
Fault-tolerant design of non-linear iterative learning
control using neural networks

Krzysztof Patan and Maciej Patana

aInstitute of Control and Computation Engineering
University of Zielona Góra, ul. Szafrana 2, 65-246 Zielona Góra, Poland

Abstract

The design of neural-network-based iterative learning control for non-linear sys-

tems is addressed in the setting of a fault tolerant control regime. Taking

advantage of the repetitive character of the control task, the inherent uncer-

tainty related to a potential faulty system state can be properly accommodated

in terms of a data-driven iterative learning scheme with neural networks used

for forward/inverse modeling as well as for controller synthesis. The resulting

control technique is supposed to be flexible enough to accurately compensate

the faults occurring on both the sensors and actuators and, additionally, take

into account the disturbances and noise acting on the system. A complete

characterization of the novel fault-tolerant iterative learning scheme is provided

including system identification, fault detection and accommodation. Also, the

painstaking convergence analysis is presented and the resulting sufficient condi-

tions can be constructively used to determine the update of control law in the

consecutive process trial. The excellent performance of the developed control

scheme is illustrated by a nontrivial example of tracking control for a magnetic

brake system on various scenarios involving actuator and/or sensor faults.

Keywords: iterative learning control, convergence, neural networks, fault

tolerance, fault accommodation.

1. Introduction

The complexity of modern industrial control systems has reached the point

where requirements imposed on control quality are extremely high according to

URL: k.patan@issi.uz.zgora.pl, m.patan@issi.uz.zgora.pl (Krzysztof Patan and
Maciej Patan)

Preprint submitted to Engineering Applications of Artificial Intelligence April 24, 2023

required accuracy and reliability of the process, allowing attaining the control

goals in a safe and reproducible manner. In the context of non-linear dynamic5

systems, high quality control is an especially challenging issue which perma-

nently requires the development of new systematic approaches that broaden the

area of potential applications. One of the major problems underlying control

design is the question of how to provide the robustness of a system to potential

faults and still achieve satisfactory behavior in terms of the assumed criteria10

defining control efficiency without significant deterioration of system perfor-

mance. In light of this, in the last 20 years, fault-tolerant control (FTC) has

become an attractive area of research with many successful approaches and a

strong record of tangible engineering applications (Blanke et al., 2016; Noura

et al., 2003; Ducard, 2009; Patan, 2019; Rouabah et al., 2022; Conchas et al.,15

2023).

This is of paramount importance in the case of repetitive processes encoun-

tered in industrial environment as robustness to faults can be equally important

to the performance of the system, thus reducing the cost of operation and main-

tenance. Under the repetitive work regime, it can be observed that in each repli-20

cated trial the existing closed-loop control algorithms produce the same tracking

error with the same features, such as settling time, overshoot, oscillations, etc.

That property and knowledge of system behavior from previous trials could be

used to improve control performance. In this context, iterative learning control

(ILC) emerged in the late 1970s, providing a solution to the accurate tracking25

control problem and establishing a popular area of control research, cf. Arimoto

et al. (1984); Bristow et al. (2006); Ahn et al. (2007); Freeman et al. (2015);

Owens (2016) for seminal papers and monographs. As for the class of linear

time invariant systems, the theory is well developed, with a rich spectrum of

applications. However, most of the existing ILC approaches are related to the30

linear form of the control law (Tao et al., 2017; Chen et al., 2022). For a class of

non-linear processes with a repeatable regime of operations, there is still no the-

ory of unified control synthesis and analysis, even if the need for such solutions

is well recognized (Moore, 1993). The proposed ILC methods for control-affine,

linear parameter varying or general non-linear systems are mainly based on the35

linear iterative controller (Xu and Tan, 2003; Bu et al., 2012; Miao and Li,

2

2017). Non-linear learning controller design based on parameter estimation was

proposed by Bu et al. (2020). However, it is needed to transform the system

to iteration-dependent time-varying form. A somewhat similar approach was

proposed by Yu et al. (2021), in which dynamic linearization was used to repre-40

sent a learning controller first and then ILC was formulated using input-output

data. In both approaches, however, a simplified form of the learning controller

is finally derived.

Although the idea of using neural networks in the context of ILC is not

new, dating back to the early 1990s, there is still only a handful of ILC systems45

realized by means of neural networks. This is mainly due to the significant

difficulty of satisfying the convergence and stability of both the control update

and network training (Chow et al., 2000; Chi and Hou, 2009; Xiong et al., 2016;

Wei et al., 2017). Therefore, their applicability usually is limited to a specific

class of non-linear systems, and there is no straightforward extension to FTC.50

An approach using a radial basis function neural network was presented by

Liu and Hou (2022) to deal with non-linear component of the control law. An

interesting application of neural networks was discussed by Zhang et al. (2021),

who used a neural network to predict ILC outputs instead of storing a large

amount of data. However, the approach was derived for linear systems, and a55

linear learning controller was used. An efficient neural-network-based approach

for ILC synthesis was provided in our previous works (Patan and Patan, 2020;

Patan and Patan, 2021), where a non-linear controller was developed. The

proposed controller is of a general nature and can be used to design different

types of controllers, e.g., P-, D- or even PD-type.60

In the setting of FTC, we need the control design to be robust to distur-

bances from various sources acting on the plant (Chien, 1998), thus leading to

the idea of a learning controller able to adapt to potential faults appearing in

the system. One of the crucial obstacles of non-linear control design is an accu-

rate non-linear model calibration of the plant directly affecting the performance65

of the closed-loop controller. A reasonable remedy is to consider learning con-

trollers that also have a non-linear or time-varying structure (Moore, 1993). The

communications on FTC for iterative control are very limited. The approach

presented by Li et al. (2022) was dedicated to linear stochastic repetitive sys-

3

tems. In turn, iterative learning control able to deal with actuator faults was70

discussed by Liu and Hou (2022) or Huang et al. (2021), although without an

explicit fault accommodation mechanism. Fault estimation and accommodation

in the framework of non-linear ILC was discussed in the authors’ previous works

(Patan et al., 2020; Patan and Patan, 2022), although covering separately the

issues of sensor and actuator faults, respectively.75

To address the above limitations and needs, the main purpose of the paper

is to elaborate an efficient approach to fault-tolerant control for the class of non-

linear repetitive dynamic systems with special attention paid to addressing the

problems of accurate modeling, reliable fault detection and a control design able

to compensate potential faults supplemented with proper convergence analysis.80

In particular, artificial neural networks, whose universal approximation abilities

for a broad class of non-linear systems are widely known, are used to design

a novel ILC scheme. It consists of three neural-network-based subsystems: a

mixture of neural networks for robust forward modeling of a plant, an inverse

neural model and a neural controller. Such a homogeneous structure renders it85

possible to effectively accommodate both sensor and actuator faults in a unified

manner. The whole scheme is purely data-driven, i.e., a learning controller is

capable to adapt to changing working conditions of the plant by the training

process using data from previous trials. The advantage of the approach reported

here is that it is supplemented with careful analysis, leading to constructive90

convergence conditions for the control update.

Summarizing, the contributions of the paper are as follows:

1. developing an integrated actuator and sensor fault-tolerant control system

based on a novel non-linear iterative learning control scheme and neural

network models;95

2. providing sufficient conditions for convergence of the proposed control ap-

proach;

3. experimental verification of the proposed neural-network-based fault-tole-

rant control system using a tracking control example of a magnetic brake

system involving actuator and/or sensor faults.100

The paper is organized as follows. In Section 2, the system representation

along with details concerning the learning controller is provided. Development

4

of both forward and inverse neural-network-based models is presented in Sec-

tion 3. Section 4 discusses the proposed fault tolerant control system. In the

subsequent section, convergence analysis is considered. Section 6 is devoted to105

experimental verification of the proposed fault-tolerant iterative learning control

system. Finally, the paper is summarized in Section 7.

