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Numerical evaluation of the optimal nonlinear robust control requires estimating the impact of parameter uncertainties on
the system output. The main goal of the paper is to propose a method for estimating the norm of an output trajectory
deviation from the nominal trajectory for nonlinear uncertain, discrete-time systems. The measure of the deviation allows
us to evaluate the robustness of any designed controller. The first part of the paper concerns uncertainty modelling for
nonlinear systems given in the state space dependent form. The method for numerical estimation of the maximal norm of
the output trajectory deviation with applications to robust control synthesis is proposed based on the introduced three-term
additive uncertainty model. Theoretical deliberations are complemented with a numerical, water-tank system example.
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1. Introduction

Analysis and control synthesis for nonlinear uncertain
systems or systems with limited information constitutes
a wide area of science and engineering. In recent years
a lot of research results (Dai et al., 2002) have been pub-
lished on robust control design. The literature can be clas-
sified into two categories: the eigenstructure assignment
and Riccati-based methods such as H2, H∞ and μ syn-
theses (Zhou et al., 1996). Other papers focus on simpli-
fications of the nonlinear system, e.g. using a describing
function analysis (Impram et al., 2001) and linearization.

Among these multivariable control methods, the H∞
technique has a broad base because of its robustness to
uncertainties and reliable design algorithms. A very im-
portant problem is the selection of appropriate weight-
ing matrices reflecting system stability and performance
(Postlethwaite et al., 1990; Yang et al., 1997). When
the weighting matrices are regarded as variables, the H∞
robust design problem can be formulated as a multi-
objective optimization problem which needs to simultane-
ously satisfy design specifications in both the time domain
and the frequency domain. This optimization problem
is usually very complicated with many constraints (Tang
et al., 1996; Whidborne et al., 1994). The implementa-

tion of the nonlinear optimal control requires solving the
Hamilton-Jacobi-Bellman equation (Lewis, 1986). The
implementation of nonlinear H∞ control requires solv-
ing the Hamilton-Jacobi-Isaacs equation (Van der Schaft,
1992; Basar, 1995).

The most successful applications of robust control
techniques such as μ analysis and synthesis have occurred
in problem domains (flexible structures, flight control, dis-
tillation) where there may be substantial uncertainty in
the available models, the degree of freedom and the di-
mensions of the input, the output and the state may be
high-dimensional, but the basic structure of the system is
understood and the uncertainty can be quantified. Non-
linearities are bounded and treated as perturbations on a
nominal model or handled by gain scheduling linear point
designs.

The concept of state space partitioning called the
piecewise affine (linear) (PWA, PWL) decomposition
with respect to control synthesis is extensively studied,
e.g. in the model predictive control (Bacic et al., 2003;
Grancharova et al., 2005).

The main objective of the paper is to develop a new
method for estimating the maximal norm of the time-
domain output trajectory deviation of the uncertain non-
linear discrete-time system with respect to the nonlinear
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system with nominal parameters. It extends the previous
paper (Orlowski, 2003).

The paper concerns the following aspects:

• Transformation of the uncertain, nonlinear discrete-
time system in a general form into a linear time-
varying uncertain system in a state dependent form.

• Modelling an additive uncertainty for nonlinear
systems—a three-term additive perturbation model
for the state dependent form is proposed in Section 3.

The method for bound estimation for system matri-
ces based on the concept of PWL decomposition is stated
in Section 4. Furthermore, a nonlinear feedback control is
applied to the model with an optimal cost functional. Es-
timates of the maximal output trajectory deviation norm
are given as two theorems with proofs, defined in terms of
evolutionary operators taken from linear time-varying sys-
tems theory. Theoretical deliberations are complemented
by a numerical example of the water tank system.

The approach used in the paper is based on a known
approximation of the nonlinear system by a linear time
varying system. Such an approach is a very effective
method for the synthesis of optimal nonlinear control sys-
tems. The nonlinear model predictive control (Kouvari-
takis et al., 1999) is a very efficient iterative method which
employs the optimal control trajectory calculated in the
previous time instant. The system is linearized around the
trajectory and can be treated as a linear one. The optimal
control can be computed in an iterative way by updating
the time-varying approximation of the nonlinear model,
calculating a new control and checking whether the con-
vergence condition is satisfied (Ordys et al., 1993; Dutka
et al., 2004; Lee et al., 2002).

