projection proceeds as follows:

Step 1: Set q = 0 and ` = 1.

Step 2: Set `? = ` and q? = q. Increment ` by one and update q ← q+`?(p`?−p`).

Step 3: If q > 1, then go to Step 5.

Step 4: If ` = n then set `? = `, q? = q and go to Step 5. Otherwise, go to
Step 2.

Step 5: Set

λ =
1− q?

`?
− p`? , (5.69)

and the components of the sought projection p̃ as follows:

p̃i =

{
pi + λ for 1 ≤ i ≤ `?,
0 otherwise,

(5.70)

STOP.

In spite of the simplicity of this algorithm, it may still involve significant
numerical efforts. Moreover, the projection operator is not differentiable, and
therefore the search for an optimum step-length αk requires a derivative-free al-
gorithm (e.g., the golden-search one). Moreover, the parameters in (5.62) have
to be suitably chosen. Consequently, the effective usage of the proposed weight
optimization algorithm requires practical experience from the user to overcome
some impediments.

5.2.2. Adaptation of the Uzawa method

Given ϑ2 ∈ Θ2, the function J ( · , ϑ2) is linear and hence concave. Therefore the
function ∆1( · ) is concave since it is defined as the pointwise supremum over the
infinite family of concave functions {J ( · , ϑ2)}ϑ2∈Θ2 (Boyd and Vandenberghe,
2004). Its maximization over the canonical simplex can be formulated as follows:
Find a weight vector p ∈ Rn that produces the maximum of

∆1(p) =
n∑

i=1

pi‖η(xi)− η2(xi, ϑ2(p))‖2
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subject to

g1(p) = p1 ≥ 0,

... (5.71)
gn−1(p) = pn−1 ≥ 0,

gn(p) = 1−
n−1∑

j=1

pj ≥ 0.

To solve the problem (5.71) we propose an adaptation of the Uzawa method for
nonlinear saddle-point problems (Chen, 1998). The resulting algorithm is as fol-
lows:

Algorithm 5.3 (Weight optimization algorithm for T-optimum designs, v.2).

Construct the Lagrange function L(p, µ) = ∆1(p) +
∑n

j=1 µjgj(p).

Step 1: Guess starting values of Lagrange multipliers µj ≥ 0, j = 1, . . . , n.
Choose some positive tolerance ε ¿ 1 and a positive steplength ρ. Set
k = 0.

Step 2: Find pk = arg max
p∈Rn

L(p, µk).

Step 3: If
n∑

j=1

µj |gj(pk)| ≤ ε and min
{
g1(pk), . . . , gn(pk)

} ≥ −ε then STOP.

Step 4: Set µk+1
j = max(0, µk

j − ρgj(pk)), k ← k + 1 and go to Step 2.

Generally, the method consists in sequential relaxation with respect to weights
and Lagrange multipliers. Stopping conditions result from the Karush-Kuhn-
Tucker optimality conditions. Global convergence is guaranteed for a sufficiently
small ρ.

Both the procedures outlined above can be incorporated into the Wynn-
Fedorov scheme, which may significantly decrease the number of iterations ne-
cessitated to obtain an optimum design (since proper weight optimization takes
much more time in W-F type procedures than the identification of optimum or
sub-optimum support points). In order to check the usefulness of the presented
approach, the discrimination problem from Example 4.2 was considered again with
the same settings, but using Algorithm 5.2 to find a T-optimum design. For that
purpose, n = 100 evenly spaced support points were chosen in the design domain
T = [0, 10]. The initial weights p0 were generated randomly. Parameters of the
algorithm were ε = 0.0001, s = 25, β = 0.99 and σ = 0.2. The code written in For-
tran 95 was executed using the Lahey Fujitsu Fortran 95 compiler. The obtained
solution (weights and the corresponding sensitivity function) is shown in Fig. 5.4.
The algorithm converged in 140 iterations. Parameter values of the ‘worst’ alter-
native model are ϑ?

2 = (0.8475, 0.1688, 1.5764, 1.7281). The results remain in full
agreement with those of Example 4.2.
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Fig. 5.4 . Sensitivity function and weights of the obtained T-optimum design on
finite support space (100 points uniformly distributed on T ) for the discrimination
problem of Example 4.2. Note that different scalings of the ordinates are used for
the sensitivity and weights.

5.3. Selective random search for T-optimum experimental design

One of the main two phases of the Wynn-Fedorow procedure described in Sec-
tion 4.1 consists in determination of a candidate point xk = max

x∈X
ψ(x, ξk), where

ψ(x, ξk) = ‖η(x) − η2(x, ϑ̂k
2)‖2. Instead of searching for an accurate maximum,

which can be very costly in a high-dimensional case, we can limit ourselves to
obtain a point which will be ‘good enough’ to increase the ‘quality of the design’,
i.e., a point xt for which ψ(xt, ξ

k) > ∆1(ξk) (see Fig. 5.5). Remark that from
Theorem 3.8 it follows that such a point for a non-optimum design ξk exists. To
develop an efficient method of generating of the candidate xt, observe that ψ(x, ξk)
is a non-negative function. Furthermore,

fk(x) =
ψ(x, ξk)∫

X
ψ(x, ξk) dx

(5.72)

defines the probability density function of a continuous random variable X . This
density has global maxima just at the points which are candidates for inclusion
into the current design. Thus, if we can simulate the contrived random variable
X , their neighbours are presumably more likely to be observed in a generated
sample than in a blind random search with uniform distribution over X or the
ARS mechanism.

The above observation provides a basis for the so-called selective random
search method set forth by RafajÃlowicz to efficiently determine D-optimum de-
signs (RafajÃlowicz, 1998), where the convergence with probability one was also
proved. Unfortunately, the computational effort due to the use of the rejection
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Fig. 5.5 . Idea of selective random search.

sampling suggested by RafajÃlowicz may be still prohibitive since the complicated
landscape of the function ψ( · , ξk), especially high multimodality, implies that the
target density fk( · ) can be evaluated, but not easily sampled. To alleviate this
inconvenience, we propose here to apply the Monte Carlo Markov Chain (MCMC)
method (Givens and Hoeting, 2005; Gilks et al., 1995). Generally, MCMC methods
make use of the observation that it is possible to construct a suitable irreducible
and aperiodic Markov chain (discrete or continuous) whose stationary distribution
approximates some target density f( · ). This means that such a chain can be used
to generate a draw from a distribution that approximates f( · ). The MCMC ap-
proach has several advantages, e.g., increasing problem dimensionality usually does
not slow convergence or make the very simple implementation more complex. The
main difficulty consists in construction of a chain with suitable properties. Since
MCMC theory and applications are areas of active research, many algorithms and
strategies have been proposed to achieve the most valuable behaviour of the result-
ing chain. Here we employ the classical and extremely simple Metropolis-Hastings
algorithm. The method is as follows (Givens and Hoeting, 2005):

¶ Select X(0) = x(0) drawn at random from some proposal distribution g such
that fk

(
x(0)

)
> 0. Set ` = 0.

· Given X(`) = x(`) sample a candidate value Xc from a proposal distribution
g( · |x(`)).

¸ Compute the Metropolis-Hastings ratio R
(
x(`), Xc

)
where

R(a, b) =
fk(b)g(a|b)
fk(a)g(b|a)

. (5.73)

¹ Sample a value

X(`+1) =

{
Xc with probability p = min{R(x(`), Xc), 1},
x(`) otherwise.

(5.74)

º Set ` ← ` + 1 and return to Step 2.
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The crucial part of the method is the choice of a proposal distribution, since
the properties of the obtained chain strongly depend on g( · | · ). It seems intu-
itively clear that we wish the proposal distribution to be easily sampled and to
approximate the target distribution fk( · ) very well. However, if we do not pos-
sess information on such a good approximation, a reasonable choice is the uniform
distribution over X. Then obviously g(a|b) = g(b|a). For such a symmetric distri-
bution the method is known as the Metropolis algorithm. Note that the unknown
proportionality constant

∫
X

ψ(x, ξk) dx cancels in the numerator and denominator
of (5.73), so that we then have

R(a, b) =
ψ(b, ξk)
ψ(a, ξk)

. (5.75)

In what follows, we present our T-optimum equivalent to RafajÃlowicz’s selec-
tive random search:

Algorithm 5.4 (Selective random search for T-optimum designs).

Step 1: Choose an initial nonsingular design ξ0. Set k = 0.

Step 2: Find:

ϑ̂k
2 = arg min

ϑ2∈Θ2

nk∑

i=1

pk
i ‖η(xk

i )− η2(xk
i , ϑ2)‖2, (5.76)

where nk is the number of support points in the current design, and then
generate a candidate x̂k using the MCMC with the metropolis-Hastings ratio
(5.75) and g( · ) being the uniform distribution on X until

ψ(x̂k, ξk) > ∆1(ξk), (5.77)

where

ψ(x, ξk) = ‖η(x)− η2(x, ϑ̂k
2)‖2, (5.78)

∆(ξk) =
nk∑

i=1

pk
i ‖η(xk

i )− η2(xk
i , ϑ̂k

2)‖2. (5.79)

If the number of generated trial points exceeds some prescribed number Nmax

without satisfying (5.77) then STOP.

Step 3: Choose a suitable αk with 0 ≤ αk ≤ 1 and compute the convex combi-
nation of designs:

ξk+1 = (1− αk)ξk + αkδ(x̂k), (5.80)

where δ(x) is the unit-weight design concentrated at x. Set k ← k + 1 and
go to Step 2.
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The only difference compared with the Wynn-Fedorov scheme appears in
Step 2, when the above-mentioned concept of MCMC approximation to the max-
imizer of the sensitivity function is incorporated. The stopping condition results
from the observation that if ξk is close to the optimum design or it is the optimum
one, the condition (5.77) may never be satisfied. The value Nmax should thus be
suitably large in order to prevent the algorithm precociously terminating. The
probability of such an event can be freely reduced by setting Nmax adequately
large, cf. (RafajÃlowicz, 2006).

In order to verify the usefulness of the presented approach, a numerical ap-
proximation to the T-optimum design from Example 3.2 was sought using Algo-
rithm 5.4. Since the analytical solution to this problem is known, we have an
additional test for the quality of the found numerical solutions. Starting with a
randomly chosen ten-point uniformly distributed (i.e., with weights equal to 1/10)
initial design and Nmax = 1000, Algorithm 5.4 found the following approximation
of the exact solution after 268 iterations (the values were rounded to the fourth
fractional digit and some additional modifications of the basic procedure, like a
removal of clusters and points with negligible weights, were also applied):

ξ? =
{

0.0016, 0.4984, 0.9999
0.2555, 0.4984, 0.2461

}
. (5.81)

The relevant computer program was implemented using Maple 10 as a set of Maple
procedures. Figure 5.6 displays the resultant sensitivity function. The parameter
values of the alternative model with respect to ξ? rounded to the fifth fractional
digit are ϑ?

