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Abstract

In this paper, a feedback-aided PD-type iterative learning control (ILC) design is

proposed for the time-varying systems with non-uniform trial lengths to achieve

asymptotic tracking of the desired trajectory. To alleviate the problem of missing

information caused by non-uniform trial lengths, signals from most recently

available iterations can be used for system learning by introducing an indicator

function to construct recursively generated update error and input sequences. The

main results are obtained by utilizing the combination of λ-norm technique and

inductive analysis approach, and the design is extended to nonlinear time-varying

systems. At last, the effectiveness of the proposed feedback-aided ILC design

for linear and nonlinear time-varying systems is demonstrated by a numerical

simulation and a single-joint robot model.
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Introduction

As a branch of intelligent control, iterative learning control (ILC) has been widely
studied since its first introduction and application to a robotic system by Arimoto et al.
in the 1980s (Arimoto et al. 1984). The core idea of ILC is to iteratively correct the
control signal of a system with a repetitive motion by using the priori information
generated after the previous operation of the system, aiming to achieve accurate
tracking of the desired trajectory in a finite time interval. Due to its effectiveness and
ease of application, this control method has made significant progress and is broadly
applied in the fields of robot control (Bouakrif and Zasadzinski 2018; Zeng et al. 2019),
chemical processes (Lin et al. 2019; Tao et al. 2017), and spatially interconnected
systems (Tao et al. 2021), etc.

In many conventional ILC designs, a key requirement is that as the iteration number
of the control process increases, the trial length of each iteration is a fixed value,
which can be called as the desired length. This ensures that the system has sufficient
learning times at each time instant within the desired length, which facilitates the
learning process. However, in some practical application scenarios, some iterations
of the control system may end or be terminated prematurely for several reasons. For
example, in Yu et al. (2018), when automatic control of high-speed trains is performed,
it is difficult to maintain consistent train arrival times due to the complex environment
and various random events, thus the non-uniform trial lengths problem arises when
ILC is applied to this system. In addition, the trial lengths of ILC control system
for ventricular assist devices described in Ketelhut et al. (2019) are not uniform in
clinical practice due to variations in hemodynamic conditions caused by heart rate
fluctuations. Another typical example is seen in the functional electrical stimulation for
upper limb and gait assistance where some iterations are terminated early due to safety
concerns (Seel et al. 2016). Difficulties are encountered when applying conventional
ILC strategies to such practical systems. The application of ILC to non-uniform trial
lengths systems has attracted the attention of researchers (Shen and Li 2019). The two
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most important aspects of solving this problem are the methods to handle different trial
lengths uniformly and the approaches to deducing system analysis.

In a system with non-uniform trial lengths, iterations with shorter trial lengths could
suffer from some information loss compared to longer iterations. To address this, Li et
al. used the information of all past iterations for the design of the ILC control law by
utilizing an iterative averaging operator in Li et al. (2014) and Li and Xu (2015), aiming
to eliminate the effect of missing information to some extent. Two novel control law
design schemes using moving average operators were proposed subsequently in Li and
Shen (2017) to pay more attention to recent iterations, and the corresponding system
convergence conditions were given. With a similar idea, a D-type ILC control law
was designed in Wei and Li (2017) to solve the problem of non-uniform trial lengths
and initial state shift. Moreover, the averaging operator was modified to improve the
learning efficiency in Shi et al. (2020), where a Gaussian distribution was used to
describe the distribution of different trial lengths, and bounded convergence of errors
was achieved for systems with disturbances. These schemes construct the historical
information as a compensating signal for the missing parts, while these higher-order
strategies may dilute the influence of recent or larger errors. By using zero to fill in the
missing part of error information, a full-length modified tracking error was constructed,
thus the conventional one-order P-type ILC law was successfully applied in Shen et al.
(2016a). Benefit from this, a control scheme based on noisy output was proposed in
Shen and Saab (2021) recently, where the non-uniform trial lengths was modeled by
a Markelov chain. Similar compensation methods to this one were widely used in in
subsequent works (Meng and Zhang 2017; Shen et al. 2016b; Zhuang et al. 2022).
Furthermore, an indicator function was used in Jin (2020), thus the highest learning
priority was put on the most recent iterations that can sustain for each time instant.
These designs used a variety of compensation methods to supplement the absent
portion of the tracking information. This was because for upcoming iterations with
unknown actual trial lengths, a sufficiently long error signal is required to update the
system input.