2. Model of the Nonlinear System

Consider a system described by the following, general
nonlinear model:

xk+1 = f (xk,uk) ,

yk = g (xk) . (1)

Assume that the system can be transformed into the fol-
lowing nonlinear state space dependent model:

xk+1 = A(xk)xk + B(uk)uk,

yk = C(xk)xk. (2)

The above description is analogous to the classical linear
state space model. Matrix coefficients {aij}, {bij} and
{cij} can be arbitrary functions of the state, i.e. aij =
fij(x), cij = hij(x), and the input bij = gij(u). The
model given by (2) covers a class of nonlinear systems
for which input and state functions can be independently
defined. The input-dependent matrix B(uk) can be used

to represent input nonlinearities often modelled by the de-
scribing function. State-dependent matrices C(xk) and
A(xk) cover respectively output nonlinearities and inter-
nal system nonlinearities. The model can successfully de-
scribe well known nonlinear systems such as a ball and a
beam, a water tank system, etc. The model cannot accu-
rately represent a mixed input-state function, neither im-
plicit nor explicit. For example, such a dependence occurs
in the inverted pendulum model, e.g. F cos (φ), where F
is input force and φ is the pendulum angle.

3. Model of Uncertainty

Consider the following uncertain, nonlinear model of the
system:

xΔ
k+1 = AΔ(xΔ

k )xΔ
k + BΔ(uk)uk,

yΔ
k = CΔ(xΔ

k )xΔ
k . (3)

The uncertain system produces the uncertain state xΔ
k and

the uncertain output yΔ
k . Generally, they are different

from the nominal state xp
k and the nominal output yp

k, and
thus yΔ

k �= yp
k, xΔ

k �= xp
k at least for some k. Of course,

they are in general different for the uncertain and nom-
inal systems, A(xp) �= A(xΔ),AΔ(xp) �= AΔ(xΔ),
where xp and xΔ are arbitrary nominal and uncertain
states, respectively. Since the nonlinear system (1) is time-
invariant, the system matrices are time-independent and
they depend on the state/input only. Therefore the index k
can be removed from the state and the output. The state-
and input-dependent matrices can be expanded in a multi-
variable Taylor series, e.g. for a matrix A it is

AΔ(xΔ) = AΔ(xp) +
A

′
Δ(xp)
1!

(
xΔ − xp

)
+

A
′′
Δ(xp)
2!

(
xΔ − xp

)2
+ . . . . (4)

When the state trajectory error is
∥∥xΔ(·) − xp(·)∥∥ � 1,

the series is convergent and it is possible to rewrite it in
the following form:

AΔ(xΔ) = AΔ(xp) + ΔAr

(
xΔ − xp

)
, (5)

where ΔAr satisfies the conditions

ΔAr =
A

′
Δ(xp)
1!

+
A

′′
Δ(xp)
2!

(
xΔ − xp

)
+ . . . ,

(6)

AΔ(x) = A(x) + ΔA(x). (7)

Finally, all system matrices have the following additive
form:

AΔ(xΔ)
= A(xp) + ΔA(xp) + ΔAr(xp)

(
xΔ − xp

)
, (8)



Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems . . . 507

BΔ(uΔ)
= B(up) + ΔB(up) + ΔBr(up)

(
uΔ − up

)
, (9)

CΔ(xΔ)
= C(xp) + ΔC(xp) + ΔCr(xp)

(
xΔ − xp

)
. (10)

The model of uncertainty for any perturbed system matri-
ces A,B or C consists of three components:

• the one corresponding to the nominal matrix in the
nominal state (or the input), e.g. A(xp),

• an additive perturbation in the nominal state (or the
input), e.g. ΔA(xp), which does not depend on the
deviation from the nominal state (or the input),

• a differential perturbation in the nominal state (or the
input), e.g. ΔAr(xp), which represents an uncer-
tainty increase in connection with the state (or input)
deviation.