2. System representation

Let us consider a single-input single-output discrete-time dynamical system

in the state-space:

x(k + 1) = g(x(k), u(k)),

y(k) = CTx(k),
(1)

where x(k) ∈ Rn represents the state vector, k is the discrete-time instant, n

stands for the system order, u(k) ∈ R1 and y(k) ∈ R1 are the input and out-

put of the system, C ∈ Rn is the output vector, g(·, ·) represents an unknown

smooth and invertible non-linear function, and T represents the matrix trans-

position operator. In the absence of faults (nominal conditions), the system (1)

is represented by the following healthy model:

xN (k + 1) = ĝ(xN (k), u(k)),

ŷ(k) = CTxN (k),
(2)

where xN (k) ∈ Rn represents the model state vector, ŷ(k) ∈ R1 is the model

output, and ĝ(·, ·) is an approximation of the function g(·, ·). In the paper, it

is assumed that faults which affect the system are of abrupt nature. Thus, the

system representation considering both actuator and sensor faults is described

in the state-space as follows:

x(k + 1) = g(x(k), uf (k)),

yf (k) = CTx(k) + fs(k)β(k − T1),
(3)

where yf (k) ∈ R1 represents the faulty system output and uf (k) ∈ R1 is the

faulty input defined as

uf (k) = u(k) + β(k − T2)fa(k), (4)

5

where fa(k) ∈ R1 and fs(k) ∈ R1 are functions representing the change observed

respectively in the actuator and sensor due to a fault and the time profile of a

fault has the following form:

β(k − T) =

0 if k < T,

1 otherwise.

(5)

Finally, T1 and T2 represent the time of occurrence of a sensor and actuator

fault, respectively. It should be stressed that in this research noise and distur-110

bances acting upon the plant are not considered. However, they can be easily

incorporated into the system representation as proposed in the authors’ previous

work (Patan and Patan, 2021).

In this paper, the system (1) is controlled by means of a non-linear iterative

learning control strategy. This class of control algorithms has proven its appli-

cability in many industrial areas, especially in cases of repetitive processes or

when plant to be controlled works in the repetitive regime of operations (Bris-

tow et al., 2006; Freeman et al., 2015; Oomen and Rojas, 2017). The general

form of open-loop non-linear learning control is

up+1(k) = f(up(k), ep(k)), (6)

where f(·, ·) denotes a non-linear function representing dynamics of the con-

troller, p stands for the operation cycle number (the so-called trial), ep(k) stands

for the tracking error at the p-th trial defined as ep(k) = yd(k) − yp(k), where

yd(k) is the reference (desired) signal, and up is the control signal at the p-th

trial. The signals up(k) and ep(k) are recorded during the p-th trial and stored

in the memory for later use to derive control for the next operation cycle (see

the upper part of the scheme presented in Fig. 2). Most solutions regarding

ILC design consider the function f(·, ·) of a linear form with fixed parameters

(Bristow et al., 2006). However, complex industrial plants with highly non-

linear characteristics may enforce the application of much more sophisticated

solutions (Moore, 1993). The learning controller may have a non-linear struc-

ture and, what is even more important, it may be time-varying. Both features

can be easily achieved by means of artificial neural networks. Depending on

the application, the learning controller may have a static or dynamic form, as

6

reported by Patan (2019). In this paper, a static form of the learning controller

is considered by application of the well known feed-forward neural network. The

controller representation is given as follows:

up+1(k) = W c
3,pσo(W c

2,pσh(W c
1,pφ

c
p(k))), (7)

where W c
1,p ∈ Rnh×3, W c

2,p ∈ R1×nh and wc
3,p ∈ R1 are adaptable controller

weight parameters, σh(·) and σo(·) are the activation functions of the first and115

the second hidden layer, respectively, and nh is the number of hidden units of the

first layer. Finally, the regression vector φc
p(k) = [up(k), ep(k), 1]T determines

the P-type learning controller.

In order to adapt the controller to changing operational conditions of the

plant, its parameters are subject to training after each operation cycle. Let us

define the training process as minimization of the cost function defined based

on the difference between the controller output and the desired input:

θ∗p = arg min
θ
J, (8)

where θp is the vector of stacked elements of controller weight matrices, θ∗p is

the optimal controller parameter vector derived at the p-th trial, and the cost

function has the form

J =
1

2

∑
k

(ud(k) − up(k))2, (9)

where ud(k) is the desired control signal and up(k) is the output of the neural

controller. The desired control signal is derived by means of an inverse model

discussed further in this paper. To adapt the controller parameters after each

trial, the update rule based on a stochastic gradient is used:

θp+1 = θp − η
∂J

∂θp
, (10)

where η is the learning rate. Applying the well known back-propagation idea,

the following set of update rules can be determined:120

• for the weight wc
3,p:

∂J

∂wc
3,p

= δ3(k)σo(·), δ3(k) = εp(k), (11)

where εp(k) = ud(k) − up(k);

7

• for the weight matrix W c
2,p:

∂J

∂W c
2,p

= δ2(k)σT
h (·), δ2(k) = σ

′

o ◦ (wc
3,pδ

3(k)), (12)

where σ
′

o is the derivative of the function σo(·) and the operator ◦ stands

for the Hadamard product;

• for the weight matrix W c
1,p:

∂J

∂W c
1,p

= δ1(k)φT
p (·), δ1(k) = σ

′

h ◦ ((W c
2,p)Tδ2(k)), (13)

where σ
′

h is the derivative of the function σh(·).

A crucial problem when dealing with control systems is the detection of125

possible faults which can occur in the plant. The significance of this issue

follows from the fact that feedback or adaptive types of control systems can

hide faults from being observed. Then proper compensation/accommodation

of faults is not possible, especially in case of sensor faults. A common way

to realize fault detection is a model-based approach, where the decision about130

faults is made using the forward model of the plant. Any change in plant

operation caused by a fault can be detected comparing the output of the model

representing the nominal working conditions of the plant with the output of the

faulty plant. Thus, the model of the plant which has to be designed first plays a

relevant role. Moreover, the model of the plant can be used to develop a learning135

controller, as reported in our previous works (Patan, 2019). Unfortunately, the

forward model itself is insufficient to carry out fault isolation. In particular,

there is a need to distinguish sensor faults from other types (actuator faults

as well as faults in plant dynamics) due to the fact that they do not change

the dynamic behavior of the plant at all. That is the reason for using another,140

inverse model of the plant. Comparing the output of the inverse model with the

actual control signal, we are able to distinguish sensor faults from actuator and

process ones. Moreover, in this work the inverse model is used also to train the

controller with the adaptive rules (10)–(13). Both forward and inverse models

can be constructed by means of an artificial neural network of the dynamic kind.145

Structural details are provided in the forthcoming sections.

8

a) b)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 1: Arrangement of membership functions: triangular (a), Gaussian (b).