On the other hand, multiple approaches have been used to analyze the ILC systems
with non-uniform trial lengths problem. The contraction mapping technique combined
with λ-norm was widely adopted in convergence analysis in many works (Li et al.
2014; Li and Shen 2017; Shi et al. 2020; Wei and Li 2017). To obtain stronger
convergence properties, a modified λ-norm was introduced in Shen et al. (2016b) and
a switching system approach was adopted in Shen et al. (2016a). Besides, analysis
method based on successive projection framework was also studied in Zhuang et al.
(2022) under an optimal ILC design. However, most of the above mentioned papers
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use stochastic models to describe the non-uniform trial lengths of the system, while
another way to describe the problem is through deterministic models, whose key point
is that the stochastic properties of the system do not need to be predicted or assumed in
advance. In Jin (2020), analysis was completed under a deterministic model by using a
modified composite energy function to deal with non-uniform trial lengths. By defining
a maximum-pass-length error, Seel et al. (2017) obtained the convergence properties
of the system through a direct analysis of adjacent iterations without using any specific
probabilistic information .

Apart from these, Meng and Zhang (2017) innovatively applied inductive analysis
for convergence analysis and also verified the deterministic convergence of the P-type
ILC control law for systems with non-uniform trial lengths under a persistent full-
learning property, while its processing of the missing signal is still similar to that in
Shen et al. (2016a), and it also tends to update the full-length input signal right after the
end of previous iteration. This makes such strategies do not take advantage of the latest
information generated by the current iteration in time, therefore the aforementioned
articles mostly adopt the typical open-loop learning approach.

By combining the conventional PD-type ILC with the tracking error of the current
iteration, a feedback-aided learning algorithm can be formed (Sun et al. 2013). This
scheme utilizes the derivation of the tracking error from the previous and the current
iterations as the rectification of the input signal to improve the tracking performance.
It has been used in the quantized system or against the initial state error problem (Bi
et al. 2018), thus the system output can be corrected in a more timely manner to achieve
better control results (Sun et al. 2015). It was further applied to systems with non-
uniform trial lengths, but it was analyzed for time-invariant systems under a stochastic
model (Wang et al. 2021).

In this paper, we aim to realize the control of time-varying systems under non-
uniform trial length problem. A recursively updated error sequence is constructed to
form the full-length error signal, and an update input sequence is constructed to store
historical valid inputs. Using both sequences a feedback-aided PD-type ILC control
law for time-varying systems with non-uniform trial lengths is designed. Furthermore,
under an iteration recurrence interval, the non-uniform trail lengths is described by
a deterministic model. The convergence of the ILC design is analyzed using both
contraction mapping technique and inductive analysis approach, and the design is
further extended to nonlinear systems. The effectiveness of the ILC design is showed
through two simulation examples by being compared with the iterative averaging
operator design in Li et al. (2014).

The main contributions of this paper can be summarized as follows:
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• The full-length recursively updated error and input sequences are designed
so that the learning process can make greater use of the the latest running
information from most recent iterations, benefit from which the storage burden
of the system is reduced.

• Through the utilization of the update sequences and tracking errors in the current
iteration, a feedback-aided PD-type ILC design is applied to systems with non-
uniform trial lengths to acquire better tracking performance.

• The application of the feedback-aided PD-type ILC design has also been
extended to nonlinear systems, and its convergence property under uncertain
initial state conditions is analyzed.