Generally, one does not need to know the additive
perturbation matrices ΔA, ΔB , ΔC , and the differential
perturbation matrices, ΔAr, ΔBr, ΔCr, but only has to
find their estimates δA, δB, δC , δAr, δBr, δCr. In such a
case the following conditions are held for the matrix A:

‖ΔA(xp
k)‖ ≤ δA < ∞, (11)

‖ΔAr(x
p
k)‖ ≤ δAr < ∞, (12)

where ΔA(xp
k) ∈ L(Rn, Rn), ΔAr(x

p
k) ∈ L(Rn, Rn),

and for the matrices B and C we have

‖ΔB(up
k)‖ ≤ δB < ∞, (13)

‖ΔBr(u
p
k)‖ ≤ δBr < ∞, (14)

‖ΔC(xp
k)‖ ≤ δC < ∞, (15)

‖ΔCr(x
p
k)‖ ≤ δCr < ∞, (16)

where ΔB(up
k) ∈ L(Rm, Rn), ΔBr(u

p
k) ∈ L(Rm, Rn),

ΔC(xp
k) ∈ L(Rn, Rp), ΔCr(x

p
k) ∈ L(Rn, Rp), k =

0, 1, . . . , N − 1.
Perturbation norms can be estimated for the nominal

state and input trajectories (11)–(16). It is also possible
to estimate perturbation norms for all reachable states and
inputs. In such a case the index k must be removed from
(11)–(16).

4. Estimation of the Perturbation Norm

The procedure of state space partitioning is known as
piecewise affine (linear) and it is borrowed from, e.g.
(Bacic et al., 2003; Grancharova et al., 2005). The space
of allowed states can be partitioned into a set of small
PWL clusters. The median state of each cluster can be
interpreted as a working point for the linearization of the

cluster. The dynamics of the system, i.e. the matri-
ces A(x),B(u) and C(x), can be identified locally in
the neighbourhood of each working point under the as-
sumption that the system does not change the working
point. The matrices are nonlinear but time independent,
and therefore the discrete-time index can be omitted. Ad-
ditive perturbations in the nominal state may be expressed
as follows:

δa
ij = max

(∣∣aΔ
ij (xj)

∣∣ − ∣∣an
ij (xj)

∣∣) , (17)

Δa(x) =
{
δa
ij(xj)

}
, (18)

δb
ij = max

(∣∣bΔ
ij (uj)

∣∣ − ∣∣bn
ij (uj)

∣∣) , (19)

Δb(u) =
{
δb
ij(uj)

}
, (20)

δc
ij = max

(∣∣cΔ
ij (xj)

∣∣ − ∣∣cn
ij (xj)

∣∣) , (21)

Δc(x) =
{
δc
ij(xj)

}
, (22)

where the index n denotes the nominal value of the (i, j)–
coefficient. Equations (17), (19) and (21) applied to the
matrices (18), (20) and (22) allow us to estimate the ad-
ditive perturbations δA, δB and δC , given by Eqns. (11),
(13) and (15):

δA(x) = ‖Δa(x)‖ ≈ max
δA

ij

(‖ΔA(x)‖) ,

δA = max
x

δA(x). (23)

Similar relations hold for δB and δC . The estimates
for differential perturbations δAr, δBr and δCr can be cal-
culated from differences between nominal matrices and
estimates of additive perturbations for different working
points. The following relations may be used to estimate
the norms of differential perturbations:

δAr = max
i,j,i�=j

∥∥A(xp
i ) − A(xp

j )
∥∥ +

∣∣δA(xi) − δA(xj)
∣∣∥∥xp

i − xp
j

∥∥ ,

(24)

δBr = max
i,j,i�=j

∥∥B(up
i ) − B(up

j )
∥∥ +

∣∣δB(ui) − δB(uj)
∣∣∥∥up

i − up
j

∥∥ ,

(25)

δCr = max
i,j,i�=j

∥∥C(xp
i ) − C(xp

j )
∥∥ +

∣∣δC(xi) − δC(xj)
∣∣∥∥xp

i − xp
j

∥∥ ,

(26)

5. Control System

Control systems most often have either a linear feedback
controller, represented by a state feedback or a nonlinear
controller, for example fuzzy-logic.

A. Mathematical Description of Control

The most general description which can cover many dif-
ferent controllers may be written in a nonlinear state feed-
back operator or matrix form F(xk ), as shown in Fig. 1.
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It should be underlined that it is not assumed that all states
have to be known in each time sample. If some states are
difficult to determine, they can be either estimated by an
appropriate state observer or excluded from the feedback,
e.g. by simply multiplying them by zero in the feedback
F(x).