3. Models for fault diagnosis

3.1. Forward model

In order to design a fault diagnosis system which is robust to disturbances

and a model mismatch, the idea of a multi-model is applied here. In particu-

lar, the problem of proper system dynamics reproduction for different operating

points is investigated. Each model approximates system behavior at a partic-

ular operating point. The output of the multi-model is achieved by activate

sub-models for which the nominal working conditions are close to the actual op-

erating point ρ. To determine which model should be activated, we adopt here

the idea of a membership function known from fuzzy logic theory. Furthermore,

as we deal with control system design, the operating point is chosen to be the

initial value of the control signal at each trial u0. For each operating point, the

membership functions should sum to unity as follows:

M∑
i=1

µi(ρ) = 1, (14)

where µi(ρ) is the membership function of the i-th sub-model and M is the

number of sub-models. Commonly used functions which satisfy the condition150

(14) are triangular or Gaussian ones, as shown in Fig. 1. The difference is

the number of activated sub-models. In the case of a triangular membership

function, only two models can be activated at the same time (see Fig. 1(a)),

contrary to Gaussian models, where more sub-models take part in the estimation

of the system output (Fig. 1(b)).155

Although neural networks are known to possess the universal approximation

property (Haykin, 2009; Nørgaard et al., 2000; Patan, 2019), proper generaliza-

tion of the system response is often achieved at the cost of a bias. The mixture

9

of models, if properly adopted, can reduce the distribution of the model out-

put, still keeping the bias on a low level. As a result, we are able to determine

a good trade-off between uncertainty modeling and robustness with respect to

disturbances. Then, the forward model is represented as follows (Patan et al.,

2020):

ŷ(k) =

M∑
i=1

ŷi(k)µi(ρ), (15)

where ŷi(k) denotes estimates of the system output at the i-th operating point.

The model (15) can be perceived as non-linear gain scheduling (Leith and Leit-

head, 2000) or an ensemble of models used for regression (Sollich and Krogh,

1996). Each model Mi in the ensemble (see Fig. 2) is designed by means of the

state-space neural network as follows:

Mi : x̂i(k + 1) = gi(x̂i(k), u(k)),

ŷi(k) = CT x̂i(k),
(16)

with the function gi(·, ·) defining the i-th neural model represented by

x̂i(k + 1) = W f
i,2σh(W f

i,1xx̂i(k) + W f
i,1uu(k)), (17)

where σh(·) is the non-linear activation function of the hidden layer, while W f
i,1x,

W f
i,1u and W f

i,2 are the i-th forward model weight matrices of appropriate size.

Each neural network (17) is trained using data recorded during control of a

plant at the specific operating point.

The ensemble is constructed using membership functions distributed over the

variable ρ. The commonly used triangular and Gaussian membership functions

and their distribution over the interval ρ ∈ [a, b] are illustrated in Fig. 1(a)

and (b), respectively. In this paper, we decided to apply Gaussian functions

distributed over the operating range of a plant considered. In this case, the

operating point is assigned to the initial value of the control signal at each trial

p, i.e., u0 = up(0). Thus,

µi(u0) = e−
(u0−ui)

2

2σ2 , (18)

where ui is the i-th operating point and σ is the spread of the Gaussian function.160

By applying the same spread to each membership function we can guarantee

the condition (14) to be always satisfied.

10

3.2. Inverse model

Taking into account the fact that the relation between the state and input

is non-linear in nature, direct derivation of an inverse of g(·, ·) from the model

(3) can be hard or even impossible. Moreover, to obtain a good quality fault

estimator, real signals available for measurements should be employed. In this

context one can employ inverse modeling of an input-output form which, using

artificial neural networks, is a quite straightforward approach. The inverse

model of (3) is given as follows:

ûf (k) = h(y(k), . . . , y(k − n), ûf (k − 1), . . . , ûf (k −m)), (19)

where ûf (k) and y(k) are estimates of the input affected by a fault and the

system output at the time instant k, respectively, n and m are numbers repre-

senting past outputs and estimated inputs used, respectively, and h(·) represents

the unknown non-linear mapping to be found. The inverse model (19) can be

obtained by means of a neural network with external dynamics (Haykin, 2009;

Nørgaard et al., 2000). To overcome problems with the convergence of the

training process as well as to achieve the stable model, at the training stage

the model had the form of a non-linear auto-regressive systrem with exogenous

input given by

ûf (k) = h(y(k), . . . , y(k − n), u(k − 1), . . . , u(k −m)), (20)

where the training set composed of output/input pairs {y(i), u(i)}Pi=1 was recorded

in normal operating conditions of the control system and P represents the size of

the data set. Assuming that the model (20) is designed accurately and mimics

the system dynamics well, after training it can be converted to the non-linear

output error form (19) by replacing inputs u(k) with their estimated equivalents

ûf (k). It is a common way of dealing with dynamic neural network models. In

order to make the model more robust, it is proposed to apply a bank of inverse

models (Patan and Patan, 2022). We adapted the idea of heterogeneous ensem-

bles. In that context, each model with a different structure was built upon the

same training data. The heterogeneous approach can achieve greater diversity

among sub-models, which can significantly improve ensemble performance. The

output of the ensemble is calculated as the mean value of the outputs generated

11

by N inverse sub-models Ii (see Fig. 2):

ûf (k) =
1

N

N∑
i=1

ûfi(k), (21)

where ûfi(k) is the control signal estimate given by the i-th inverse sub-model.

Each inverse sub-model of the form (20) was realized using the feed-forward

neural network with one hidden layer with external memory as follows:

Ii : ûfi(k + 1) = W in
i,2σh(W in

i,1φ
in
i (k)), (22)

where σh(·) is the non-linear activation function of the hidden layer, W in
i,1, W in

i,2

are the i-th inverse model weight matrices of appropriate size, and φin
i (k) stands

for the regressor vector of the i-th sub-model defined as follows:

φin
i (k) = [y(k), . . . , y(k − n), u(k − 1), . . . , u(k −m), 1]T. (23)

To achieve a high level of model robustness, each inverse model should have

a different structure. Then, the designing process is aimed at selection of the165

number of hidden neurons and that of delayed outputs and inputs for each model

separately.

4. Fault tolerant iterative learning control

The proposed fault tolerant control system is based on the control strategy

realized using iterative learning control as portrayed in the previous section.170

The investigated FTC strategy is able to detect both actuator and sensor faults,

estimate their size and finally to accommodate them. The main idea is to apply

two kinds of models in order to distinguish between actuator and sensor faults

(Fig. 2). With the help of the forward models Mi, i = 1, . . . ,M , a fault can be

detected. In turn, using the inverse models Ii, i = 1, . . . , N , the fault can be175

classified to one of the two fault classes considered.

In the nominal case, the forward model should estimate the output of the

plant closely. Due to modeling errors, we cannot expect that the forward model

will be a perfect replica of plant dynamics. Then, we can assume that modeling

errors should be acceptable up to predefined level Ty. Analogously, the output180

of an inverse model should be as close to the control signal as possible. Again,

12

Iterative

learning control memory

memory

Plant

dynamics
Actuator Sensor

SYSTEM

Decision

making

Decision

making

Model

M3

M2

M1 f̂s

yp+1

ŷp+1

up+1 yd

fa fs

yrec

f̂a

uftcp+1

+
−

+

−

− +− +

ûp+1

mean

Inverse model
I1

I2
I3

Figure 2: Proposed fault-tolerant iterative learning control.

due to modeling errors it is assumed that acceptable modeling errors are smaller

that a predefined threshold Tu.

In the sequel, to make fault estimation and accommodation clear, the index

p representing the trial is omitted. The routine of fault diagnosis is performed

in two subsequent stages. First, each fault occurring either in an actuator or a

sensor will change the value of the output signal. Then, introducing an output

residual in the form

ry(k) = y(k) − ŷ(k), (24)

where ŷ(k) is the output of the forward model, we can decide whether a fault

occurred or not. The common approach is to apply a threshold Ty and to

check if the residual ry(k) exceeds the threshold value. The second stage is to

distinguish the fault class. This is carried out by means of an inverse model.

Let us introduce the input residual as follows:

ru(k) = u(k) − ûf (k), (25)

where ûf (k) is the output estimated by the inverse model. If we deal with a

sensor fault, the value of the residual ru(k) is still under the threshold value Tu.185

Then, the sensor fault is pointed out. However, in the case of an actuator fault,

the residual differs from zero significantly, and when it exceeds the threshold

13

value Tu the actuator fault is signalled. Details of how to perform decision

making and select thresholds are provided further in this paper.