2 = (−0.12546, 0.99934).
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Fig. 5.6 . Sensitivity function ψ(x, ξ?) of Example 3.2 obtained using Algo-
rithm 5.4.
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5.4. Parallel computing for T-optimum designs

The algorithms delineated in the dissertation constitute a useful tools for practical
applications. Although they overcome most drawbacks of the classical W-F type
procedures, it has to be pointed out that computational cost involved by their
use may be still quite high, especially when considering high-dimensional spaces
and multi-parameter models (e.g., large-scale 3D models of air pollution). The
main reason behind this is the necessity of multiply solving the state equations
and applying global optimization to ensure a reasonable quality of the resulting
solutions. Thus, a natural trend to increase the performance is to exploit the
benefits provided by parallel processing techniques. The remainder of the section
briefly delineates the possibilities of using cluster computing in the search for T-
optimum designs.

5.4.1. Message Passing Interface (MPI)

Modern scientific and engineering computations base on large-scale simulations.
To achieve a reasonable performance, parallel environments which offer possibili-
ties of computing on several processors at the same time are used. These environ-
ments often are called supercomputers.

A supercomputer is a computer that is powerful in terms of processing pos-
sibilities, particularly speed of calculations. The notion of supercomputer itself is
rather vague since the persistent speedup in potential computational power yields
depreciation of particular solutions. In the 1970s most supercomputers were ded-
icated to running vector processors. In the late 1980s and 1990s, attention turned
to massive parallel processing systems with thousands of simple CPUs, some being
off the shelf units and others being custom designs. Today, parallel designs base on
‘off the shelf’ RISC microprocessors, such as PowerPC or PA-RISC, and most mod-
ern supercomputers constitute highly-tuned computer clusters using commodity
processors combined with custom interconnects (Landau et al., 1993; Buyya, 1999).

There exist two main architectures of supercomputers to achieve parallel com-
puting:

• Symmetric Multi-Processing (SMP) should be understood as a single com-
puter with more then one processor. Multiple CPUs residing in one cabinet
share the same memory. Generally, SMP are very expensive and are em-
ployed for specialized applications that require enormous amounts of floating-
point computations. Such systems provide a rather small scalability. As
more requirements are established, additional CPUs can be added, but there
exist hardware, e.g., motherboard, constraints. The SMP systems range from
two up to as many as hundreds or more processors. However, if one CPU
fails, the entire SMP system is also useless. To prevent such a situation, clus-
ters of two or more SMP systems can be used to provide high availability
(fault resilience). If one SMP system fails, the others continue operations.

• Clusters. This architecture usually consists of many ordinary relatively low-
cost computers (compared with SMP constructions) called computing nodes.
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In other words, a computer cluster is a group of loosely coupled computers
that work together closely so that in many respects it can be viewed as if it
were a single computer. Clusters are commonly connected through fast lo-
cal area networks (GigaBit Ethernet, Myrinet, Infiniband) and are typically
much more cost-effective. One of the open source ideas which support build-
ing computer clusters is Beowulf. Beowulf clusters are scalable performance
clusters based on commodity hardware, on a private system network, with
open source software (Linux) infrastructure. Clusters are highly scalable.
The designer can improve performance proportionally with added machines.
The commodity hardware can be a number of mass-market, stand-alone
computing nodes as simple as two networked computers, each running Linux
and sharing a file system, or as complex as 1024 nodes with a high-speed,
low-latency network.

Class I clusters are built entirely using commodity hardware and software
using a standard technology such as SCSI, Ethernet, and IDE. They are
typically less expensive than Class II clusters which may use specialized
hardware to achieve higher performance. Clusters which consist of comput-
ing nodes that have the same hardware are called homogenous. Clusters
with distinct architectures are called heterogenous clusters or heterogenous
systems (Bookman, 2003).

The message passing model defines a set of processes that have access only
to local memory but are able to communicate with other processes by sending
and receiving messages. The major goal of Message Passing Interface (MPI), as
with most standards, is to ensure portability across different machines (Pacheco,
1997; Snir et al., 1998; Gropp et al., 1998) which would be comparable to that
of programming languages such as Fortran. This means that the same message
passing source code can be executed on a variety of machines as long as an MPI
library is available, while some tuning might be needed to take advantage of the
features of each system. Though message passing is often defined in the context of
distributed-memory parallel computers, the same code can run well on a shared-
memory parallel computer. It can be run on a network of workstations or as a set
of processes running on a single workstation. Knowing that efficient MPI stan-
dard implementations exist across a wide variety of computers gives a high degree
of flexibility in the code development, debugging, and in choosing a particular
platform for program execution.

Message Passing Interface provides possibilities of data transfer from the local
memory of one process to the local memory of another process. Such a situation
appears when data processing requires operations being performed by several dis-
tinct processes. There are many specific communication networks (Fast/GigaBit
Ethernet, Infiniband, Myrinet) with different connection topologies.

In practice, the MPI is a library which provides a set of communication proce-
dures for both parallel computers and workstation networks, especially dedicated
for Unix/Linux clusters.
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5.4.1.1. Basic MPI subroutines and program structure

In the message passing model of parallel computation, the processes executed in
parallel have separate address spaces. Communication occurs when a portion of
the address space of one process is copied into the address space of another process.
This operation needs cooperation and occurs only when the first process executes
a send operation and the second a receive operation, respectively. MPI provides
a set of send and receive functions that allow for the transmission of data of a
particular type. Additionally, the so-called tag is associated with the message.
Typing of the message contents is necessary for heterogeneous environments —
the type information is needed so that conversion of a correct data representation
can be performed when data are sent from one architecture to another. The tag
mechanisms provide the tool which allows the message being received selectively,
i.e., at the particular receiving end only a message with a specified, particular
tag can be received or a ‘wild-card’ value for this quantity can be used, allowing
reception of messages with any tag.

An MPI library consists of C or Fortran 77 subroutines which allow communi-
cations between MPI processes by calling MPI routines. All names of MPI routines
and constants in both C and Fortran begin with the prefix MPI_ to avoid name col-
lisions. Fortran routine names are all upper case. The following basic instructions
are indispensable in Fortran implementations. An MPI program requires the use of
the module MPI and begins with the include instruction include ’mpif.h’. This
include file or module is necessary in every MPI Fortran program and subprogram
to define various constants and variables. Then MPI subroutines are executed
after the MPI_INIT and before MPI_FINALIZE routine calls. The call to MPI_INIT
is required in every MPI program and must be the first MPI call. It establishes
the MPI ‘environment’. Only one invocation of this routine can occur in each
program execution. The routine requires only an argument which is an error code.
Every Fortran MPI subroutine returns an error code as its last argument which
can take either value MPI_SUCCESS or an implementation-defined error code. The
MPI consists of over a hundred subroutines, but for a simple parallel program it
is sufficient to use only six basic procedures which are listed below (MacDonald
et al., 2005; Gropp et al., 1999):

• MPI_INIT(ierr)

Initialize the MPI enviroment.

• MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

Determine the size of the group associated with the generally used commu-
nicator
MPI_COMM_WORLD, which is a default communicator predefined in mpif.h and
defines the scope of all processes (processors).

• MPI_COM_RANK (MPI_COMM_WORLD, myrank, ierr)

Determine the rank of a process in the communicator. Initially, each pro-
cess will be assigned a unique integer rank between zero and the number of
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processors minus one within the communicator MPI_COMM_WORLD. This rank
is often referred to as a task ID. If a process becomes associated with other
communicators, it will have a unique rank within each of these as well.

• MPI_SEND(buf, count, datatype, dest, tag, MPI_COMM_WORLD, ierr)

Basic blocking send operation. The routine terminates only after the ap-
plication buffer in the sending task is free for reuse. Some implementations
may actually use a synchronous send to implement the basic blocking send.
The arguments are:
buf address of the send buffer
count number of items to send
datatype data type of each item
dest rank of destination process
tag message tag

• MPI_RECV(buf, count, datatype, source, tag, MPI_COMM_WORLD,
status, ierr)

Receive a message and block until the requested data are available in the
application buffer of the receiving task. The arguments are:
buf initial address of the receive buffer
count maximum number of elements in the receive buffer
datatype data type of each receive buffer element
dest rank of the source process
tag message tag
status return status

• MPI_FINALIZE (...)

Terminate the MPI execution environment.

As an example of a very simple MPI program consider (MacDonald et al., 2005):

PROGRAM test
INCLUDE ’mpif.h’
INTEGER myrank, size, ierr
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, "Processor", myrank, "of", size, ": MPI test"
call MPI_FINALIZE(ierr)

END

which compiled (the compilation manner and commands depend a particular con-
figuration of the environment, e.g., mpif90 test.f90 -o test.out) and invoked
mpirun -np 6 test.out where the parameter -np x specifies the number of pro-
cessors participating in computations, produces the following output:

Processor 0 of 6 : MPI test
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Processor 1 of 6 : MPI test
Processor 2 of 6 : MPI test
Processor 3 of 6 : MPI test
Processor 4 of 6 : MPI test
Processor 5 of 6 : MPI test

5.4.2. Cluster computations of T-optimum designs

Since the most time-consuming part of the computational methods presented
heretofore is the involved global optimization, it is natural that main attention
was concentrated on parallelizing that part of computations. As a global opti-
mizer, the stochastic ARS strategy described in Section 4.4 was used. The nature
of stochastic methods results in a rather straightforward development of their par-
allel counterparts. Thus, in our approach a number of slave processors compute
global minima or maxima in parallel and the reminder of the algorithm is executed
by the master processor. Such a master-slave model is typical for MPI-based par-
allel programming (Gropp et al., 1999).

A parallel implementation of the ARS scheme can be achieved using the fol-
lowing techniques (Kuczewski et al., 2006):

¶ ‘multistart’, when each of the processors performs a search in the entire
admissible domain, but using different initial guesses; additionally, each pro-
cessor can perform several search cycles, all with different initial guesses;

· a partition of the search domain, when each processor conducts a search only
in a proper subdomain of the entire set of feasible solutions; several search
cycles per processor are also possible;

¸ a combination of the foregoing two methods.

Example 5.2. In order to verify the potential possibilities of reducing the total
computational time, the problem of discrimination between two models of chem-
ical reactions, similar to the one from Example 4.2 was considered (with slightly
changed parameter values). To obtain a solution, the Wynn-Fedorov scheme de-
scribed in Section 4.1 was used. We were mostly interested in a time speedup
possible to achieve when using different numbers of processors.