The remainder of the article is organized as follows: Section II carries out the
problem formulation of the ILC problems with non-uniform trial lengths. In Section
III, a feedback-aided PD-type ILC design is proposed, and its convergence analysis is
presented. Moreover, the previous design is extended to nonlinear time-varying systems
in Section IV. Two simulation examples are performed in Section V, while Section VI
draws the conclusion.

The main notations in the article are as listed below. Z+ represents the set of positive
integers. Rn denotes the n-dimensional space. ‖ · ‖ is the Euclidean norm, with which
‖f(t)‖λ = supt∈{0,1,2,...,T} α

−λt‖f(t)‖ indicates the λ-norm of a vector function f(t)

where λ > 0, α > 1. Further notations will be introduced as needed in the following
sections.

Problem formulation

We consider a discrete-time time-varying linear system as follows:{
xk(t+ 1) = Atxk(t) +Btuk(t),

yk(t) = Ctxk(t),
(1)

where k and t are the trial and time indexes, k ∈ Z+, t ∈ {0, 1, ..., Nk} and Nk is
the trial length of kth iteration. Note that xk(t) ∈ Rn, uk(t) ∈ Rp and yk(t) ∈ Rq

respectively represent the state, input and output. At, Bt and Ct are system matrices
with appropriate dimensions, and Ct+1Bt is full-rank. Assume that the system has a
unique ideal control input ud(t) ∈ Rp, under which the system can achieve{

xd(t+ 1) = Atxd(t) +Btud(t),

yd(t) = Ctxd(t),
(2)
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in which xd(t) and yd(t) are desired state and output respectively.

Due to the existence of the non-uniform trial length problem, the trial length of each
iteration may be not identical when the system is put into operation. Let the actual
trial length of kth iteration be Nk, it is reasonable to assume that there is a minimum
value NL and a maximum value NH for Nk. Since we are only focusing on the system
tracking performance over the desired time period, we can simply take NH = Nd, in
which Nd is the desired trial length. With this, we can obtain Nk ∈ [NL, Nd] for all
k ∈ Z+, which means t ∈ {0, 1, 2, ..., NL, ..., Nk, ..., Nd}.

Remark 1. The trial lengths of practical system may be less than or exceed the desired

one, the former being the non-uniform trial length problem described earlier. While

when the actual trial length is larger than the desired length, the redundant part of the

information is immediately discarded because it is not in our consideration, thus this

will transform into a full-length case. Therefore, only the case where the actual length

does not exceed the desired length is discussed in this paper.

Based on the features of iterative learning control and the setup above, we should
use the historical information from previous iterations to update the control input uk(t)

for the upcoming one, so that the system can meet the control target (2) as the number
of iterations increases.

Prior to the design and convergence analysis of the ILC control law design, the
following lemma and assumptions need to be introduced.

Lemma 1. (Meng and Zhang 2017) Consider an iterative system

zk+1 = Dzk + dk, k ∈ Z+, (3)

where zk and dk ∈ Rn represent the state and a bounded external input. D is the

system matrix with proper dimension. Then lim
k→∞

dk = 0 implies lim
k→∞

zk = 0, if and

only if ρ(D) < 1, where ρ(D) is the spectral radius of the system matrix D.

Assumption 1. For any given iteration number k ∈ Z+ and a time instant t ∈
{0, 1, ..., Nk}, in the past σ consecutive iterations, there is at least one iteration with a

trial length greater than or equal to t.

Remark 2. The constant σ can be referred to as the iteration recurrence interval,

and when considered for the time instant Nd, the Assumption 1 can also be known

as a persistent full-learning property in Meng and Zhang (2017), which is intended

to improve the learning efficiency of the system. This assumption ensures that as the

number of iterations k goes to infinity, the system can have enough iterations for
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each time instant’s learning. This obviously relaxes the system’s requirement for trial

length distribution probabilities. The specific value of σ can be obtained from a priori

knowledge or prediction results in real engineering, but in fact, only Assumption 1 is

required to be satisfied for convergence analysis in this paper, and the actual value of

σ is not required.