The quality of the fault detection process can be evaluated using different190

indexes (Bartyś et al., 2006). In this work, the following performance metrics

were used:

• detection moment tdm: the number of samples needed for the detection

of a fault measured from the time of fault start-up to a permanent true

decision about the fault;195

• false detection rate rfd: the ratio of the number of false alarms to the

length of the trial, calculated in normal operating conditions.

4.1. Actuator fault estimation and accommodation

Substituting uf (k) with ûf (k) in (4) yields the following fault estimate:

f̂a(k) = ûf (k) − u(k) = −ru(k). (26)

To estimate an actuator fault, one needs to develop both the inverse model of a

plant as well as the forward model providing the state vector x(k+1). Moreover,

a serious advantage of the procedure is that it requires modeling the system in

nominal operating conditions only. This is because during the nominal work

of the system x(k) = xN (k) and f̂a(k) = 0; otherwise, x(k) ̸= xN (k) and,

consequently, f̂a(k) ̸= 0. As we obtain the fault estimate, a fault can be easily

accommodated according to the formula

uftc(k) = u(k) − f̂a(k), (27)

where uftc(k) stands for the corrected control signal applied to the system.

4.2. Sensor fault estimation and accommodation200

According to (3), the sensor fault estimate can be determined as

f̂s(k) = yf (k) − ŷ(k) = ry(k). (28)

Then, using the fault estimate (28), the system output can be reconstructed via

yrec(k) = yf (k) − f̂s(k), (29)

where yrec(k) is the reconstructed output of the system.

14

5. Convergence analysis

In the following, the main result of the paper is presented.

Assumption A1. Let us assume fa(k) = 0, fs(k) = 0 and yd(k) to be a

desired reference profile defined over a discrete-time k ∈ N . It is also assumed

that yd(k) is realizable, that is, there exists a unique ud(k) and an initial state

xd(0), i.e.,

xd(k + 1) = g(xd(k), ud(k)),

yd(k) = CTxd(k).
(30)

Assumption A2. Let ∀k ∈ N , ∀p the actuator and sensor faults satisfy the

following:

∥fa(k)∥ ≤ ϵa, ∥fs(k)∥ ≤ ϵs,

where ϵa ≥ 0, ϵs ≥ 0 are finite bounds. Moreover, ∀p the initial system state

error satisfies

∥∆xp(0)∥ ≤ ϵx, (31)

where ∆xp(k) = xd(k) − xp(k) and ϵx ≥ 0 is a positive constant.

Assumption A3. A non-linear function g satisfies the global Lipschitz condi-

tion

∥g(x1, u1) − g(x2, u2)∥ ≤ L (∥x1 − x2∥ + |u1 − u2|) , (32)

where L > 0 stands for the Lipschitz constant.205

Definition 1. The partial derivatives of the controller activation function σo

(6) with respect to the inputs are defined as

fu(k) = wc
3,p

∂σo(·)
∂up(k)

, fe(k) = wc
3,p

∂σo(·)
∂ep(k)

. (33)

Definition 2. The λ-norm of a vector z(k) is defined as follows:

∥z(k)∥λ = sup
k∈N

β−λk∥z(k)∥, (34)

where λ > 0 is a finite constant and β > 1.

Theorem 1. Consider the non-linear system (1) satisfying the assumptions

(A1)–(A3) and the reference trajectory yd(k) satisfying the assumption (A1).

Applying the control law (6)–(7) satisfying the condition∣∣∣∣sup
k

∥fu(k)∥ + sup
k

∥fe(k)CT∥
(

1 − L−(λ−1)(k+2)

1 − L−(λ−1)
− 1

)∣∣∣∣ < 1 (35)

15

guarantees that the tracking error remains bounded, i.e.,

lim
p→∞

∥yd(k) − yp(k)∥λ ≤ σ, (36)

where constant σ > 0 is dependent on ϵx, ϵa, ϵs.

Proof. Expanding the control law (6) into the Taylor series yields

∆up+1(k) ≃ fu(k)∆up(k) − fe(k)∆yp(k), (37)

where ∆up(k) = ud(k) − up(k) and ∆yp(k) = ep(k). According to the assump-

tion (A1), we obtain

∆xp(k + 1) = g(xd(k), ud(k)) − g(xp(k), up(k) + fa(k)),

∆yp(k) = CT∆xp(k) + fs(k), (38)

where ∆xp(k) = xd(k) − xp(k). Next, taking the norm of both sides of (37),

we obtain

∥∆up+1(k)∥ ≤∥fu(k)∆up(k)|| + ∥fe(k)∆yp(k)∥

≤∥fu(k)∆up(k)|| + ∥fe(k)CT∆xp(k)∥ + ∥fe(k)CTfs(k)∥

≤∥fu(k)∆up(k)|| + ∥fe(k)CT∥(∥∆xp(k)∥ + ϵs).

(39)

Now, taking the norm of the both sides of the state equation in (38) and applying

the assumption (A3), we have

∥∆xp(k + 1)∥ ≤ L∥∆xp(k)∥ + L|∆up(k) − fa(k)|. (40)

Assuming that (A2) holds and applying the recursive form of (40), the fol-

lowing representation is achieved for k = 1, . . . , N − 1:

∥∆xp(k)∥ ≤ Lk+1∥∆xp(0)∥ +

k−1∑
i=0

Lk−i|∆up(i) − fa(i)|. (41)

Let us introduce the auxiliary sequence ũp(k) excluding the initial zero element

from the sequence ∆up(k):

ũp(k) =

0, k = 0,

∆up(k − 1) − fa(k − 1), k = 1, . . . , N.

(42)

Then, using (42), the equation (41) can be rewritten as follows:

∥∆xp(k)∥ ≤ Lk+1∥∆xp(0)∥ +

k∑
i=0

Lk−i+1|ũp(i)|. (43)

16

Now, substituting (43) into (39) for any k ∈ N<N yields

∥∆up+1(k)∥ ≤∥fu(k)∥∥∆up(k)||+∥fe(k)CT∥

(
k∑

i=0

Lk−i+1|ũp(i)|+Lk+1ϵx+ϵs

)
.

(44)

Applying λ-norm to both sides of (44) gives

∥∆up+1(k)∥λ ≤sup
k

∥fu(k)∥∥∆up(k)∥λ + sup
k

∥fe(k)CT∥(Lk+1ϵx + ϵs)

+ sup
k

∥fe(k)CT∥sup
k
β−λk

k∑
i=0

Lk−i+1|ũp(i)|.
(45)

Setting L = β, one can rewrite the last supremum in (45) as follows:

sup
k
β−λk

k∑
i=0

βk−i+1|ũp(i)| = sup
k

k∑
i=0

β−λk+k−i+1|ũp(i)|

= sup
k

k∑
i=0

β−λ(i−1)|ũp(i)|β−(λ−1)(k−i+1)

≤ sup
k

k∑
i=0

sup
k

(β−λk|ũp(k + 1)|)β−(λ−1)(k−i+1)

= sup
k
β−λk|ũp(k + 1)| · sup

k

k∑
i=0

β−(λ−1)(k−i+1)

= ∥∆up(k) − fa(k)∥λ
(

1 − β−(λ−1)(k+2)

1 − β−(λ−1)
− 1

)
≤ ∥∆up(k)∥λ

(
1 − β−(λ−1)(k+2)

1 − β−(λ−1)
− 1

)
+ ϵa

(
1 − β−(λ−1)(k+2)

1 − β−(λ−1)
− 1

)
.