The program used for parallel computing of optimum designs was written
completely in Fortran 95 using ifort (IntelrFortran Compiler v.8.1 for Linux
64-bit platforms) and the open-source mpich-1.2.6 implementation of MPI. Com-
putations were performed on a Linux cluster which has been recently built at the
University of Zielona Góra within the framework of the national CLUSTERIX
project (Wyrzykowski et al., 2004). This homogenous cluster is equipped with
four SMP nodes, each node with two 64-bit Intel Itanium II 1.4GHz processors
and 2GB RAM memory, running under the control of GNU/Linux Debian for ia64.
Connection between the nodes is realized via Gigabit Ethernet.

The parallel ARS procedure was implemented using strategy ¶ (‘multistart’)
and · (domain partitioning) in the above mentioned master-slave model, when
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one of the processors plays a managing role and assigns subtasks to the remaining
processors, gathers partial results from them and then determines the ultimate
solution in the sequential part of the program. In order to examine the time
speedup, we performed numerous experimental runs and obtained virtually the
same solution (optimum design) each time – differences resulting from numerical
inaccuracies appeared only from the second decimal place. The resulting optimum
design contains three support points and has the form

ξ? =
{

0.40, 2.47, 10.00
0.229, 0.327, 0.444

}
. (5.82)

This means that almost half of the measurement effort should be concentrated at
the time instant t = 10 s. As can be seen from Fig. 5.7(a) containing a plot of
the sensitivity function ψ(t) = ‖η(t) − η2(t, ϑ?

2)‖2, the support points are located
at the maxima of ψ(t, ξ?), which is consistent with the presented T-optimality
conditions.
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Fig. 5.7 . Plot of the sensitivity function vs time and the location of the support
points in the optimal design (vertical dashed lines) (a), and the plot of the total
computation time as a function of the number of processors for strategies ¶ and
· (marked with ¨ and •, respectively) (b) in Example 5.2.

The compiled program was executed using various numbers of processors.
The number of search cycles performed on each slave processor depended on the
total number of processors to achieve altogether about 32 independent starts of
the ARS algorithm per iteration of the Wynn-Fedorov procedure. Figure 5.7(b)
shows the averaged total processing time as a function of the number of processors
in the case of using both the strategies.

When analyzing the obtained speedup, it is worth of noticing that despite a
constant, deterministic computation time of a single ARS run (since the number of
generated trial points is fixed a priori and remains constant), the ARS algorithm
itself is probabilistic. This means, that the quality of the obtained solution may
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vary from run to run, which, in consequence, may influence the convergence of the
Wynn-Fedorov scheme.

The trend and shape of the speedup curves is typical compared with the
results obtained for parallelization of problems of stochastic search, e.g., genetic
algorithms (Kwedlo, 2004). We have a noticeable difference in processing time
between two and three processors. A further increase in the number of processors
does not yield so strongly a decrease in the total computational time. Nevertheless,
results are promising, especially when we consider the fact that parallelization was
applied only in the phase of global optimization. Satisfactory modelling of complex
spatial processes, like atmospheric or groundwater pollution proliferation leads
to problems of discriminating between models of distributed parameter systems
described by systems of PDE’s. In that case, the level of computational complexity
is much higher owing to the necessity of multiply solving model equations on
relatively dense, multidimensional grids. It seems that combining parallelization
of solving PDE’s describing models with parallelization of the global optimization
process should allow for a wider application of discrimination techniques based on
optimum experimental design in fields such as pollution forecast or diagnosis of
complex industrial processes.

5.5. Summary

Four practical problems associated with the behaviour of the optimization process
when determining T-optimal designs were treated in some detail. Of fundamental
importance was the study of the convergence of the Wynn-Fedorov algorithm for
the newly proposed DT-optimality criterion. This constitutes the first result of this
type, and our detailed proof revealed salient features of this scheme when applied
to maximin criteria. Consequently, the strong assumptions on the structure of
the answering sets (they have to be singletons) suggest that serious problems
with convergence may be observed when trying to cope with complex models
encountered in engineering practice. But then the RATO algorithm of Section 4.3
can be used, since the appropriate generalization of this procedure to handle the
DT-optimality criterion is rather straightforward.

The other three issues discussed in this chapter were related to a possible
reduction in the amount of time required to determine T-optimal designs. First,
an important asset of the design procedure on finite design spaces, which was
taken here, is that direct computational methods suggested themselves; that is,
the computational algorithm of the gradient-projection type and the duality-based
Uzawa method arose quite naturally in this context. Of significant importance is
the fact that these algorithms rely on the concave nature of the T-optimality
criterion treated as a function of the design weights. The resulting procedure can
be included as a component in the RATO or Wynn-Fedorov algorithms, thereby
considerably accelerating the computational process.

Another issue was the implementation of RafajÃlowicz’s selective random search
technique based on application of a Markov chain Monte Carlo method. The
MCMC sampling strategy is very easy to implement and broadly applicable. Ac-
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tive interest in this area in recent years, which has changed a significant part of the
everyday practice of statistics, and promising results reported here suggest that
this line of investigations should be one of the main directions for future research.

Finally, a way to parallelize the Wynn-Fedorov algorithm has been presented.
The most time-consuming subprocedure, i.e., global optimization, has been paral-
lelized, and this has been done within the MPI (Message Passing Interface) frame-
work. Decreases in computational times can be significant, although because of
the simplicity of the exemplary problem the results reported do depend on the
communication between nodes. Gains are expected to be even higher for more
complex problems if more sophisticated parallelization strategies are employed.
This will constitute another prospective research direction in the near future.



Chapter 6

DESIGNS WITH APPLICATION-DRIVEN
OBJECTIVES

The aim of this chapter is to develop some systematic approaches to T-optimum
experimental design oriented towards applications. Thus, a more realistic prob-
lem of discrimination between several, instead of only two, competing models is
delineated. Then, in Section 6.2 the notion of the so-called replication-free designs
is used to derive an extremely useful approach which is free from the necessity
of taking multiple measurements at one design point. In turn, it leads to simple
and efficient exchange algorithm, allowing us to locate a given number of mea-
surements on a finite set of discrete admissible locations, e.g, a grid of possible
locations. Such a situation is going to be common in engineering practice, e.g., in
environmental research where we deal with problems of monitoring air or water
quality using monitoring sensor networks. This type of problems is strictly con-
nected with the necessity of modelling complex spatio-temporal processes. The
phenomena like pollutant proliferation in the atmosphere require descriptions in
the form of partial differential equations. Thus, the application of T-optimum
design to distributed parameter systems when placing stationary sensors is also
considered in Section 6.3. Section 6.4 deals with an even more challenging problem
of a design in the presence of correlated observation errors. To derive the appro-
priate design criterion, the so-called heteroscedastic framework is used. Finally,
an application in the field of fault detection and diagnosis in industrial processes
is considered in Section 6.5.

6.1. Discrimination between several dynamic models

The considerations presented in this section constitute a straightforward gener-
alization of the problem of determining an optimum design for discrimination
between only two models. In the sequel we assume that there exist v candidate
models. We shall concentrate on general non-linear dynamic models described by
the following ordinary differential equations:

M` :
dη`(t)

dt
= f`(t, η`(t), ϑ̃`), η`(0) = η0, ` = 1, . . . , v, (6.1)

where t is time, η stands for a vector-valued function η : T → Rd (also called
the state), T = [0, tf ] for a given tf , ϑ̃` ∈ Rm` signifies a vector of constant
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parameters being unknown to the experimenter, and f` : T ×Rd+m` is required to
be continuous together with its Jacobi matrices ∂f/∂η` and ∂f/∂ϑ`, ` = 1, 2, . . . , v.
Note that η` depends implicity on ϑ̃` (it will be stressed in the notation and further
considerations as η`(t, ϑ̃`)).

Process responses can be observed up to additive random errors. Thus our
basic assumption is that the discrimination between models M1,M2, . . . ,Mv is
to be performed by making observations yij ∈ Rd of the true process responses
η(t) at discrete time instants t1, . . . , tn. The output equation is defined by the
following regression model:

yij = η(ti) + εij , j = 1, . . . , ri, i = 1, . . . , n, (6.2)

The nonlinear functional relationship η : T ×Rm → Rd constitutes the true model
of the process. In our description, ti stands for a setting of the independent variable
t ∈ T (the so-called explanatory or regressor variable, here the time instant of
the measurement). The terms εij represent random fluctuations (measurement
errors) resulting, e.g., from inaccuracies in the measuring devices. The errors εij

are sampled from a distribution satisfying

E
[
εij

]
= 0, E

[
εijε

T
κ`

]
=

{
σ2Id if i = κ and j = `,

0d otherwise,
(6.3)

Id being the d × d identity matrix, 0d the (d × d)-dimensional matrix of zeros,
and σ2 a constant positive variance. The additional index j is necessary if the
observations are to be repeated several times for some settings ti, as in practice
repeated experimental runs typically lead to different observed responses, even if
ti’s are exactly the same. Here the number of replications for a given setting ti
is denoted by ri,

∑n
i=1 ri = N . The ti’s are called control variables because they

can be chosen by the experimenter. They define process conditions and may vary
from observation to observation (in (6.2) we thus have n different settings denoted
by t1, . . . , tn).

Like in previous chapters, our basic assumption is that the process response
η(t) coincides with one of the η`(t, ϑ̃`)’s, where functions η`(t, ϑ̃`) are given a priori,
with ϑ̃` ∈ Θ` ⊂ Rm` being constant parameters which are fixed but unknown to
the experimenter except for the model which is assumed to be true (the Θ`’s denote
some known compact sets).

Without loss of generality we can again assume that the first model is true,
i.e. η(t) = η1(t, ϑ̃1) and that ϑ̃1 is known to the experimenter. Then, in the case
of v candidate models, we can define v − 1 non-centrality parameters:

∆0
1`(ξN ) = min

ϑ`∈Θ`

n∑

i=1

pi‖η(ti)− η`(ti, ϑ`)‖2, ` = 2, . . . , v, (6.4)

where

ξN =
{

t1, . . . , tn
p1, . . . , pn

}
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constitutes the exact design and pi = ri/N, i = 1, . . . , n. The estimates of the
parameters ϑ̃`, as before, are obtained using the least-squares method, i.e.,

ϑ̂`N = arg min
ϑ`∈Θ`

n∑

i=1

pi‖yi − η`(ti, ϑj)‖2, ` = 2, . . . , v, (6.5)

where

yi =
1
ri

ri∑

j=1

yij . (6.6)

Recall that in the case of discriminating between only two models, the so-
lution consists in maximizing the parameter ∆0

1(ξN ). Now the problem becomes
that of discriminating between the true model and the one(s) closest to it. There-
fore, following (Atkinson and Fedorov, 1975b), as the design criterion we take the
maximum of the non-centrality parameters for one or more of the closest models
and seek

max
ξN

∆0
(1)(ξN ), (6.7)

where
∆0

(1)(ξN ) = min
2≤`≤v

∆0
1`(ξN ). (6.8)

In the case considered here, when we assume that only one closest model ex-
ists, this criterion constitutes a generalization of the one applied to a two-candidate
case. A more complicated situation takes place when maximization of the mini-
mum non-centrality parameter leads to designs for which there are two or more
closest models (e.g., nested models) with equal non-centrality parameter values
(Atkinson and Fedorov, 1975b).