F(x)

A(x),B(x)+ C(x)
yv u

+

x

 
Fig. 1. Closed-loop control system with a state feedback.

On the other hand, the state feedback can be easily
converted to an output feedback by the inclusion of the
output state dependent matrix C(x) into the state depen-
dent feedback, i.e. F (x) = Fy (C(x)), as shown in Fig 2.
The proposed methodology is applicable to the state feed-
back operator, but nevertheless, it can easily describe the
output feedback. To model the output feedback, the output
state dependent matrix must be included in the state feed-
back and the diagram from Fig. 2 is equivalent to a classi-
cal output feedback. Of course, for a practical implemen-
tation of the output feedback there must be known only
the output dependent term Fy(y). The feedback opera-

Fy(y)

A(x),B(x)+

C(x)

C(x)
yv u

+

x

F(x)

Fig. 2. Closed-loop control system with an output feedback .

tor F describes either a linear feedback with an invariant
vector F or a nonlinear controller with a state dependent
feedback F(y).

B. Closed-Loop Model

The input signal can be written as follows:

uk = vk + F(xk)xk, (27)

where F ∈ L (Rp, Rm) and k = 0, 1, . . . , N − 1. After
substituting (27) into (2), the system equations take the
following state dependent form:

xk+1 = (A(xk) + B(uk)F(xk))xk + B(uk)vk,

yk = C(xk)xk, k = 0, 1, . . . , N − 1, (28)

where uk is given by (27).

The system is asymptotically controllable to 0 if the
pair (A, B) is stabilizable and the system is invertible (Al-
bertini et al., 1994).

C. Control Law

Let us assume that the cost functional is the worst case
norm of the output trajectory deviation from the given ref-
erence trajectory. Generally, it can be written as

J̃ = max
∥∥yΔ(·) − yr(·)∥∥ . (29)

By applying the following triangle inequality:

max
∥∥yΔ(·) − yr(·)∥∥
= max

∥∥yΔ(·) − yp(·) + yp(·) − yr(·)∥∥
≤ max

∥∥yΔ(·) − yp(·)∥∥ + ‖yp(·) − yr(·)‖ , (30)

the above functional can be rewritten in the form

J = max
∥∥yΔ(·) − yp(·)∥∥ + ‖yp(·) − yr(·)‖ ≥ J̃ . (31)

The nominal output deviation norm ‖yp(·) − yr(·)‖
can be easily obtained by numerical simulations, while the
output uncertainty norm max

∥∥yΔ(·) − yp(·)∥∥ can only
be estimated.

The optimization problem can be formulated as fol-
lows: For a given system, a fixed reference signal yr, a
set of possible inputs v ∈ V and a given form of the feed-
back function F (xk, a1, . . . , aM ), find values a1, . . . , aM

which minimize the cost functional J . Due to the conser-
vatism of the estimates, for practical evaluation a weight-
ing factor α is introduced in the following three cost func-
tions:

J2 = max
∥∥yΔ(·) − yp(·)∥∥

2

+α ‖yp(·) − yr(·)‖2 , (32)

J∞ = max
∥∥yΔ(·) − yp(·)∥∥∞

+α ‖yp(·) − yr(·)‖∞ , (33)

J1 = max
∥∥yΔ(N) − yp(N)

∥∥
1

+α ‖yp(N) − yr(N)‖1 . (34)

6. Describing a Nonlinear Feedback System
Using Linear Operators

Every linear time-varying system can be described by
linear invariant, recurrent operator equations (Orłowski
2001; 2004; 2006). The nonlinear system (2) can be de-
scribed in a similar manner only in the case of a fixed
trajectory, input and initial state vectors:

xp
k = (NFx0)(k) + (LF(Bv))(k),

yp
k = CF

k xp
k. (35)
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For simplicity, we introduce operators LF ∈
L((Rn)N , (Rn)N ) and NF ∈ L(Rn, (Rn)N ), defined by

(LFh)(k) =
k−2∑
i=0

⎡
⎣ k−1∏

j=i+1

AF (j)

⎤
⎦h(i) + h(k − 1),

(36)

(NFx0)(k) =
k−1∏
j=0

AF (j)x0, (37)

where

AF (j) = (A (xj) + B (uj)F (xj)) ,

h(i) ∈ L(Rn), k = 2, 3, . . . , N.