(46)

Introducing

γ1 = sup
k

∥fu(k)∥, (47)

γ2 = sup
k

∥fe(k)CT∥
(

1 − β−(λ−1)(k+2)

1 − β−(λ−1)
− 1

)
, (48)

and

γ3 = sup
k

∥fe(k)CT∥
(
βk+1ϵx +

(
1 − β−(λ−1)(k+2)

1 − β−(λ−1)
− 1

)
ϵa + ϵs

)
, (49)

(45) leads to

∥∆up+1(k)∥λ ≤ (γ1 + γ2)∥∆up(k)∥λ + γ3. (50)

Let us rearrange (50) as

∥∆up+1(k)∥λ − (γ1 + γ2)∥∆up(k)∥λ ≤ γ3. (51)

17

It is obvious (Chien, 1998) that (51) is satisfied if |γ1 + γ2| < 1. Then, we can

conclude that

lim
p→∞

∥∆up(k)∥λ ≤ γ3
1 − |γ1 + γ2|

. (52)

Finally, tracking error convergence of the proposed FTC-ILC can be proven.

Again, let us apply λ-norm to (41) and carry out the same reasoning as in (45).

As a result, we obtain

∥∆xp(k)∥λ ≤ γ4∥∆up(k)∥λ + γ5, (53)

with γ4 = 1−β−(λ−1)(k+2)

1−β−(λ−1) − 1 and γ5 = sup
k

(
βk+1ϵx +

(
1−β−(λ−1)(k+2)

1−β−(λ−1) − 1
)
ϵa

)
.

As the trial number tends to infinity, we have

lim
p→∞

∥∆xp(k)∥λ ≤ γ4
γ3

1 − |γ1 + γ2|
+ γ5. (54)

Using the output equation of the system (1),

lim
p→∞

∥yd(k) − yp(k)∥λ ≤∥CT∥∥∆xp(k)∥λ + ϵs

≤∥CT∥
(
γ4

γ3
1 − |γ1 + γ2|

+ γ5

)
+ ϵs

≜σ(ϵx, ϵa, ϵs).

(55)

Remark 1. From a practical perspective, a key point is the method of

keeping the condition (35) satisfied. Analyzing (48), it is clear that lim
λ→∞

γ2 = 0.

Then, a crucial factor for satisfying convergence condition is the component γ1.

According to Definition 1, by using (7), (47) can be rewritten as

γ1 = |wc
3,p|sup

k

∥∥∥∥ ∂σo(·)
∂up(k)

∥∥∥∥ . (56)

Clearly, after controller weight update, one can verify the convergence criterion210

very easily by proper adaptation of the weight wc
3,p.

Remark 2. Assuming that σo(·) is a linear function, the supremum in (56)

can be further transformed as follows:

sup
k

∥∥∥∥ ∂σo(·)
∂up(k)

∥∥∥∥ = sup
k

∥(W c
1u,p ◦ σ

′

h)TW c
2,p∥, (57)

where W c
1u,p are the input weights assigned to the controller input up(k). In

order to achieve good approximation abilities, usually σh(·) is selected to be a

squashing function (a sigmoid or a hyperbolic tangent one). In such cases, the

18

maximum of the activation function derivative is equal to 1 and (57) can be

rewritten as

sup
k

∥∥∥∥ ∂σo(·)
∂up(k)

∥∥∥∥ = |(W c
1u,p)TW c

2,p|. (58)

Substituting (58) to (56), one obtains

γ1 = |w3,p(W c
1u,p)TW c

2,p|. (59)

6. Experimental study

6.1. System description

The proposed fault-tolerant control system was tested on the example of

tracking control for the magnetic brake system (Patan and Patan, 2021). It

constitutes a non-friction system dissipating high kinetic energy into thermal

energy. According to the amount of heat, in practical settings the magnetic

brake is usually just a component of more sophisticated systems with additional

electric actuation and energy recovery, e.g., electromagnetic brakes encountered

widely in high speed railways, big trucks and industrial elevators. For clarity of

presentation and proper illustration of the potential of the developed approach,

a relatively simplistic version of the magnetic brake is considered here. Its

realization consists in rotating the conductive element immersed in a magnetic

field generated by external magnets (cf. Fig. 3(a)). The movement of the

conductor within the magnetic field results in inducing eddy currents, which

further interact with the magnetic flux producing a spatio-temporal field of

Lorentz forces. These, in turn, generate a total braking torque slowing down

(a) (b)

Figure 3: Schematic view of the magnetic brake (a) and the example of its practical realization:

Inventor A52 energy meter (b).

19

the rotating element. The rotational velocity over time horizon t ∈ (0, tf] can

be mathematically described by the initial value problem

J
dω(t)

dt
= M(B0(t), ω(t)), ω(0) = ω0, (60)

where ω is rotational velocity, J is the moment of inertia of the rotating element,

B0(t) is the magnetic flux generated by the external magnets, and M is the total

aggregated braking torque,

M =

∫
D
Tq(B(x, t), B0(t), ω(t)) dV, (61)

where D ∈ R3 is a spatial domain representing the rotating conductor, dV stands

for the volume element of D, Tq is the Lorentz force on the volume element215

related to the spatial location x, and B(x, t) denotes the spatio-temporal field

of the internal magnetic flux inside the conductor.

It is clear that the total braking torque (61) at any time instant depends

in non-linear manner on the spatial field of eddy currents generated by the

magnetic flux and shape of the domain D as well as the external magnetic flux.220

Accurate estimation of the braking torque is a key problem for both the design of

the control system and fault accommodation. In practical conditions, modeling

uncertainty in each repeated trial of the braking process will play a significant

role and should be properly estimated based on the observed data. The torque

field Tq is continuous and bounded provided by the physics of the process, so the225

functional (61) is smooth enough to satisfy the assumption A3. Therefore, in

order to determine the system response up to satisfactory accuracy, a reasonable

approach is to make use of the well-known ensemble averaging properties of

neural networks. Apart from accurate modeling of the non-linear torque, this

will also provide necessary robustness with respect to disturbances. Then, neural230

models are further incorporated into the proposed iterative learning control

scheme.

For the purpose of the experiment, as a simulated reference we used an

aluminum disk with a diameter of 10 cm and thickness of 1 mm rotating in the

external magnetic field with a maximum flux of 0.1 T. This is close to a typical235

configuration encountered in analog energy meters, cf. Fig. 3(b)). The initial

angular velocity ω0 was set to a value of 10 rpm. The task was to slow down

the disk to 0.01% of the initial velocity within the period of 10 seconds. The

20

0 50 100 150 200 250 300 350

Time [samples]

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 a

n
g

u
la

r
v
e

lo
c
it
y

Figure 4: Reference signal.

simulated reference profile being the solution to (60) for the sample time 0.03 s

is presented in Fig. 4 (the plot is normalized to rad/s). The objective of the240

control task is to accurately follow the reference profile of the output angular

velocity ω(t) by proper update of the input signal of the magnetic flux B0(t)

generated by an external electromagnet, simultaneously taking into account

potential faults occurring in the system.

To investigate fault tolerant properties of the proposed approach, a number245

of faulty scenarios were prepared, including both sensor and actuator faults, as

well as multiple faults. Specification of the faults is included in Table 1. All

faults are of abrupt and additive nature.

Table 1: Faulty scenarios specification.

scenario type intensity trial time instant

f1 sensor +0.05 5th 100th

f2 sensor −0.05 10th 100th

f3 actuator +0.002 10th 95th

f4 sensor then actuator +0.05/+0.002 10th 100th/200th

6.2. Forward and inverse model design

Forward multi-model. In this study we applied a multi-model developed in our250

previous work (Patan et al., 2020), and the details can be found therein. Briefly,

to design the model, seven operating points were considered (from the interval

[0.003 − 0.095]) and, consequently, seven state-space neural models (17) were

21

derived. The final output of the forward model was calculated using the mem-

bership functions (18) of the spread guaranteeing covering the entire range of the255

operating points and at the same time satisfying the criterion (14). Each sub-

model had a relatively simple architecture with five hidden hyperbolic tangent

neurons and a low model order (2nd or 3rd).