To simplify the solution of the original discrete problem (6.7), we replace it
by the continuous one

max
ξ

∆(1)(ξ) (6.9)

with
∆(1)(ξ) = min

2≤`≤v
∆1`(ξ), (6.10)

where ξ stands for any probability measure on the sigma-field of Borel subsets of
the design space T . Again, the set of all such measures will be denoted by Ξ(T ).

Accordingly, as a continuous generalization of the non-centrality parameters,
we consider the quantities

∆1`(ξ) = min
ϑ`∈Θ`

∫

T

‖η(t)− η`(t, ϑ`)‖2 ξ(dt), ` = 2, . . . , v. (6.11)

The design
ξ? = arg max

ξ∈Ξ(T )
∆(1)(ξ) (6.12)

will then be called the local T(1)-optimum design. (The notation T(1) stresses the
assumption that the first among rival models is assumed to be the true one.)
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6.1.1. Optimality conditions

An easy generalization of the results presented in (Atkinson and Fedorov, 1975b)
allows us to prove the following result, crucial for a construction of numerical
approximations of optimum designs:

Let us make the following assumptions:

(C1) T and Θ` are compact sets for ` = 2, . . . , v,

(C2) η( · ) is a continuous function on T ,

(C3) η`( · , · ) are continuous functions on T ×Θ`, ` = 2, . . . , v.

Theorem 6.1. Assume that there exists only one closest model, i.e., there exists
a unique solution `? of the subproblem (6.10) for a design ξ?. Moreover, suppose
that the least-squares estimates of the parameters ϑ?

`? ∈ Θ`? are unique. Under
Assumptions (C1)–(C3) a necessary and sufficient condition for ξ? to be T(1)-
optimal is that, for every t ∈ T , we have

‖η(t)− η`?(t, ϑ`?)‖2 ≤ ∆(1)(ξ?). (6.13)

The equality in (6.13) is attained at all support points of ξ?. Furthermore, the set
of all the corresponding optimal measures ξ? is convex.

6.1.2. Numerical construction of T(1)–optimum designs

The algorithm proposed below actually constitutes a modified version of Algo-
rithm 4.1. Assuming that nk stands for the number of support points in the current
step, the algorithm can be represented by the following steps (Kuczewski, 2004):

Algorithm 6.1 (Discrimination between several models).

Step 1: Guess an initial design ξ0. Choose some positive tolerance ε ¿ 1. Set
k = 0.

Step 2: In the k-th step, for each ` = 2, . . . , v, find

ϑ̂k
` = min

ϑ`∈Θ`

nk∑

i=1

pk
i ‖η(tki )− η`(tki , ϑ`)‖2. (6.14)

Rank the residual sums of squares obtained for each model and determine
the model producing the least value of the deviation from the true model:

`k = arg min
2≤`≤v

nk∑

i=1

pk
i ‖η(tki )− η`(tki , ϑ̂k

` )‖2. (6.15)

Then find
t̂k = max

t∈T
‖η(t)− η`k(t, ϑ̂k

`k)‖2. (6.16)
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Step 3: If ψ1`(t̂k, ξk) ≤ ∆1`(ξk) + ε, where

ψ1`(t, ξk) = ‖η(t)− η`k(t, ϑ̂k
`k)‖2, (6.17)

∆1`(ξk) =
nk∑

i=1

pk
i ‖η(tki )− η`k(tki , ϑ̂k

`k)‖2, (6.18)

then set ξ? = ξk and STOP.

Step 4: Choose an appropriate αk with 0 ≤ αk ≤ 1 and compute the convex
combination of designs:

ξk+1 = (1− αk)ξk + αkδ(t̂k) (6.19)

where δ(t̂k) is the unit-weight design concentrated at the new trial point t̂k.
Set k ← k + 1 and go to Step 2.

The above procedure consists in taking a new trial point at which the discrep-
ancy between the responses of the true and best-fit models are furthest apart. Since
it constitutes only some modification of the generalized Wynn-Fedorov scheme, its
properties and computational requirements are very similar (the latter are in-
creased owing to the necessity of computing v− 1 times least-squares solutions ϑ̂k

`

during Step 2).

Example 6.1. Consider the process of chemical conversion of substance A into B
and C in a batch reactor (Stewart et al., 1998). Four rival models are considered
for this system:

Model 1: Consecutive reversible first-order reactions A
k1­
k3

B
k2­
k4

C described by

the following equations with the appropriate initial conditions:

d[A]
dt

= −k1[A] + k3[B],

d[B]
dt

= k1[A]− (k2 + k3)[B] + k4[C],

d[C]
dt

= k2[B]− k4[C],

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0,

(6.20)

where [A], [B] and [C] denote the concentrations of the reagents A, B and C,
respectively.
Model 2: Consecutive irreversible first-order reactions A

k1→B
k2→C described by

d[A]
dt

= −k1[A],

d[B]
dt

= k1[A]− k2[B],

d[C]
dt

= k2[B],

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0.

(6.21)
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Model 3: A reversible first-order reaction followed by an irreversible first-order
reaction
A

k1­
k3

B
k2→C described by

d[A]
dt

= −k1[A] + k3[B],

d[B]
dt

= k1[A]− (k2 + k3)[B],

d[C]
dt

= k2[B],

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0.

(6.22)

Model 4: It is formed out of Model 2 supplemented by an irreversible first-order
reaction A

k3→C, which gives

d[A]
dt

= −k1[A],

d[B]
dt

= k1[A]− k2[B],

d[C]
dt

= k2[B] + k3[A],

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0.

(6.23)

In the above models, parameters ki, called the rates, are responsible for the
dynamics of concentrations changes. Model 1 is the true one, since it was used to
generate the data with parameters ϑ̃1 = (k1

1, k
1
2, k

1
3, k

1
4) = (0.7, 0.7, 0.1, 0.1).

The aim of the design is to determine an optimum schedule of the concentra-
tion measurements, which would allow us to answer the question if the considered
reaction can be described by one of the alternative, structurally simpler models
(accepting some unavoidable, small level of discrepancy resulting from different
structures).

The admissible ranges of the parameters k`
i for the `-th rival model were

fixed as 0.3 ≤ k2
1, k

2
2, k

3
1, k

3
2, k

4
1, k

4
2 ≤ 1.0, 0.1 ≤ k3

3, k
4
3 ≤ 0.5. The time horizon

was set as T = [0, 10] and the initial concentrations were fixed as (a0, b0, c0) =
(1.0, 0.0, 0.0). The code to calculate the approximation of the optimum design
using Algorithm 6.1 was run using the Lahey-Fujitsu Fortran 95 compiler v5.6
with IMSL library. After 44 iterations of the procedure, Model 3 turned out to be
the best fit among the three candidates (the value of the non-centrality parameter
was ∆13 = 0.0106). Model 2 was slightly worse fit (∆12 = 0.0117) but still being
well ahead of Model 4 with ∆14 = 0.2965. The obtained optimum design is of the
form

ξ? =
{

0.77, 3.45, 10.00
0.0952, 0.3095, 0.5952

}
. (6.24)

The least profitable parameters of the best fit model (Model 3) compared with
the optimum design ξ? amount to ϑ?

3 = (k3
1, k

3
2, k

3
3) = (0.9609, 0.3708, 0.3756).
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The sensitivity function ψ13(t, ξ?) = ‖η(t) − η3(t, ϑ?
3)‖2, defining discrepancies in

the responses of the true and best fit models has the form shown in Fig. 6.1.
It is worth of noticing that the support points are located in the places where
the sensitivity function attains its upper bound ∆13, which is consistent with the
theory developed and confirms the optimality of the design. The responses of the
true and two successively best fit alternative models are shown in Fig. 6.2.
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Fig. 6.1 . Sensitivity function ψ13(t, ξ?) for the best fit model (Model 3) and the
location of the support points (dashed vertical lines) in Example 6.1.
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Fig. 6.2 . Responses of the true, third and second models (solid, dashed and
dotted lines, respectively) vs time in Example 6.1. The support points of the
optimal design are also indicated (dashed vertical lines).
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6.2. Replication-free T-optimum designs

In the existing literature, as well as in the material presented so far, an underlying
assumption on T-optimal designs is that measurements at optimal time instants or
in optimal places can be repeated several times if necessary. In many situations,
however, this condition is too restrictive as such replications are impossible for
practical reasons (e.g., only one run of the considered process is allowed or repeti-
tions are simply too expensive to perform). The experimental design consists then
in an adequate choice of observation instants or places. Thus in the present sec-
tion, a replication-free measurement policy with a fixed number of measurement
times or points is proposed. For that purpose, the idea of operating on the density
of measurements, rather (Fedorov, 1989; Cook and Fedorov, 1995; Fedorov and
Hackl, 1997) that on the measurement instances is exploited.

The considerations below are presented for dynamic systems such that the
continuous generalization of the T-optimality criterion has the form

∆1(ξ) = min
ϑ2∈Θ2

∫

T

‖η(t)− η2(t, ϑ2)‖2 ξ(dt). (6.25)

In the reminder of the section, we shall make the assumption that the problem
of minimizing the performance index Sξ(ϑ2) =

∫
T
‖η(t) − η2(t, ϑ2)‖2 ξ(dt) with

respect to ϑ2 possesses a unique solution ϑ̂2(ξ) for any fixed ξ. Then we can prove
that

∆1((1− α)ξ + αµ) = ∆1(ξ) + α

∫

T

ψ(t, ξ)µ(dt) + o(α; ξ, µ), (6.26)

for any ξ, µ ∈ Ξ(T ), where

lim
α↓0

o(α; ξ, µ)/α = 0,

ψ(t, ξ) = ‖η(t)− η2(t, ϑ̂2(ξ))‖2 −
∫

T

‖η(t)− η2(t, ϑ̂2(ξ))‖2 µ(dt).
(6.27)

In order to avoid replicated measurement configurations, we implement the
idea of operating on the density of measurements (i.e., the number of measure-
ments per unit time interval), rather than on the measurement locations, which is
justified for a sufficiently large total number of measurements N . In contrast to
the classical designs, however, we impose the crucial restriction that the density of
measurements must not exceed some prescribed level. For a design measure ξ(dt)
this amounts to the condition

ξ(dt) ≤ ω(dt), (6.28)

where ω(dt) signifies the maximal possible ‘number’ of measurement per dt (Fedorov
and Hackl, 1997) such that ∫

T

ω(dt) ≥ 1. (6.29)
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Consequently, we are faced with the following optimization problem: Find

ξ? = arg max
ξ∈Ξ(T )

∆1(ξ) (6.30)

subject to

ξ(dt) ≤ ω(dt). (6.31)

The design ξ? above is then said to be a (T, ω)-optimal design (Fedorov and
Hackl, 1997; Uciński, 2005).