Alternatively, operators can be rewritten in an equivalent
matrix notation. In such a case, (35) takes the form

ŷ = ĈL̂
F
B̂v + ĈN̂

F
x0. (38)

The operator L̂F is given by the following nN ×nN
matrix, which simplifies calculating the operator norm:

L̂F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
I

AF (1)
...

AF (N − 2) · . . . · AF (1)

0 · · · 0 0
0 · · · 0 0

I 0
...

...
. . . I 0 0
· · · AF (N − 2) I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

The operators B̂ and Ĉ are respectively nN × mN
and pN × nN matrices and have the following diagonal
forms:

B̂ =

⎡
⎢⎢⎣

B(0) 0 0

0
. . . 0

0 0 B(N − 1)

⎤
⎥⎥⎦ ,

Ĉ =

⎡
⎢⎢⎣

C(0) 0 0

0
. . . 0

0 0 C(N − 1)

⎤
⎥⎥⎦ . (40)

For an LTV system, the operator ĈL̂
F
B̂ is a compact

and Hilbert-Schmidt operator from l2 into l2 and it maps
bounded signals v(k) ∈ V = l2 [0, N ] into signals y ∈ Y .

For SISO systems, the operator ĈL̂
F
B̂ is an N × N ma-

trix.

6.1. Operator Description of the Perturbed System.

Theorem 1. The perturbed nonlinear system (2) with the
feedback control (27), a fixed input and an initial state, is
always equal to the following equations:

xΔ
k = LF

(
ΔA(xp)xΔ

)
(k)

+LF
(
ΔAr(xp)

(
xΔ − xp

))
(k)

+LF
(
ΔB(up)(v + F(xΔ)xΔ

)
(k)

+LF
(
ΔBr(up)

(
F(xΔ)xΔ − F(xp)xp

))
(k)

+xp
k, (41)

yΔ
k = CF

k xΔ
k + ΔC(xp

k)xΔ
k

+Δ′
Cr(x

p
k)

(
xΔ

k − xp
k

)
. (42)

Proof. The above equations can be proved using math-
ematical induction. For k = 2, the state equations (41)
and (42) with the feedback control (27) are

xΔ
2

= AF
1

[ (
AF

0 +ΔA0+ΔB0F0

)
x0+

(
BF

0 + ΔB0

)
v0

]
+

(
BF

1 +ΔB1+ΔBr1

(
FΔ

1 xΔ
1 −Fp

1x
p
1

))
v1

+
(
ΔA1+ΔAr1

(
xΔ

1 −xp
1

)
+ΔB1F1

+ΔBr1

(
FΔ

1 xΔ
1 −Fp

1x
p
1

)
FΔ

1

)
xΔ

1

Substituting (41) and (27) in (28) for k + 1 yields

xΔ
k+1 = BFΔ

k vk +
(
AF

k + ΔAk + ΔBkFk

)

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
NFx0

)
(k)+

(
LFBFv

)
(k)

+LF
(
ΔAxΔ

)
(k)

+LF
(
ΔAr

(
xΔ − xp

))
(k)

+LF
(
ΔB(v + FxΔ)

)
(k)

+LF
(
ΔBr(FxΔ − Fxp)

)
(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

xΔ
k+1 =

(
NFx0

)
(k + 1) +

(
LFBFv

)
(k + 1)

+LF
(
ΔAxΔ

)
(k + 1)

+LF
(
ΔAr

(
xΔ − xp

))
(k + 1)

+LF
(
ΔB(v + FxΔ)

)
(k + 1)

+LF
(
ΔBr

(
FxΔ − Fxp

))
(k + 1).

Detailed conversions are simple but laborious. A sketch
of the proof is presented above. �

6.2. Output Perturbation Estimates. The result
of Theorem 1 is very useful to find the estimate of
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∥∥yΔ(·) − yp(·)∥∥. The physical interpretation of the es-
timate depends on whether the norm is 2-norm, ∞-norm
or 1-norm.