Inverse model ensemble. The ensemble of inverse models used in this research

was derived in the previous work of the authors (Patan and Patan, 2022). To260

achieve a robust model, a mixture of five neural inverse neural networks of the

form (22) was used. Each model had a different number of hidden non-linear

neurons (varying from 3 to 12) and a different number of past inputs m and

outputs n (3 or 4 in both cases). The final output of the inverse model was

calculated as the mean value of sub-models’ outputs according to (21). Details265

concerning the design process as well as training are presented by Patan and

Patan (2022).

6.3. Learning controller synthesis

The initial parameters of the learning controller were set as small random

values. After that the controller was applied to control the magnetic brake and

at the same time trained with the algorithm described by the equations (10)–

(13). The number of neurons in the hidden layer was set to nh = 15, and the

activation function was a hyperbolic tangent. The output activation function

σo was a linear one. To obtain proper generalization abilities of the controller,

the learning rate was set to be exponentially decreasing:

η(i) = η0e
−0.05i, (62)

where i stands for the training iteration. The maximum number of training

iterations was equal to 1000, and the initial value of the training rate at each

trial was η0 = 0.001. The convergence of the root mean square of the tracking

error is shown in Fig. 5. It is clear that the tracking error norm was established

at the value of about 0.01, which is, in fact, the value of the norm of the noise

affecting the system output. Then, further reduction of the tracking error norm

is not possible. After training the controller, parameters are stored for further

use. According to Remark 1, a crucial issue for the convergence is to keep

22

0 10 20 30 40 50 60 70 80 90 100

10
-2

10
-1

10
0

Figure 5: Convergence of the ILC: normal operating conditions.

parameter γ1 below the value of 1. From Fig. 6 it is clear that γ1 has the

correct value all the time, guaranteeing the convergence of the control system.

An important characteristic of the control system is its self fault tolerance. In

0 10 20 30 40 50 60 70 80 90 100
10

-8

10
-7

10
-6

10
-5

10
-4

Figure 6: Evolution of the parameter γ1.

this framework, two experiments were conducted and investigated. The first

one was the reaction of the learning controller to the faulty scenario f1. The

convergence of the tracking error for this case is presented in Fig. 7 with the

blue-solid line. Obviously, at the 5th trial there is an abrupt change in the

RMS value of the tracking error after which it settles at the level nearing 0.05.

Clearly, ILC itself is not able to compensate the sensor fault, but the RMS of

the tracking error is upper bounded. The boundedness of the tracking error can

23

be explained directly from the results provided by Theorem 1. Assuming a zero

initial state (ϵx = 0) and no actuator fault (ϵa = 0), parameter γ5 is equal to

zero. Moreover, one can find such a value of λ that the parameter γ4 is very

close to zero. Then, (55) can be rewritten as

lim
p→∞

∥yd(k) − yp(k)∥λ ≤ ϵs + ψ, (63)

where ψ is a very small value close to zero. Fault intensity was equal to 0.05.

In the case considered, ϵs = 0.8958, but its RMS is
√

1
321ϵ

2
s = 0.05, which is270

a value very close to the upper bound of the tracking error observed in Fig. 7.

Summarizing this part of the research, ILC is not able to compensate the sensor

fault and an additional fault accommodation mechanism is required to achieve

fault-tolerant control.

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

0.06

sensor fault

actuator fault

Figure 7: Convergence of ILC in the case of faults.

The second experiment was to analyze the behavior of the learning controller

in the case of the actuator fault f3. The convergence of the tracking error is

shown in Fig. 7 with the red-dashed line. After fault occurrence (10th trial),

the convergence of the tracking error is violated and the RMS of the tracking

error starts to increase. However, very quickly the learning controller was able

to properly react and retrain its parameters to yet again converge to a mini-

mum value of the tracking error after approximately 15 trials. To explain this

phenomenon, let us analyze again the condition (55). Assuming a zero initial

state (ϵx = 0) and no sensor fault (ϵs = 0), one can find such a value of λ that

the parameters γ4 and γ5 are very close to zero. Then, (55) can be rewritten as

lim
p→∞

∥yd(k) − yp(k)∥λ ≤ ψ, (64)

24

where ψ is a very small value close to zero. To conclude, the proposed ILC275

has the actuator fault tolerance property. However, we believe that developing

actuator fault accommodation will help to improve the convergence rate of the

tracking error after fault occurrence.

6.4. Fault detection and isolation

0 50 100 150 200 250 300

Time [samples]

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

R
e
s
id

u
ls

 a
n
d
 t
h
re

s
h
o
ld

s

7th trial

thresholds

10th trial

Figure 8: Output residual thresholding.

The fault diagnosis system is based on the evaluation of two residual sig-

nals as was preliminary portrayed in Section 4. A fault is detected using the

residual (24). In the case considered, during each trial we can observe transient

behavior in magnetic brake work, so the residual at the beginning has some

value which vanishes as time passes (see Fig. 8, with the residual marked with

the blue line). Then, to make a decision about faults, we decided to apply an

adaptive threshold. It can be determined on the basis of the statistical parame-

ters of the residual derived in normal operation conditions. Due to the transient

behavior observed in the residuals, a moving mean and moving standard devia-

tion were calculated over the past n ∈ (0, k) samples using the formulas (Patan,

2008)

r̄y(k) =
1

n

k∑
i=k−n

ry(i), (65)

where r̄y is the moving mean of the residual ry at the time instant k, n is the

window length, and

sry (k) =

√√√√ 1

n− 1

k∑
i=k−n

(ry(i) − r̄y(k)), (66)

25

where sry (k) is the standard deviation of the residual at the time instant k.

Using (65) and (66), upper and lower thresholds can be easy calculated using

2sry rule-of-thumb as follows:

T
ry
u,l = r̄y(k) ± 2sry , (67)

where T
ry
u and T

ry
l represent the upper and lower thresholds, respectively. In280

the present work, the window length was set to n = 10 and vectors r̄y and

sry were calculated based on residuals derived for normal operating conditions.

After that, these vectors were stored for further use. The derived thresholds

are depicted in Fig. 8 (black-dashed lines). Such derived thresholds can be

effectively used for fast and reliable fault detection. In Fig. 8, one can observe285

the residual derived for the 10th cycle of magnetic brake operation (red line).

An alarm is raised at the 100th time instant. This is consistent with the scenario

f2, according to which the sensor fault is introduced during the 10th trial at

the 100th time step. In this case, the false detection rate rfd = 3.69% and the

detection moment tdm = 1 time instant. Clearly, fault detection was carried out290

quickly and reliably.

0 50 100 150 200 250 300

Time [samples]

-2.5

-2

-1.5

-1

-0.5

0

0.5

R
e
s
id

u
ls

 a
n
d
 t
h
re

s
h
o
ld

s

10
-3

7th trial

10th trial

thresholds

Figure 9: Input residual thresholding.

However, to definitely point out that a fault is a sensor one, another residual

(25) should be processed. This time the residual is centered (see Fig. 9, with

the residual marked with blue line), and for decision making simple thresholds

can be used. To calculate the thresholds the mean value and standard deviation

of the residual ru(k) determined for normal operating conditions are required.

26

In the case considered, we achieved the following values: r̄u = 8.78 · 10−6 and

sru = 3.43 · 10−5. Finally, the thresholds are calculated using the 3sry rule:

T ru
u,l = r̄u ± 3sru , (68)

where T ru
u and T ru

l represent the upper and lower thresholds, respectively. In

the study considered, T ru
u = 1.12 · 10−4 and T ru

l = −0.94 · 10−4. Threshold

values are stored and used in the fault diagnosis process. In Fig. 9, thresholds

are marked with the black-dashed lines. In normal operating conditions the295

residual is inside the region limited by thresholds, but when an actuator fault

occurs the residual almost immediately exceeds the thresholds, as illustrated in

Fig. 9 (the residual marked with the red line). In this case, an alarm is raised at

the 95th time instant. This is consistent with the scenario f3, according to which

the actuator fault is introduced during the 10th trial at the 95th time step. In300

this case, the false detection rate rfd = 1.25% and the detection moment tdm = 1

time instant, which means that the fault was quickly and surely detected.