Apart from the usual assumptions made for T-optimum designs, a proper
mathematical formulation calls for the proviso that ω(dt) is atomless, i.e., for any
∆T ⊂ T there exists a ∆T ′ ⊂ ∆T such that

∫

∆T ′
ω(dt) <

∫

∆T

ω(dt). (6.32)

In what follows, we write Ξ(T̄ ) for the collection of all the design measures
which satisfy the requirement

ξ(∆T ) =

{
ω(∆T ) for ∆T ⊂ supp ξ,

0 for ∆T ⊂ T \ supp ξ.
(6.33)

Given a design ξ, we will say that the function ψ( · , ξ) defined by (6.27) separates
sets T1 and T2 with respect to ω(dt) if for any two sets ∆T1 ⊂ T1 and ∆T2 ⊂ T2

with equal non-zero ω-measures we have
∫

∆T1

ψ(t, ξ)ω(dt) ≥
∫

∆T2

ψ(t, ξ) ω(dt). (6.34)

We can now formulate the main result which provides a characterization of (T, ω)-
optimal designs.

Theorem 6.2.

(i) There exists an optimal design ξ? ∈ Ξ(T̄ ), and

(ii) A necessary and sufficient condition for ξ? ∈ Ξ(T̄ ) to be (T, ω)-optimal is
that ψ( · , ξ?) separates T ? = supp ξ? and its complement T \ T ? with respect
to the measure ω(dt).

Proof. The result may be proved in much the same way as Theorem 4.3.1 of
(Fedorov and Hackl, 1997, p. 63), also see (Cook and Fedorov, 1995) or (Uciński,
2005).

From a practical point of view, the above theorem means that at all the
support points of an optimal design ξ? the mapping ψ( · , ξ?) should be greater
than anywhere else, i.e., preferably supp ξ? should coincide with maximum points



126 6.2. Replication-free T-optimum designs

of ψ( · , ξ?) If we were able to construct a design with this property, then it would
be qualified as an optimal design. This conclusion forms a basis for numerical
algorithms of constructing solutions to the problem under consideration.

As regards the interpretation of the resultant optimal designs (provided that
we are in a position to calculate at least their approximations), one possibility is
to partition T into subdomains ∆Ti of relatively small areas and then to allocate
to each of them the number

N?(∆Ti) =
⌈
N

∫

∆Ti

ξ?(dt)
⌉

(6.35)

of measurements whose positions may coincide with nodes of some uniform grid
(Fedorov and Hackl, 1997; Uciński, 2005) (here dζe is the smallest integer greater
than or equal to ζ). Additionally, bear in mind that we must also have ξ?(dt) =
ω(dt) in T ?.

Clearly, unless the considered design problem is quite simple, we must employ
a numerical algorithm to make the outlined conceptions useful. Since ξ?(dt) should
be non-zero in the areas where ψ( · , ξ?) takes on a larger value, the central idea
is to move some measure from areas with smaller values of ψ( · , ξk) to those with
larger values, as we expect that such a procedure will improve ξk. This forms a
basis for the numerical algorithm.

6.2.1. Replication-free numerical scheme

In what follows, we propose an exchange algorithm for computing replication-
free designs. The name follows from the property that we sequentially perform
replication-free exchanges of support points (a particular point may appear only
once in the design and only one observation can be performed at each point).
The number of support points n is thus constant and chosen a priori before
the experiment. Assume that a sufficiently dense grid of discrete points Td =
{τ1, τ2, . . . , τR} ⊂ T at which observations of the system output can be taken is
given. The algorithm can be represented by the following steps (Kuczewski, 2003)
(note that all design weights are now equal to 1/n):

Algorithm 6.2 (Replication-free algorithm for T-optimum designs).

Step 1: Guess an initial n-point replication-free design ξ0. Choose some positive
tolerance ε ¿ 1. Set k = 0.

Step 2: Find

ϑ̂k
2 = arg min

ϑ2∈Θ2

n∑

i=1

‖η(tki )− η2(tki , ϑ2)‖2. (6.36)

Determine

tk1 = arg min
t∈T k

1

‖η(t)− η2(t, ϑ̂k
2)‖2,

tk2 = arg max
t∈T k

2

‖η(t)− η2(t, ϑ̂k
2)‖2,

(6.37)
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where T k
1 = supp(ξk) stands for the set of support points at stage k, T k

2 =
Td \ T k

1 .

Step 3: If ψ(tk2 , ξk) ≤ ψ(tk1 , ξk) + ε, where

ψ(t, ξk) = ‖η(t)− η2(t, ϑ̂k
2)‖2, (6.38)

then ξ? = ξk and STOP.

Step 4: Swap tk1 and tk2 (exchange without replication), i.e., set T k+1
1 = (T k

1 \
{tk1}) ∪ {tk2}, update ξk+1 accordingly, set k ← k + 1 and go to Step 2.

The basic concept of the procedure is very intuitive since we should obtain a
design including points of maximum discrepancy between models. Computation-
ally, Step 2 is of crucial significance but at the same time it is the most time-
consuming part of the procedure. Complications arise, among other things, due
to the necessity of calculating a global optimum in (6.36) (getting stuck in one of
local optima may result in a precocious termination of the algorithm). Therefore,
while implementing this part of the procedure, an effective global optimizer is es-
sential, just as was the case in previous chapters. Determination of a pair tk1 and
tk2 is definitely easier, since it reduces to a simple search on finite sets T k

1 and T k
2 ,

respectively.

Example 6.2. To illustrate the performance of the algorithm, the models from
Example 4.3 were used, but with slightly changed parameters. The true model,
describing pendulum movements has the form

dϕ(t)
dt

= ω(t), ϕ(0) = π/2,

dω(t)
dt

= −10sin(ϕ(t)), ω(0) = 0,

(6.39)

where ϕ(t) and ω(t) stand for the angle and the angular velocity, respectively. The
rival model has the structure

dϕ(t)
dt

= ω(t), ϕ(0) = π/2,

dω(t)
dt

= −ϑ2ϕ(t), ω(0) = 0,

(6.40)

where ϑ2 is an unknown parameter.
In order to compare properties of the classical and replication-free designs,

we present results of using both the standard approach with replication allowed
(using the Wynn-Fedorov scheme) and the clusterization-free approach.

The design horizon was fixed as T = [0, 1.2] and the set of admissible param-
eter values was Θ2 = [5, 10] in the case of both the experiments. The programs
to calculate optimum designs were written in the Lahey-Fujitsu Fortran 95 v5.6
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environment using some procedures from the IMSL library. The resultant classi-
cal design includes only one support point at which the whole measurement effort
should be concentrated:

ξ? =
{

0.5887
1.0

}
. (6.41)

The least profitable parameter of the alternative model with respect to the opti-
mum design ξ? is ϑ?

2 = 7.1813. The support point coincides with the maximum
point of the sensitivity function ψ(t, ξ?) = ‖η(t) − η2(t, ϑ?

2)‖2, which stands for
the point of the maximum discrepancy between the responses of both the models
(Fig. 6.3).
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Fig. 6.3 . Sensitivity function (a), and true and alternative model responses (solid
and dashed lines, respectively) (b) obtained in Example 6.2 in the case of allowed
replications, vs the location of the support point (the dashed vertical line).

During the second experiment, Algorithm 6.2 was employed to obtain an
optimum replication-free design. It was assumed that the same time horizon was
divided into 200 evenly spaced potential measurement points, from among which
50 were ultimately included in the design. The initial 50-point design ξ0 was
generated at random. The algorithm was run several times in order to avoid
getting stuck in a local solution. The location of support points in the resulting
optimal design is shown in Fig. 6.4. Note that the selected support points occupy
the places where the discrepancies between the model responses in the case of their
best fit are maximum. The optimal value of the second model parameter is almost
identical to that in the previous experiment (ϑ?

2 = 7.1884). Small differences in
these values and an asymmetric location of the support points in the resultant
replication-free design are forced by inaccuracies in the numerical optimization.
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Fig. 6.4 . Sensitivity function (a), and true and alternative model responses (solid
and dashed lines, respectively) (b) obtained in Example 6.2 in the case of the
T-optimal replication-free design, vs the location of the support points (vertical
lines).

6.3. Discrimination between models of distributed parameter
systems

When considering the systems with spatio-temporal dynamics described by partial
differential equations, the optimal measurement problem appears (Uciński, 2005).
This is related to the fact that there are several possible manners in which the
measurements in spatio-temporal domains are made (Chen and Seinfeld, 1975).
Measurements performed over the entire spatial domain continuously in time or
at discrete time moments are considered to be of little significance, since it is
generally not possible to carry out measurements over the whole spatial area Ω.
Thus, measurements at discrete spatial locations are commonly encountered in
engineering applications and, as a consequence, they dominate in the literature
(Uciński, 2005; RafajÃlowicz, 1978; RafajÃlowicz, 1984; RafajÃlowicz, 1986; Banks and
Kunisch, 1989). They also can be performed continuously in time, or at discrete
points in time.

If the measurements are not costly, then one would gather data as frequently
as possible. As long as the timing of measurements is not a decision variable, the
above-mentioned two manners are basically equivalent. Thus we focus here on the
problem of T-optimum location of stationary sensors performing measurements
continuously in time.

We now consider two competing models of distributed parameter systems
defined in a spatial domain Ω and described by the following, possibly non-linear
equations:

M` :
∂η`

∂t
= F`

(
x, t, η`,∇η`,∇2η`, ϑ`

)
, ` = 1, 2, (6.42)
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where x ∈ Ω, t ∈ T stands for time, T = [0, tf ], η` = η`(x, t, ϑ`) denotes the scalar
state variable with values in R and F is some known function which may include
terms accounting for forcing inputs given a-priori. Here ϑ` ∈ Θ` denotes a vector
of constant but unknown parameters, Θ` being a given compact set. For simplicity,
we assume that both the equations are accompanied by the same boundary and
initial conditions

{ B(x, t, η,∇η) = 0, (x, t) ∈ ∂Ω× T,

P(x, η,∇η) = 0, (x, t) ∈ Ω× {0}, (6.43)

where ∂Ω denotes a smooth boundary of Ω, B and P being known functions.
If we assume that the system is observed via N pointwise sensors placed

at points x1, . . . , xn, n ≤ N which take measurements at fixed time instants
t1, . . . , tK ∈ T , the output equation has the form

yk
ij = η(xi, tk) + εij , j = 1, . . . , ri, i = 1, . . . , n, k = 1, . . . , K, (6.44)

where η( · , · ) stands for the response of the true spatio-temporal system, ri denotes
the number of sensors (or, alternatively, replicated observations) at point xi and
εij ∼ N (0, σ2) represents a sequence of uncorrelated random measurement errors.