Assumption 2. The initial state of the system can be reset precisely at the beginning

of each iteration, which means

xk(0) = xd(0),∀k ∈ Z+.

ILC design and convergence analysis

In this section, an update error sequence and an update input sequences are constructed
by using an indicator function, by utilizing which an ILC update law is developed, and
its convergence proof is accomplished by dividing the trial length into two parts.

Introduce an indicator function Ik(t), t ∈ [0, Nd]. Ik(t) = 1 if and only if the system
can run up to the time instant t at the kth iteration, and on the contrary, the function
value will be 0 when the system process ends before time instant t, that is Ik(t) =

1, t ≤ Nk for any k ∈ Z+. It should be noted that, under the influence of the non-
uniform trial lengths, for the kth iteration with a trial length of Nk, the system’s output
of time instants Nk + 1, ..., Nd are not available, which means tracking error during
this time period cannot be calculated. In light of this situation, the tracking error for
this part is considered to be zero, thus the modified tracking error of the kth iteration
can be described as

e∗k(t) =

{
ek(t), t ∈ [0, Nk] ,

0, t ∈ [Nk + 1, Nd] ,
k ∈ Z+, (4)

where ek(t) , yd(t)− yk(t) is the error between the desired trajectory of the system
and the actual output tracking trajectory. Using the previously proposed indicator
function, the above equation can also be expressed simply as e∗k(t) , Ik(t)ek(t) , t ∈
[0, Nd]. For upcoming iterations, the trial length is unpredictable, thus it is necessary
to calculate the full length input uk(t) , t ∈ [0, Nd − 1]. For this purpose, a sequence of
update errors is constructed as follows:

Ek(t) =

{
[1− Ik(t)]Ek−1(t) + e∗k(t), k ≥ 1,

ek(t), k = 0.
(5)
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k-3

k-2

k-1

k

Ek(t)

Nd=8

Figure 1. Composition of Ek(t) in Scenario 1 with Nd = 8.

It can be seen from (5) that Ek(t) is recursively generated, and uses the current
iteration’s latest information to update after every time instant’s system execution.

Remark 3. The construction of Ek(t) stores each time instant’s error generated by

the nearest iteration that have corresponding available information. In a sense, its

composition can be approximated as equivalent to a moving averaging operator in Li

and Shen (2017) with a fixed window size of 1. However, one significant difference is

that the search mechanism has been replaced by a recursive generation method, thus

there is no need to store all the information from several previous iterations, which can

reduce the storage burden on the system.

It is easy to see that the composition of Ek(t) may contain error information from
multiple iterations when the trial lengths of the system are non-uniformly distributed.
As depicted in Figure 1, the trial lengths from (k − 3)th to kth iteration are all
different, and only the (k − 3)th iteration reaches the desired trial length Nd = 9.
Hence, according to the recursion rule above, we can obtain the Ek(t) for kth iteration
as

Ek(t) =


ek(t), t ∈ [0, 3],

ek−1(t),

ek−3(t),

t ∈ [4, 5],

t ∈ [6, 8].

(6)

By utilizing the update error sequence Ek(t), there is a sufficient error information
can be used to calculate the input for the next iteration. However, it should be noted
that for any upcoming iteration, when using Ek(t) directly to update uk+1(t), all the
uk+1(t), t ∈ [0, Nd − 1] will be updated, whether they are actually put into operation
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k-3

k-2

k-1

k

Ek(t)

Nd=8

Figure 2. Composition of Ek(t) in Scenario 2 with Nd = 8.

or not. In this case, as the situation illustrated in Figure 2 occurs, since several
successive iterations do not run to the 5th and subsequent time instants, if uk+1(t) is
updated directly using uk(t) and Ek(t), the inputs at these time instants are repeatedly
updated with the same error information from (k − 3)th iteration without actually being
put into operation to obtain the new tracking error, which is obviously redundant.