6.5. Fault estimation and accommodation

After fault diagnosis, a fault can be estimated and accommodated. First, let

us analyze the scenario f2. The results of fault tolerant control are presented in305

Fig. 10. Clearly, the sensor fault was reliably accommodated in one trial using

the sensor fault estimate (28). This was possible due to fast fault detection, as

illustrated in Fig. 8. In the case considered, the mean value of f̂s(k) was −0.0506,

which means that sensor fault was accurately estimated with the absolute value

of the reconstruction error ∥ − 0.0506 − (−0.05)∥ = 0.0006.310

The second experiment was to check fault-tolerant control quality in the case

of the actuator fault f3. The control results are shown in Fig. 10. Once again,

the fault was reliably accommodated using the actuator fault estimate (26).

It should be stressed that the proposed learning controller has actuator fault

tolerance properties as illustrated in Fig. 7 (red-dashed line). However, by intro-315

ducing the actuator fault accommodation mechanism (27), control convergence

was significantly improved. In this case, the mean value of f̂a(k) was 0.0022,

which is very close value to the real fault intensity equal to 0.002 (see Table 1).

The absolute value of the reconstruction error is ∥0.0022 − 0.002)∥ = 0.0002.

27

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 10: Sensor fault accommodation: scenario f2.

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 11: Actuator fault accommodation: scenario f3.

The last investigated scenario, f4, consists in accommodation of two faults320

appearing one by one. The control results are presented in Fig. 12. Fault ac-

commodation is pretty effective. In Fig. 13 we can observe the process of fault

detection and isolation. Firstly, the sensor fault was signalled at the 100th time

step as the residual ry permanently exceeded the upper threshold T
ry
u . At the

same time, the residual ru remains inside the region bounded by thresholds.325

After that, at the 200th time step, the actuator fault was signalled as the resid-

ual ru exceeded the lower threshold T ru
l . Simultaneously, the residual ry still

retained outside the region bounded by thresholds.

28

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 12: Multiple faults accommodation: scenario f4.

0 50 100 150 200 250 300

Time [samples]

-20

-15

-10

-5

0

5
10

-4

0 50 100 150 200 250 300

Time [samples]

-0.2

-0.1

0

0.1

Figure 13: Multiple faults detection.

29

7. Conclusions

The paper proposed fault-tolerant iterative learning control carried out by330

means of neural network models. To design this control scheme, three kinds

of neural networks were applied. Due to the class of systems considered, a

forward model was built upon a mixture of state-space neural network sub-

models. Then, the forward model was used to carry out fault detection. The

second class of neural networks applied included a neural network with exter-335

nal dynamics, used to build an ensemble of inverse models. The ensemble was

used in a twofold way: to perform fault isolation and to generate the desired

control estimate for the purpose of controller synthesis. The third class of neu-

ral networks included a feed-forward network used to design the static learning

controller. The proposed fusion of neural networks is very useful in the cases340

when the mathematical model of a system could not be derived and data-driven

methods are the only alternative. Moreover, the application of neural networks

renders it possible to design a learning controller of the adaptive kind. The

paper provides sufficient conditions guaranteeing the convergence of the pro-

posed control strategy in the presence of both actuator and sensor faults. An345

important result from the convergence analysis is that the proposed open-loop

control has the inherent tolerance regarding actuator faults. Anyway, this work

proposed fault estimation and accommodation mechanisms to improve control

quality deteriorated by faults. Simulation results confirm the effectiveness of

the proposed fault-tolerant control. Summarizing, the decided advantages of350

the proposed approach in comparison to existing contributions are as follows:

• very extensive treatment of the subject including different types of faults,

model uncertainty and control design supplemented with careful mathe-

matical characterization and convergence analysis;

• there is no linearization required at any stage of control design, i.e., mod-355

eling, fault detection and accommodation, and controller synthesis, which

broaden the area of applicability.

There still remain open problems, which require more attention. Each in-

verse model candidate was trained using the so-called series-parallel setting,

which means that during training the neural model was treated as a feed-forward360

30

one. More accurate modeling is possible using recursive training via a parallel

identification model. Secondly, a very important issue is to extend the proposed

fault accommodation mechanism onto the class of incipient faults. Finally, a

closer look into robustness properties of the proposed control scheme to external

disturbances as well as to a model mismatch is needed.365

Acknowledgements

This research was funded in part by National Science Centre in Poland, grant

No. 2020/39/B/ST7/01487. For the purpose of Open Access, the author has

applied a CC-BY public copyright licence to any Author Accepted Manuscript

(AAM) version arising from this submission.370

References

Ahn, H.S., Moore, K.L., Chen, Y., 2007. Iterative learning Control. Robust-

ness and Monotonic Convergence for Interval Systems. Communications and

Control Engineering, Springer-Verlag, London.

Arimoto, S., Kawamura, S., Miyazaki, F., 1984. Bettering operation of robots375

by learning. Journal of Robotic systems 1, 123–140.

Bartyś, M., Patton, R., Syfert, M., de las Heras, S., Quevedo, J., 2006. Introduc-

tion to the DAMADICS actuator FDI benchmark study. Control Engineering

Practice 14, 577–596. doi:10.1016/j.conengprac.2005.06.015.

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., 2016. Diagnosis and380

Fault-Tolerant Control. Springer-Verlag, New York.

Bristow, D.A., Tharayil, M., Alleyne, A.G., 2006. A survey of iterative learn-

ing control: A learning-based method for high-performance tracking control.

IEEE Control Systems Magazine 26, 96–114.

Bu, X., Hou, Z., Yu, Q., Yang, Y., 2020. Quantized data driven iterative385

learning control for a class of nonlinear systems with sensor saturation. IEEE

Transactions on Systems, Man, and Cybernetics: Systems 50, 5119–5129.

doi:10.1109/TSMC.2018.2866909.

31

http://dx.doi.org/10.1016/j.conengprac.2005.06.015
http://dx.doi.org/10.1109/TSMC.2018.2866909

Bu, X., Xu, F., Hou, Z., Yang, H., 2012. Robust iterative learning control

for nonlinear systems with measurement disturbances. Journal of Systems390

Engineering and Electronics 23, 906–913.

Chen, Y., Chu, B., Freeman, C.T., 2022. Iterative learning control for path-

following tasks with performance optimization. IEEE Transactions on Control

Systems Technology 30, 234–246. doi:10.1109/TCST.2021.3062223.

Chi, R., Hou, Z., 2009. A new neural network-based adaptive ILC for nonlinear395

discrete-time systems with dead zone scheme. Journal of Systems Science and

Complexity 22, 435–445.

Chien, C.J., 1998. A discrete iterative learning control for a class of nonlinear

time-varying systems. IEEE Transactions on Automatic Control 43, 748–752.

Chow, T.W.S., Li, X.D., Fang, Y., 2000. A real-time learning control approach400

for nonlinear continuous-time system using recurrent neural networks. IEEE

Transactions on Industrial Electronics 47, 478–486.

Conchas, R.F., Sanchez, E.N., Ricalde, L.J., Alvarez, J.G., Alanis, A.Y., 2023.

Sensor fault-tolerant control for a doubly fed induction generator in a smart

grid. Engineering Applications of Artificial Intelligence 117, 105527. doi:10.405

1016/j.engappai.2022.105527.

Ducard, G.J.J., 2009. Fault-tolerant Flight Control and Guidance Systems:

Practical Methods for Small Unmanned Aerial Vehicles. Advances in Indus-

trial Control, Springer, London.