Now we directly follow the approach outlined in Chapter 3, i.e., we assume
that the response of the first model is consistent with the true response of the
process, i.e., η( · , · ) ≡ η1( · , · , ϑ̃1) for some known value of ϑ̃1 ∈ Θ1.

Thus, the exact T-optimum design should maximize the value of the non-
centrality parameter in the form

∆0
1(ξN ) = min

ϑ2∈Θ2
J(ξN , ϑ2), (6.45)

where

J(ξN , ϑ2) =
n∑

i=1

pi

K∑

k=1

‖η(xi, tk)− η2(xi, tk, ϑ2)‖2, (6.46)

and

pi = ri/N,

n∑

i=1

pi = 1.

Then we extend the notion of the design to the continuous case in much the same
way as in Chapter 2. Moreover, for a sufficiently large K and the points t1, . . . , tK
densely covering the time interval T , the sum over time instants can be replaced by
the integral over T . Accordingly, the continuous generalization of the optimality
criterion is of the form

∆1(ξ) = min
ϑ2∈Θ2

∫

X

J (ξ, ϑ2) ξ(dx), (6.47)
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where X signifies a compact set where measurements are allowed, and

J (ξ, ϑ2) =
∫ tf

0

‖η(x, t)− η2(x, t, ϑ2)‖2dt. (6.48)

The design
ξ? = arg max

ξ∈Ξ(X)
∆1(ξ) (6.49)

is called a locally T-optimum design.
Thus, for this formulation, the results and algorithms outlined in Chapters 3

and 4 can be applied directly (Kuczewski et al., 2004). The only additional com-
putational effort consist in the necessity of integration with respect to time.

Example 6.3. Let consider an advection-diffusion process for a pollutant over a
given area Ω, cf. Fig. 6.5. Assume that the pollutant concentration u over the time
interval T = [0, 1] is described by the model in the form of the partial differential
equation

∂u(x, t)
∂t

+ div (v(x)u(x, t)) = div (d(x)∇u(x, t)) in x ∈ Ω, (6.50)

subject to initial and boundary conditions




u(x, 0) = 100e−100(x2
1+x2

2) in Ω,

∂u(x, t)
∂n

= 0 in ∂Ω× T,
(6.51)

where ∂u/∂n stands for the partial derivative of u with respect to the outward
normal of boundary ∂Ω. The following form of the diffusion coefficient was as-
sumed:

d(x) = 0.1 + 0.1x4
1 + 0.1x4

2. (6.52)

The velocity of transport medium was modelled as a radial field directed outwards
with the source situated at point P = (0, 0):

v(x) =

(
x3

1√
(x2

1 + x2
2)

,
x3

2√
(x2

1 + x2
2)

)
(6.53)

The domain Ω, boundary ∂Ω, the contour of the initial concentration of the sub-
stance u(x, 0) and the velocity field of the transport medium are shown in Fig. 6.5.
The alternative model has no advection part, so only the diffusion of the pollutant
is considered. The model is described by the equation

∂u(x, t)
∂t

= div (da(x)∇u(x, t)) in x ∈ Ω (6.54)

with boundary and initial conditions (6.51) and the same observation horizon as
in the model (6.50). The spatially varying diffusion coefficient of the alternative
model has the form preserving symmetry:

da(x) = ϑ21 + ϑ22(x4
1 + x4

2). (6.55)
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Fig. 6.5 . Considered domain, its boundary, initial concentration of a pollutant
(contour plot) and the velocity field of the transport medium in Example 6.3.

The allowed values of the alternative model parameters were fixed as ϑ2 = (ϑ21, ϑ22)
∈ [0.01, 0.2]2. The program for computing an optimum design was written com-
pletely in the Matlab 7.1 environment. Numerical solutions of the advection-
diffusion-reaction PDE’s were obtained using the finite element method (to handle
that kind of PDE, a solver was written, based on the procedures from the Matlab
PDE Toolbox).

For ε = 0.002 the Wynn-Fedorov scheme converged in 150 iterations which
took about 10 hours on a PC 1.7 GHz, equipped with Pentium 4 processor and
running Windows 2000. The resulting optimum design includes two points and
has the form

ξ? =
{

(−0.4002,−0.0110), (0.0120, 0.3890)
0.2097, 0.7903

}
. (6.56)

The least profitable parameters of the alternative model are ϑ?
2 = (ϑ?

21, ϑ
?
22) =

(0.1004, 0.1048). The obtained sensitivity function

ψ(x, ξ?) =
∫

T

‖η(x, t)− η2(x, t;ϑ?
2)‖2dt (6.57)

defining the discrepancy between the responses of both the models for the T-
optimum sensor location is shown in Fig. 6.6(a). It is worth of noticing that
the support points are located at the maxima of ψ(·, ξ) which is consistent with
the presented theory. As can be seen in Fig. 6.6(b), the sensitivity function is
symmetric, which results from the symmetry of the original problem. The function
possesses four maxima, where the values of the T-optimum criterion equal one
another, but sensors are located only at two of them. This situation is caused by
unavoidable numerical inaccuracies of computations (even a very small difference
between the values of the criterion is crucial for which of the points will be included
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Fig. 6.6 . Contour plot of the sensitivity function with optimum sensor location
(a) and the surface plot of the sensitivity function (b) obtained in Example 6.3.

into the current design). Note that any design concentrated at a single point being
a global maximizer of the sensitivity function is T-optimal (it is clear that there are
four such points, since there are four global maxima). According to Theorem 3.8,
the set of T-optimal designs is convex. In these terms, any convex combination of
these four single-point designs is thus T-optimal, too. As a result, the algorithm
produced only one of this continuum of T-optimum designs.

6.4. Discrimination between models of DPS for correlated
observations

All the problems discussed so far have been formulated in accordance with the as-
sumption about the independence of the observations, i.e., that the random errors
are not mutually correlated. This leads to elegant solutions and is very convenient
because it simplifies analysis, but also has some impediments. First of all, in many
practical applications, the fact that observations made at different sites are often
determined by local correlations is one of the most characteristic properties of
spatial data acquisition techniques. Moreover, frequently there exists no possibil-
ity of using replicated measurements, since experimental conditions are extremely
difficult to reconstruct or such a procedure is unacceptable (the process of pol-
lutant emission and proliferation in the atmosphere is a good example of such a
situation). In the case of dynamic DPS’s the situation is additionally complicated
by the fact that random errors can be correlated in both time and space, which
entails an extremely difficult nature of the problem. Thus, the majority of existing
approaches concern only spatial correlations, neglecting temporal ones. Design for
parameter identification involving both spatial and time correlations was consid-
ered in (Patan, 2004; Uciński, 2005). The assumption about correlations between
observations leads to significant complications, since, e.g., the valuable property
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of the additivity of Fisher information matrices from different measurement points
is no longer justified. Thus, the information pieces from individual observations
cannot be separated and direct application of the results from convex optimization
is rather impossible. Moreover, replications of measurements are also not justified,
since positioning any two sensors in the same location leads to the singularity of the
covariance matrix. Nevertheless, it is possible to construct a numerical algorithm
of the exchange type for finding locations of stationary sensors.

In the case of a design for discrimination between competing models involving
mutually dependent observations, the situation is even more difficult. There are
few papers concerning such a scenario for dynamic systems, and particularly for
DPSs. In this context, the paper (Uciński and Bogacka, 2004) seems to be very
interesting. The authors propose an approach to construct T-optimum designs for
two rival multiresponse systems described by ordinary differential equations. The
adopted heteroscedastic framework is based on the assumption that the observa-
tions are corrupted by a normally distributed noise with zero mean and covariance
matrix which may depend on unknown parameters. The observations are not cor-
related in time, but correlations between different responses are admitted. Such an
assumption results in a modification of the T-optimality criterion — apart from the
term concerning differences between model responses, additionally a term concern-
ing differences between covariance matrices for both the models appears. Thus,
the experiment should be conducted in such a way that both the responses and
the covariance matrices differ as much as possible, while the parameter values of
the second model are chosen so as to make the competing model closest to the
true one.

6.4.1. Heteroscedastic DPS models

The approach briefly described above can be adapted for discrimination between
models of DPSs using stationary sensors. Assume that Ω ∈ R2 stands for a
bounded and simply-connected open domain with a suitably smooth boundary
∂Ω. Consider the distributed parameter system whose mathematical model is
described by the scalar partial differential equation

∂v

∂t
= G(x, t, v,∇v,∇2v), (x, t) ∈ Ω× T (6.58)

with appropriate boundary and initial conditions
{ B(x, t, v,∇v) = 0, (x, t) ∈ ∂Ω× T,

P(x, v,∇v) = 0, (x, t) ∈ Ω× {0}. (6.59)

where x = (x1, x2) ∈ Ω∪ ∂Ω denotes the vector of spatial coordinates, u(x, t) ∈ R
stands for the system state, T = [0, tf ] is the observation horizon and G,B and P
are some known functions mapping their arguments into R.

Assume that we want to optimally locate N different stationary sensors taking
measurements continuously in time. If we interpret the signals acquired by the
sensors as ‘outputs’, we can treat the considered system as a multiresponse system
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with time dynamic (a system with N outputs). Then the observation equation
has the form

y(t) = η(t, ξ) + ε(t), t ∈ T, (6.60)

where η(t, ξ) = col
[
v(x1, t), v(x2, t), . . . , v(xN , t)

]
and since we do not allow for

replications, the design ξ =
{
x1, . . . , xN

}
is now interpreted as the set of sensor

locations xi, 1 = 1, . . . , N . The measurement noise is uncorrelated in time and
ε(t) ∼ N(0, V (t, ξ)), Cov(ε(t), ε(τ)) = V (t, ξ)δ(t − τ), where δ( · ) stands for the
Dirac delta function and V (t, ξ) ∈ RN×N is a symmetric and positive-definite
matrix.