Theorem 2. For any additive perturbations ΔA, ΔB,
ΔC and differential perturbations ΔAr, ΔBr, ΔCr with
the conditions (11)–(16) and(

δAxz + δArz

∥∥xΔ − xp
∥∥)

<
∥∥LF

∥∥−1
, (43)

(δAxz + δArz ‖xp‖ + δab) <
∥∥LF

∥∥−1
, (44)

the difference norms
∥∥xΔ(·) − xp(·)∥∥

(Rn)N and∥∥yΔ(·) − yp(·)∥∥
(Rp)N are

∥∥xΔ−xp
∥∥ ≤

∥∥LF
∥∥ (δaoz + δAxz ‖xp‖)

1 − ‖LF‖ (δAxz + δArz ‖xp‖ + δab)
,

(45)∥∥yΔ−yp
∥∥

≤ δC‖xp‖

+

[ ∥∥CLF
∥∥ +

∥∥LF
∥∥(δC+δCr)

][
δaoz+δAxz‖xp‖

]
1−‖LF‖(δAxz+δArz‖xp‖+δab)

,

(46)

where

δAxz = δA + δB ‖F‖ , (47)

δArz = δAr + δBr ‖F‖2 , (48)

δaoz = δB ‖v‖ , (49)

δab = δBr ‖v‖ ‖F‖ . (50)

Proof. The linear space with the defined norm satisfies all
axioms of a metric space, and thus the triangle inequality
follows,∥∥xΔ

k − xp
k

∥∥
≤ ∥∥LF(ΔB(up)

(
vΔ + F(xΔ)xΔ

)
(k)

∥∥
+

∥∥LF
(
ΔAr(xp)

(
xΔ − xp

)
xΔ

)
(k)

∥∥
+

∥∥LF
(
ΔA(xp)xΔ

)
(k)

∥∥
+

∥∥∥LF
(
ΔBr(up)

(
F(xΔ)xΔ − F(xp)xp

)
(
vΔ + F(xΔ)xΔ

))
(k)

∥∥∥.

Then∥∥xΔ − xp
∥∥

≤ ∥∥LF
∥∥ δA

∥∥xΔ
∥∥

+
∥∥LF

∥∥ δAr

∥∥xΔ − xp
∥∥ ∥∥xΔ

∥∥
+

∥∥LF
∥∥ δB

(∥∥vΔ
∥∥ + ‖F‖∥∥xΔ

∥∥)
+

∥∥LF
∥∥ δBr ‖F‖∥∥xΔ − xp

∥∥ ∥∥vΔ + F(xΔ)xΔ
∥∥ .

(51)

Assuming that (47)–(50) hold, the above equation can be
simplified as follows:∥∥xΔ − xp

∥∥ ≤ ∥∥LF
∥∥ ∥∥xΔ

∥∥ (
δAxz + δArz

∥∥xΔ − xp
∥∥)

+
∥∥LF

∥∥ (
δab

∥∥xΔ − xp
∥∥ + δaoz

)
. (52)

The uncertain state norm can be estimated by rearranging
(41) and applying the triangle inequality again:∥∥xΔ

∥∥
≤ ‖xp‖+

∥∥LF
∥∥ [

δAxz

∥∥xΔ
∥∥ + δArz

∥∥xΔ − xp
∥∥ ∥∥xΔ

∥∥
+ δab

∥∥xΔ − xp
∥∥ + δaoz

]
,

∥∥xΔ
∥∥ [

1 − (
δAxz + δArz

∥∥xΔ − xp
∥∥)]

≤ ‖xp‖ +
∥∥LF

∥∥ [
δab

∥∥xΔ − xp
∥∥ + δaoz

]
,

∥∥xΔ
∥∥ ≤ ‖xp‖ +

∥∥LF
∥∥ [

δab

∥∥xΔ − xp
∥∥ + δaoz

]
1 − (δAxz + δArz ‖xΔ − xp‖) . (53)

Substituting (53) into (52) yields∥∥xΔ − xp
∥∥ − ∥∥LF

∥∥ δAxz

∥∥xΔ − xp
∥∥

− ∥∥LF
∥∥ δAxz

∥∥xΔ − xp
∥∥

− ∥∥LF
∥∥ δArz ‖xp‖ ∥∥xΔ − xp

∥∥
− ∥∥LF

∥∥ δArz

∥∥xΔ − xp
∥∥2

≤ ∥∥LF
∥∥ ‖xp‖ δAxz

+
∥∥LF

∥∥ (
δab

∥∥xΔ − xp
∥∥ + δaoz

)
.