Freeman, C., Rogers, E., Burridge, J., Hughes, A.M., Meadmore, K., 2015.410

Iterative Learning Control for Electrical Stimulation and Stroke Rehabilita-

tion. SpringerBriefs in Control, Automation and Robotics, Springer-Verlag,

London.

Haykin, S., 2009. Neural Networks and Learninig Systems. Prentice-Hall, New

Jersey.415

Huang, J., Wang, W., Su, X., 2021. Adaptive iterative learning control of

multiple autonomous vehicles with a time-varying reference under actuator

32

http://dx.doi.org/10.1109/TCST.2021.3062223
http://dx.doi.org/10.1016/j.engappai.2022.105527
http://dx.doi.org/10.1016/j.engappai.2022.105527
http://dx.doi.org/10.1016/j.engappai.2022.105527

faults. IEEE Transactions on Neural Networks and Learning Systems 32,

5512–5525. doi:10.1109/TNNLS.2021.3069209.

Leith, D.J., Leithead, W.E., 2000. Survey of gain-scheduling analysis and design.420

International Journal of Control 73, 1001–1025.

Li, L., Lina, Y., Hong, W., Zhiwei, G., 2022. Iterative learning fault diagnosis

and fault tolerant control for stochastic repetitive systems with brownian

motion. ISA Transactions 121, 171–179. doi:10.1016/j.isatra.2021.03.

030.425

Liu, G., Hou, Z., 2022. Adaptive iterative learning fault-tolerant control for

state constrained nonlinear systems with randomly varying iteration lengths.

IEEE Transactions on Neural Networks and Learning Systems doi:10.1109/

TNNLS.2022.3185080. early access.

Miao, Y., Li, C., 2017. Robust adaptive iterative learning control for discrete-430

time nonlinear systems with time-iteration-varying parameters. IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems 47, 1737–1745.

Moore, K.L., 1993. Iterative Learning Control for Determinisic Systems. Ad-

vances in Industrial Control, Springer-Verlag, London.

Nørgaard, M., Ravn, O., Poulsen, N., Hansen, L., 2000. Networks for Modelling435

and Control of Dynamic Systems. Springer-Verlag, London.

Noura, H., Theilliol, D., Ponsart, J., Chamseddine, A., 2003. Fault-Tolerant

Control Systems: Design and Practical Applications. Springer-Verlag, Berlin.

Oomen, T., Rojas, C.R., 2017. Sparse iterative learning control with applica-

tion to a wafer stage: Achieving performance, resource efficiency, and task440

flexibility. Mechatronics 47, 134–147.

Owens, D.H., 2016. Iterative Learning Control. An Optimization Paradigm.

Advances in Industrial Control, Springer-Verlag, London.

Patan, K., 2008. Artificial neural networks for the modelling and fault diagnosis

of technical processes. volume 377 of Lecture Notes in Control and Informa-445

tion Sciences. Springer-Verlag, Berlin-Heidelberg.

33

http://dx.doi.org/10.1109/TNNLS.2021.3069209
http://dx.doi.org/10.1016/j.isatra.2021.03.030
http://dx.doi.org/10.1016/j.isatra.2021.03.030
http://dx.doi.org/10.1016/j.isatra.2021.03.030
http://dx.doi.org/10.1109/TNNLS.2022.3185080
http://dx.doi.org/10.1109/TNNLS.2022.3185080
http://dx.doi.org/10.1109/TNNLS.2022.3185080

Patan, K., 2019. Robust and Fault-Tolerant Control. Neural-Network-Based

Solutions. Springer-Nature, Cham, Switzerland.

Patan, K., Patan, M., 2020. Neural-network-based iterative learning control of

nonlinear systems. ISA Transactions 98, 445–453.450

Patan, K., Patan, M., 2021. Neural-network-based nonlinear iterative learning

control: Magnetic brake study, in: 2021 IJCNN (IJCNN), pp. 1–7. doi:10.

1109/IJCNN52387.2021.9533709.

Patan, K., Patan, M., 2022. Actuator fault-tolerant iterative learning control of

the magnetic brake system. IFAC-PapersOnLine 55, 266–271. doi:10.1016/455

j.ifacol.2022.07.140.

Patan, K., Patan, M., Klimkowicz, K., 2020. Sensor fault-tolerant control design

for magnetic brake system. Sensors 20, 1–18.

Rouabah, B., Toubakh, H., Kafi, M.R., Sayed-Mouchaweh, M., 2022. Adaptive

data-driven fault-tolerant control strategy for optimal power extraction in460

presence of broken rotor bars in wind turbine. ISA Transactions 130, 92–103.

doi:10.1016/j.isatra.2022.04.008.

Sollich, P., Krogh, A., 1996. Learning with ensembles: How over-fitting can be

useful, in: Proc. of the 1996 Conference on Advances in Neural Information

Processing System, pp. 190–196.465

Tao, H., Paszke, W., Rogers, E., Yang, H., Ga lkowski, K., 2017. Iterative

learning fault-tolerant control for differential time-delay batch processes in

finite frequency domains. Journal of Process Control 56, 112–128. doi:10.

1016/j.jprocont.2016.12.007.

Wei, J., Zhang, Y., Sun, M., Geng, B., 2017. Adaptive iterative learning con-470

trol of a class of nonlinear time-delay systems with unknown backlash-like

hysteresis input and control direction. ISA Transactions 70, 79–92.

Xiong, W., Ho, D.W.C., Yu, X., 2016. Saturated finite interval iterative learning

for tracking of dynamic systems with HNN-structural output. IEEE Trans-

actions on Neural Networks and Learning Systems 27, 1578–1584.475

34

http://dx.doi.org/10.1109/IJCNN52387.2021.9533709
http://dx.doi.org/10.1109/IJCNN52387.2021.9533709
http://dx.doi.org/10.1109/IJCNN52387.2021.9533709
http://dx.doi.org/10.1016/j.ifacol.2022.07.140
http://dx.doi.org/10.1016/j.ifacol.2022.07.140
http://dx.doi.org/10.1016/j.ifacol.2022.07.140
http://dx.doi.org/10.1016/j.isatra.2022.04.008
http://dx.doi.org/10.1016/j.jprocont.2016.12.007
http://dx.doi.org/10.1016/j.jprocont.2016.12.007
http://dx.doi.org/10.1016/j.jprocont.2016.12.007

Xu, J.X., Tan, Y., 2003. Linear and Nonlinear Iterative Learning Control for De-

terminisic Systems. volume 291 of Lecture Notes in Control and Information

Sciences. Springer, Berlin.

Yu, X., Hou, Z., Polycarpou, M., Duan, L., 2021. Data-driven iterative learn-

ing control for nonlinear discrete-time mimo systems. IEEE Transactions on480

Neural Networks and Learning Systems 32, 1136–1148. doi:10.1109/TNNLS.

2020.2980588.

Zhang, D., Wang, Z., Masayoshi, T., 2021. Neural-network-based iterative learn-

ing control for multiple tasks. IEEE Transactions on Neural Networks and

Learning Systems 32, 4178–4190. doi:10.1109/TNNLS.2020.3017158.485

35

http://dx.doi.org/10.1109/TNNLS.2020.2980588
http://dx.doi.org/10.1109/TNNLS.2020.2980588
http://dx.doi.org/10.1109/TNNLS.2020.2980588
http://dx.doi.org/10.1109/TNNLS.2020.3017158

	Introduction
	System representation
	Models for fault diagnosis
	Forward model
	Inverse model

	Fault tolerant iterative learning control
	Actuator fault estimation and accommodation
	Sensor fault estimation and accommodation

	Convergence analysis
	Experimental study
	System description
	Forward and inverse model design
	Learning controller synthesis
	Fault detection and isolation
	Fault estimation and accommodation

	Conclusions