Two candidate models are considered:

M1 : E[y(t)] = η1(t, ξ, ϑ1), Cov(ε(t), ε(τ)) = V1(t, ξ, ϑ1)δ(t− τ) (6.61)

and

M2 : E[y(t)] = η2(t, ξ, ϑ2), Cov(ε(t), ε(τ)) = V2(t, ξ, ϑ2)δ(t− τ), (6.62)

where η`(t, ξ, ϑ`) is defined as

η`(t, ξ, ϑ`) = col
[
v`(x1, t), v`(x2, t), . . . , v`(xN , t)

]
, (6.63)

v`( · , · ) being the solution of the PDE

∂v`

∂t
= G`(x, t, v`,∇v`,∇2v`, ϑ`), (x, t) ∈ Ω× T (6.64)

with boundary and initial conditions (6.59), where ϑ` stands for a vector of un-
known parameters. Moreover, V`( · , · , · ) have values in PD(N). Again, using
T-optimality, the basic assumption we make is that model M1 is true, i.e., G ≡ G1

and moreover V (t, ξ) = V1(t, ξ, ϑ1), η(t, ξ) = η1(t, ξ, ϑ̃1) for some known value of
ϑ̃1.

Then the discrimination is performed based on the maximization of the gen-
eralized T-optimality criterion of the form

∆1(ξ) = min
ϑ2∈Θ2

J (ξ, ϑ2), (6.65)

where

J (ξ, ϑ2) =
∫

T

{
ΥV (V −1

2 (t, ξ, ϑ2))

+ [η(t, ξ)− η2(t, ξ, ϑ2)]TV −1
2 (t, ξ, ϑ2)[η(t, ξ)− η2(t, ξ, ϑ2)]

}
dt (6.66)

and
ΥV (V −1

2 ) = trace(V −1
2 V )− ln det(V −1

2 V ). (6.67)

Such a form of the criterion results from a specific form of the logarithm of the
likelihood ratio function constructed for the considered case, see (Uciński and
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Bogacka, 2004) for details. Then the solution of the optimum sensor location
problem reduces to finding the design

ξ? = arg max
ξ∈Ξ(X)

min
ϑ2∈Θ2

J (ξ, ϑ2), (6.68)

where Ξ(X) stands now for the set of all feasible sensor configurations. In the
expression (6.66) two parts can be distinguished, namely the term (6.67) depen-
dent on the structure of the measurement noise for both the models (covariance
matrices) and the term dependent on the differences between the responses of both
the models. Thus we attempt to find a design for which both the parts differ as
much as possible while the value of the parameter ϑ2 is set so as to make them as
close as possible.

6.4.2. Numerical approximations

Unfortunately, in the case considered we cannot provide an appropriate equiv-
alence theorem connecting optimum solutions with properties of the sensitivity
function. Thus, an adaptation of the Wynn-Fedorov numerical scheme is impos-
sible. But we can transform the problem into the SIP one (Kuczewski, 2005), in
much the same way as in Section 4.2.3. Complications arise due to the fact that
evaluation of ∆1( · ) involves some additional effort (an additional term appears
in the criterion). On the other hand, the design now contains only support points
with no corresponding weights. Generally the comments on a practical implemen-
tation given in Section 4.2.3 remain valid. The role of the efficient global optimizer
should be especially pointed out, since we do not have the possibility of addition-
ally checking the optimality of the obtained solution (such a possibility exists only
when an equivalence theorem can be provided).

Additionally, it is important to impose an ‘artificial’ constraint preventing
two different sensors being located in the same position or in a close vicinity of
each other, since the covariance matrix is then singular or close to singularity.

Example 6.4. Consider the process of pollutant proliferation in the atmosphere.
Its concentration v on the given area Ω is described by the following diffusion
equation:

∂v(x, t)
∂t

= ∇2v(x, t) + 1000e−100‖x−c‖2 (6.69)

with the initial and boundary conditions
{

v(x, 0) = 0.1, x ∈ Ω,
v(x, t) = 0.1(1− t), x ∈ ∂Ω× T,

(6.70)

where x ∈ Ω̄ = [0, 1]2, t ∈ T = [0, 1], c = (0.25, 0.25). Moreover, we assume the
lack of spatial correlations between the observations of pollutant concentrations,
which corresponds to the covariance matrix V = IN , where N stands for the
number of sensors to be located. The situation described by such a model can be
interpreted as the existence of a constant source of pollutant emission situated at
the point c.
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The alternative model is described by the equation

∂v(x, t)
∂t

= ∇2v(x, t) + 1000ϑ2e
−100‖x−d‖2 (6.71)

supplemented with the initial and boundary conditions (6.70), ϑ2 ∈ Θ2 = [0.8, 1.2],
d = (0.75, 0.75). Moreover, the assumed form of the covariance matrix is V2ij =
e−ρ‖xi−xj‖. Thus in the alternative model the source of pollutant emission is moved
to the point with coordinates d, the intensity of emission depends on the parameter
ϑ2 and the observations of pollutant concentration are correlated. Correlation
depends on the distance between the sensors and the value of the parameter ρ.
In the experiment, the T-optimal positions of N = 4 sensors were sought. The
obtained results are shown in Fig. 6.7. We can observe that sensors, initially
clustered in the vicinity of the pollutant source in both the models (in the case of
no correlation between the observations in the alternative model) tend to increase
the mutual distances as the correlation coefficient increases.
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Fig. 6.7 . Optimum sensor locations obtained in Example 6.4: pluses correspond
to the lack of correlation in the alternative model (V2 = I), open circles are
positions computed for ρ = 500, i.e., small correlation in the alternative model,
and asterisks signify the positions for ρ = 10, i.e., medium correlation in the
alternative model.

6.5. T-optimal designs for fault detection

Methods of Fault Detection and Isolation (FDI) in dynamic systems constitute
a rapidly developing part of industrial applications (Frank and Köppen-Selinger,
1997; Chen and Patton, 1999; Patton et al., 2000; Chiang et al., 2001; Korbicz
et al., 2004). However, especially in the case of processes with spatio-temporal
dynamics, there are still no universal and efficient approaches to fault diagnosis.
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Parameter identification is one of the basic analytical methods of fault de-
tection when faults bring about not only changes in output signals, but also in
parameter values. Usually the parameters are not measurable directly, but can
be estimated based on input/output measurements. Such estimates compared
with the nominal values can be used to generate residual signals. Next, analyzing
such residua, a decision about an alert signalizing a fault occurrence can be made
(Chen and Patton, 1999). Recently, the approach to fault detection based on
adoption of optimum experimental design for parameter identification in model-
based diagnosis has been presented in a series of articles (Uciński, 2003; Patan and
Patan, 2003; Patan et al., 2005).

The above-mentioned approach consists in an optimum location of sensors
based on the so-called Ds-optimum criterion, when the parameters crucial with
respect to fault detection can be separated from the remaining model parameters.
It can be shown that maximization of such a criterion (accomplished by selecting
appropriate sensor locations) also maximizes the power of the test constructed for
verifying the null hypothesis about nominal values of system parameters (H0 : ϑ =
ϑ?) against the alternative one (H1 : ϑ 6= ϑ?).

Another possibility of applying optimum experimental design in the field of
FDI consists in applying methods of discrimination between candidate models
(Baranowski and Kuczewski, 2005; Kuczewski et al., 2003). The approach reduces
to testing a null hypothesis corresponding to the model describing the normal
state of the process functioning against the alternative one, which corresponds
to an alternative model describing the faulty process. Since the maximization of
the power of the test of lack of fit of the alternative model against the true one
corresponds to maximization of the T-optimum criterion, it can be conjectured
that a T-optimum sensor location maximizes probability of fault detection.

Example 6.5. Consider the model described by the diffusion equation in the form

∂v(x, t)
∂t

−∇ · ∇v(x, t) = 10e−100‖x−c1‖2 + 10e−100‖x−c2‖2 (6.72)

where x ∈ Ω ∪ ∂Ω = [0, 1]2, t ∈ T = [0, 1], c1 = (0.25, 0.25), c2 = (0.75, 0.75) with
initial and boundary conditions of the form

{
u(x, 0) = 0.1, x ∈ Ω,
u(x, t) = 0.1(1− t), (x, t) ∈ ∂Ω× T.

(6.73)

Such equations can be interpreted as a simple model of contamination prolif-
eration in Ω, where v stands for the concentration of a pollutant. The driving force
appearing in the model can be interpreted as two pointwise sources of pollutant
emissions. They are modelled as Gaussian peaks situated at the points c1 and c2.
The whole model (which is our reference model) simulates the normal state of the
process with nominal pollutant emission by both the sources.

The alternative model differs from the reference one only by the existence of
a single source of pollutant emission:

∂u(x, t)
∂t

−∇ · ∇v(x, t) = ϑ21e−ϑ22(‖x−c0‖2) (6.74)
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Fig. 6.8 . Considered area and contour plot of the driving nominal force in the
reference model of Example 6.5.
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Fig. 6.9 . Sensitivity function (a) and its contourplot with T-optimum sensor
location (b) obtained in Example 6.5.

subject to the initial and boundary conditions (6.73), where c0 = (ϑ23, ϑ24).
With an appropriate selection of the feasible range for parameters, this model

can simulate the situation of a significant increase in the emission of one of the
sources or a decrease in the emission of the second source. Then the problem of
making a decision about the existence of such a faulty, abnormal situation reduces
to discrimination between the reference and alternative models and the design
of experiment can be performed as an initial step to detect and diagnose such a
failure.

A Fortran 95 program to calculate the approximation of the optimum de-
sign using the Wynn-Fedorow scheme was run using the Lahey-Fujitsu Fortran
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95 compiler v5.6 supplemented with IMSL library. To solve the respective global
optimization problems, the ARS method was utilized. The responses of both the
models were obtained using a specially implemented solver based on the Finite
Element Method, and the interpolation between grid points was performed using
3D cubic splines, cf. (Uciński, 2005) for details.

It was assumed that the feasible ranges of the parameters in the alternative
model were

10 ≤ ϑ21 ≤ 30, 250 ≤ ϑ22 ≤ 350,
0.15 ≤ ϑ23 ≤ 0.25, 0.15 ≤ ϑ24 ≤ 0.25.

This setting ensured that the source of pollutant emission in the alternative model
was situated close to the first source in the reference model. The obtained T-
optimum design has the form

ξ? =
{

(0.7377, 0.7377), (0.3453, 0.3453)
0.8889, 0.1111

}
. (6.75)

The plot of the resulting sensitivity function

ψ(x, ξ?) =
∫

T

‖η(x, t)− η2(x, t, ϑ?
2)‖2 dt (6.76)

with optimum sensor locations is shown in Fig. 6.9.
The least profitable value of the alternative model parameter vector for ξ? is

ϑ?
2 = (ϑ?

21, ϑ
?
22, ϑ

?
23, ϑ

?
24) = (10, 250, 0.25, 0.25).