When the difference
∥∥xΔ − xp

∥∥2
is small enough, it can

be neglected and the inequality takes the form∥∥xΔ − xp
∥∥ [

1 − ∥∥LF
∥∥ (δAxz + δArz ‖xp‖ + δab)

]
≤ ∥∥LF

∥∥ (δAxz ‖xp‖ + δaoz) . (54)

It is equivalent to (45). The output difference trajectory
can be we written as

yΔ−yp = C(xp)xΔ + ΔCr(xp)
(
xΔ − xp

)
xΔ

+ΔC(xp)xΔ −C(xp)xp

=
(
C(xp) + ΔCr(xp)xΔ

) (
xΔ − xp

)
+ΔC(xp)xΔ,∥∥yΔ − yp

∥∥ ≤ (‖C‖ + δCr

∥∥xΔ
∥∥) ∥∥xΔ − xp

∥∥
+δC

∥∥xΔ
∥∥ . (55)

Equation (46) can be proven by rearranging Eqns. (42)
and (35), and then by substituting the uncertain state norm
from (45), which completes the proof. �
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7. Numerical Example—A Water Tank
System

Consider the system described by the following one-
dimensional nonlinear model:

xk+1 = xk − aTp

A

√
xk +

bTp

A
uk, yk = xk. (56)

The equation describes the level of water x as a function

 

bu 

x 

a x  

Fig. 3. Water tank system.

of time due to the differences between the flow rates into
and out of the tank, bTpuk and aTp

√
xk, respectively. A

is a cross-sectional area of the tank, b ∈ [b−, b+] is an
uncertain constant related to the flow rate into the tank,
a ∈ [a−, a+] is an uncertain constant related to the flow
rate out of the tank, uk ∈ {0, 1} is a logical variable which
signifies the open (1) or closed (0) input valve, and Tp is a
sampling pariod. A simple scheme of the system is shown
in Fig. 3. The nonlinear state space model can be written
using state and input dependent matrices and Eqn. (3):

A(xk) =

{
1 − aTp

A

√
xk

xk
for xk �= 0,

1 for xk = 0,

B(uk) =
bTp

A
, C(xk) = 1. (57)

The water level can be controlled using a simple
bistable controller with hysteresis. The output of the con-
troller opens or closes the input valve. The valve opens
when the level is lower than Ln − ΔL and remains open
until the water reaches the level Ln + ΔL, otherwise the
valve is closed. Here Ln is a nominal setpoint value, usu-
ally equal to the reference output yr

k, and ΔL is the width
of the one-side hysteresis. The controller has the follow-
ing mathematical description:

ui = Fxi

=

⎧⎪⎨
⎪⎩

1 if xi < Ln − ΔL,

or xi < Ln + ΔL and ui−1 = 1
0 otherwise.

(58)

A larger value of ΔL reduces the controller sensitivity and
the switching frequency of the valve. The norm of the

operator F can be estimated from (58) in the following
way:

‖F‖ = max
x �=0

‖Fx‖
‖x‖ = max

x �=0

1
|x| ≈

1
min

k
|xp

k|
. (59)

The following substitution can be used to decompose
the system into the form (8)–(10):

A (xp
k) = 1 − anTp

A
√

xp
k

,

ΔA (xp
k) = − (a − an)Tp

A
√

xp
k

,

ΔAr (xp
k) =

anTp

2Axp
k

√
xp

k

,

an =
a+ + a−

2
(60)

B (up
k) =

bnTp

A
,

ΔB (up
k) =

(b − bn)Tp

A
,

ΔBr (up
k) = 0,

bn =
b+ + b−

2
, (61)

C (xp
k) = 1,

ΔC (xp
k) = 0,

ΔCr (xp
k) = 0. (62)

The parameters assumed for computations are A =
50, a− = 4, a+ = 6, b− = 15, b+ = 20, Tp = 0.1 s,
yr

k = xr
k = Ln = 4.5, ΔL = 0.5. The computed esti-

mates and norms are collected in Table 1.
Transient responses simulated for nominal and un-

certain systems for N = 1000, x0 = 0, Ln = 4.5
and three different values of L are shown in Fig. 4.
The computed values of the nominal output deviation
norm ‖yp(·) − yr(·)‖ and the output uncertainty norm∥∥yΔ(·) − yp(·)∥∥ are annotated on the plot. The func-
tional (32) with α = 1 is minimized for the most frequent
switching ΔL → 0.