Thus, we can see that the sensors should be placed near both sources of pollutant
emission present in the reference model, which agrees with our intuition. In those
places the sensitivity function achieves its upper bound.

6.6. Summary

In this chapter we investigated possible extensions and applications of the basic
formulation of the T-optimum design problem which has been studied in the pre-
vious chapters. At the beginning, a procedure was outlined to design when several
competing models are possible. Clearly, the computational load increases, but the
key idea of the design remains the same. Then a relatively new concept of de-
signs with prespecified direct constraints on the design intensity (i.e., this design
intensity is bounded by an atom-free measure from above) was adapted in the
context of replication-free T-optimal designs. An extremely simple exchange-type
algorithm was proposed to numerically determine a series of points at which single
measurements are to be taken. To our knowledge, this constitutes the only treat-
ment of what would be called the replication-free T-optimum experimental design
problem.

In the remaining part of the chapter, much attention was paid to the sensor
location problem for distributed parameter systems described by partial differ-
ential equations. Clearly, such models involve using sophisticated mathematical
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methods, but in recompense for this effort we are in a position to describe the
process more accurately and to implement more effective control strategies. Inves-
tigations in this direction had been launched by (Uciński, 2005). Here we extend
his results by showing that the methodology outlined in the previous chapters is
still valid in this framework and can be used to attack the problems of correlated
observations (owing to the attendant serious technical difficulties, this assumption
is most often avoided in the literature on optimal sensor location) and fault de-
tection (in practice, there have been no works on this topic yet in the context of
distributed parameter systems). For all the problems discussed in this chapter,
the efficiency of the proposed techniques was demonstrated via several numerical
examples concerning nontrivial design problems.



Chapter 7

CONCLUSIONS

From an engineering point of view it is clear that the model selection for a given
system is fundamental in the sense that it determines the accuracy of the sys-
tem characteristics which are identified from an identification experiment, and
then the quality of the applied control scheme. On the other hand, an engineering
judgement and trial-and-error analysis are quite often used to determine input and
measurement ports, test signals, sampling instants, presampling filters, and some
parameters such as temperature, pressure, etc., in spite of the fact that the problem
has been attacked from various angles by many authors and a number of relevant
results have already been reported in the literature. What is more, although it
is commonly known that this area of research is difficult, since the non-linearity
and nondifferentiability inherent in the experimental design for model discrimina-
tion precludes simple solution techniques, some systematic attempts at obtaining
optimal experimental conditions are still made and the progress is towards more
general models, more realistic assumptions and a better understanding of the na-
ture of the measurement schedules. Logically, the number of applications should
proliferate, yet this is not the case. It seems that two main reasons explain why
strong formal methods are not accepted in engineering practice. First, with the
use of the existing approaches, only relatively simple engineering problems can be
solved without resorting to numerical methods. Second, the complexity of most
existing design algorithms does not encourage engineers to apply them in practice.

Bearing this in mind, the original goal of the research reported in this disser-
tation was simply to develop computationally efficient methods to solve practical
measurement scheduling problems for a wide class of dynamic systems described
by ordinary differential and partial differential equations. In the process of execut-
ing this task, we have outlined a theoretical foundation for the adopted approach
and constructed several new algorithms for various types of computation. The
following is a concise summary of the contributions provided by this work to the
state-of-the-art in computational techniques for optimum experimental design in
dynamic systems:

• Systematizes characteristic features of the problem and analyzes the exist-
ing numerical approaches based on the classical sequential Wynn-Fedorov
scheme.

• Develops an effective relaxation method for computing successive approxima-
tions to T-optimum designs (Algorithm RATO). This scheme based on the
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reduction to a sequence of finite maximin problems enables us to implement
the algorithms for finding optimal measurement schedules in an extremely
efficient manner, without limitations to the differentiable situations as is the
case for the usual Wynn-Fedorov algorithm. Simulation experiments vali-
date the fact that making use of the proposed method may lead to dramatic
gains in the values of the adopted performance index, and hence to a much
greater reliability in the resulting hypothesis testing.

• Provides a smoothing method for computing approximated solutions to finite
maximin problems, and characterizes the corresponding optimal measures,
which allows an easy testing of any given design for optimality, and then
clarifies how to adapt well-known algorithms of optimum experimental design
for finding numerical approximations to the sought solutions.

• Presents the concept of replication-free designs along with a practical algo-
rithm being a modified version of the effective method proposed by Fedorov
in the context of linear regression models.

• Extends RafajÃlowicz’s approach of selective random search to constructing
T-optimal designs and thus derives an efficient and simple computational
approach based on a Markov chain Monte Carlo method.

• Incorporates an approach to constructing T-optimal designs on a finite set
of allowable support points (weight-optimization algorithms).

• Formulates and solves the problem of measurement scheduling based on semi-
infinite programming. Specifically, it is shown how to reduce the problem to
a constrained semi-infinite problem. Then various methods can be employed
to solve it numerically. It is demonstrated that the proposed approach can
tackle various challenging problems of vital importance.

• Discusses the Wynn-Fedorov algorithm for the DT-optimality criterion pro-
posed by Atkinson and provides conditions for its convergence.

• Shows how to significantly decrease the computational time indispensable to
obtain numerical approximations of T-optimum designs by parallelization of
computations.

• Generalizes the proposed approach to the framework of discrimination be-
tween models of distributed parameter systems, also in the presence of corre-
lated measurement errors, and in the context of fault detection in industrial
processes.

The approach suggested here has the advantage that it is independent of a
particular form of the differential equation describing the dynamic system under
consideration. The only requirement is the existence of sufficiently regular solu-
tions to the state equations, and consequently highly non-linear systems can also
be treated within the same framework, practically without any changes. Moreover,
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it can easily be generalized to three spatial dimensions and the only limitation is
the amount of required computations.

We believe that our approach has significant advantages which will make it,
with sufficient development, a leading approach to solving computational problems
facing engineers involved in applications of T-optimum designs.



Streszczenie

Temat rozprawy dotyczy zastosowań technik optymalnego planowania ekspery-
mentu w identyfikacji strukturalnej systemów, ze szczególnym uwzględnieniem sys-
temów dynamicznych, także z dynamiką czasoprzestrzenną (układy o parametrach
rozłożonych).

Z inżynierskiego punktu widzenia jasne jest, że dobór odpowiedniego modelu
rozważanego procesu ma kluczowe znaczenie dla wiernego oddania charakterystyki
obiektu, a w konsekwencji dla jakości np. zastosowanego schematu sterowania. Z
drugiej strony, ciągle jeszcze częstą praktyką jest stosowanie wiedzy eksperta lub
metody prób i błędów w celu pozyskania informacji o procesie (czyli, np. doboru
schematu obserwacji stanu i odpowiedzi, doboru sygnałów sterujących czy testo-
wych itp.) ignorując fakt istnienia w literaturze wielu rezultatów proponujących
systematyczne podejścia do rozwiązania tego typu problemów. Co więcej, choć
powszechnie wiadomo, że optymalne planowanie eksperymentu w zadaniu dyskry-
minacji pomiędzy modelami jest problemem stosunkowo trudnym (pojawiające
się problemy nieliniowości czy też nieróżniczkowalności kryterium powodują, że
uzyskiwane rozwiązania są raczej skomplikowane) systematyczne próby w tej dzie-
dzinie są ciągle podejmowane, a rozwój postępuje w kierunku rozpatrywania bar-
dziej ogólnych modeli, lepiej opisujących rzeczywiste sytuacje i procesy. Powinno
to zatem skutkować wzrostem liczby zastosowań aplikacyjnych. Tak jednak nie
jest. Wydaje się, że przyczyny tego stanu są dwojakie. Po pierwsze, przy uży-
ciu istniejących podejść tylko stosunkowo proste problemy inżynierskie mogą być
rozpatrywane bez uciekania się do wysoce skomplikowanych metod przetwarzania
i optymalizacji numerycznej. Po drugie, duża komplikacja i zawodność większo-
ści istniejących algorytmów planowania zniechęca inżynierów do stosowania ich w
praktyce.

Biorąc po uwagę powyższe spostrzeżenia, głównym celem niniejszej pracy było
opracowanie wydajnych, prostych w implementacji i użyciu metod rozwiązujących
praktyczne problemy optymalnego doboru harmonogramu wykonywania pomiarów
w zadaniu dyskryminacji pomiędzy modelami dla szerokiej klasy układów dyna-
micznych opisywanych równaniami różniczkowymi zwyczajnymi lub cząstkowymi.
W celu zrealizowania tak postawionych założeń dokonano wyczerpującej analizy
teoretycznej własności zaadoptowanego kryterium T-optymalności na bazie której
skonstruowano kilka nowych algorytmów służących do numerycznego wyznaczania
planów T-optymalnych w różnych sytuacjach spotykanych w praktyce.

Ponadto, zaprezentowano ciekawe podejście pozwalające na wyznaczanie tzw.
planów DT-optymalnych, posiadających cenną własność łącznej maksymalizacji
wiarygodności dyskryminacji pomiędzy konkurencyjnymi modelami rozpatrywa-
nego procesu (rozumianej jako maksymalizacja mocy testu użytego w celu podję-
cia decyzji o adekwatności modelu) oraz maksymalizacji jakości ocen parametrów
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modelu (rozumianej jako minimalizacja wariancji uzyskanych estymatorów).
Z uwagi na poważny nakład obliczeniowy związany z koniecznością użycia

metod optymalizacji globalnej do poszukiwania rozwiązań, obiecujące wydaje się
zaprezentowane w pracy podejście związane ze zrównolegleniem obliczeń wykony-
wanych w środowisku klastra obliczeniowego.

Wyniki zawarte w pracy mają charakter ogólny i mogą być użyte bezpośrednio
dla wielu klas deterministycznych, ciągłych układów dynamicznych, niezależnie od
postaci opisujących je równań różniczkowych. Jedynym ograniczającym wymaga-
niem jest istnienie odpowiednio regularnych rozwiązań równań stanu, co pozwala
na bezpośrednie zastosowanie także w przypadku wielu silnie nieliniowych syste-
mów. Co więcej, podejście opisane w pracy może być bezpośrednio w prosty sposób
uogólnione na przypadek trójwymiarowej dziedziny przestrzennej – ograniczeniem
wydaje się być tutaj jedynie dostępność odpowiedniej mocy obliczeniowej.

Skuteczność zaproponowanych rozwiązań zademonstrowano na przykładzie
szeregu ważnych, praktycznych problemów dyskryminacyjnych, pojawiających się
np. przy opisie i modelowaniu kinetyki reakcji chemicznych czy też doborze modeli
rozprzestrzeniania się zanieczyszczeń w atmosferze.
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