The quality of the estimates is determined by the fol-
lowing estimation error coefficient:

ε =

∥∥yΔ(·) − yp(·)∥∥
estimated

‖yΔ(·) − yp(·)‖simulated

− 1. (63)

The plot of the estimation error as a function of the simula-
tion horizon N and the initial condition x0 is shown in Fig.
5. The minimal value of ε is 0.37 (x0 = 3.5, N = 9) and
the median value is approximately equal to 2. For longer
time horizons, the condition (44) is not satisfied and (45)
cannot be used for the estimation of the output deviation.
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Table 1. Computed estimates and norms for the water-tank system.

δA ≈ 0.002
(
min

k
(xp

k)
)−0.5

δAxz ≈0.002
(
min

k
(xp

k)
)−0.5

+0.01
(
min

k
(xp

k)
)−1

δAr ≈0.005
(
min

k
(xp

k)
)−1.5

δArz ≈ 0.005
(
min

k
(xp

k)
)−1.5

‖F‖≈
(
min

k
(xp

k)
)−1 ∥∥LF

∥∥≈0.636N

‖C‖ = 1 ‖xp‖ ≈ √
N max

k
|xp

k|
δB =0.01, δBr =0 ‖vp‖=0

δC =0, δCr =0 δaoz =0, δab =0
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0
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Nominal ΔL=0.1, ||xp-xr||=15

Perturbed ΔL=0.1, ||xΔ-xp||=36

Nominal ΔL=0.5, ||xp-xr||=20

Perturbed ΔL=0.5, ||xΔ-xp||=37

Nominal ΔL=1, ||xp-xr||=26

Perutrbed ΔL=1, ||xΔ-xp||=39

Fig. 4. Transient responses and computed norms for the water
tank system.

Fig. 5. Estimation error vs. simulation horizon and initial con-
dition for the water tank system.

8. Conclusions

The main aim of this paper was to propose a new method
for estimating the norm of the output deviation for uncer-
tain, nonlinear, discrete-time systems. The method can be
an interesting alternative to two existing numerical meth-
ods for estimating max

∥∥yΔ(·) − yp(·)∥∥. The first is to
estimate the norm on the basis of simulations of the uncer-
tain system for a specified input and the initial state on the

assumption of extreme positive and negative values of per-
turbation matrices ΔA, ΔB, ΔC , ΔAr, ΔBr, ΔCr. The
maximal deviation norm of all simulations is an estimate
of the norm max

∥∥yΔ − yp
∥∥. The number of simulations

ns grows exponentially with the number of nonzero coef-
ficients of the additive perturbation, e.g. ns = 2nzcoeff.
Extreme values of parameters do not guarantee a maxi-
mal deviation of the output. Nevertheless, the results are
often close to the global maximum. The second method
takes advantage of numerical optimization methods, most
of them implemented in Matlab. Such an algorithm re-
quires considerable computational power. Moreover, the
convergence to the worst-case solution, i.e. the maximal
norm, is not guaranteed. The number of variables is equal
to the sum of all nonzero coefficients of additive pertur-
bations. The proposed operator-based method guarantees
that the estimated output difference norm is not lower than
the worst possible real case norm and requires low com-
putational power. The main disadvantage of the method is
the conservatism in the estimates.

An iterative two-stage process can be used to find the
optimal control solution. The first stage is to find the ap-
propriate structure of the controller such that the maxi-
mal trajectory deviation from the nominal trajectory for
the uncertain system

∥∥yΔ(·) − yp(·)∥∥ is minimal. The
second is to find a control which minimizes the devia-
tion of the nominal system from the reference trajectory
‖yp(·) − yr(·)‖. The procedure must be repeated until
the assumed accuracy is approached.
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