To avoid such a problem, it is necessary to introduce an updated input sequence
Uk(t) with the same idea as the construction of Ek(t):

Uk(t) =

{
[1− Ik(t+ 1)]Uk−1(t) + Ik(t+ 1)uk(t), k ≥ 1,

uk(t), k = 0.
(7)

The reason why the indicator function in (7) is Ik(t+ 1) is that the input at time instant
t needs to obtain the corresponding output information for the error calculation at next
time instant t+ 1. The updated input sequence generated by such recursion stores
the most recent updated input which has its corresponding output result at each time
instant. By utilizing Ek(t) and Uk(t), a feedback-aided PD-type ILC control law is
given as follows:

uk+1(t) =Uk(t) + LtEk(t+ 1) + ΓtEk(t) +KtEk+1(t), (8)

in which t ∈ [0, Nd − 1] for all k ∈ Z+, with Lt, Γt and Kt are learning gains for the
system to be designed. The following theorem can be obtained by applying the ILC
control law (8) to the system (1).

Prepared using sagej.cls



10 Journal Title XX(X)

Theorem 1. For the discrete linear time-varying system (1), when ILC update law (8)

is applied with Assumptions 1 and 2 satisfied, if the appropriate learning gain is chosen

such that

0 < ‖I − Ct+1BtLt‖ < 1,∀t ∈ [0, Nd] , (9)

then as the number of iterations k approaches infinity, the tracking goal described in (2)

can be achieved on the time interval t ∈ [0, Nd], that is lim
k→∞

e∗k(t) = 0,∀t ∈ [0, Nd] ,

where I is a unit matrix with appropriate dimensions.

Proof. The proof of Theorem 1 is completed in two separate parts.

Part-I. Prove that Theorem 1 holds when t ∈ [0, NL]. Noticing that for all the
iteration, time instant NL is reachable, namely, Nk ≥ NL,∀k ∈ Z+. Then the errors
on that time interval are available and will be updated at each iteration. It is easy to
conclude thatEk(t) = e∗k(t) = ek(t),∀k ∈ Z+, t ∈ [0, NL]. From system (1), we have

xk(t) =

t−1∏
j=0

Aj

xk (0) +

t−1∑
j=0

(
t−j−2∏
l=0

At−1−l

)
Bjuk(j), (10)

by defining ∆uk+1(t) , uk+1(t)− uk(t) and ∆xk+1(t) , xk+1(t)− xk(t), t ∈
[0, NL], which further leads to

∆xk+1(t) =

t−1∏
j=0

Aj

∆xk+1(0)

+

t−1∑
j=0

(
t−j−2∏
l=0

At−1−l

)
Bj∆uk+1(j)

=

t−1∑
j=0

(
t−j−2∏
l=0

At−1−l

)
Bj∆uk+1(j).

(11)

where xk+1(0)− xk(0) = 0 by noticing Assumption 2. Further, from the definition of
e∗k+1(t+ 1) we can obtain

e∗
k+1

(t+ 1)

= ek+1(t+ 1)

= ek(t+ 1)− Ct+1 [xk+1(t+ 1)− xk(t+ 1)]

= ek(t+ 1)− Ct+1

t∑
j=0

(
t−j−1∏
l=0

At−l

)
Bj∆uk+1(j),

(12)
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in the formula, t ∈ ψ and ψ = [0, NL − 1]. It is easy to conclude that when t ∈ ψ,
Uk(t) = uk(t), thus according to the designed ILC control law it implies that

ek+1(t+ 1) = (I − Ct+1BtLt) ek(t+ 1)

− Ct+1

t−1∑
j=0

(
t−j−1∏
l=0

At−l

)
BjLjek(j + 1)

− Ct+1

t∑
j=0

(
t−j−1∏
l=0

At−l

)
BjΓjek(j)

− Ct+1

t∑
j=0

(
t−j−1∏
l=0

At−l

)
BjKjek+1(j).

(13)

Next, taking the norm at both ends of equation (13) yields

‖ek+1(t+ 1)‖ ≤‖I − Ct+1BtLt‖‖ek(t+ 1)‖

+ l1

t−1∑
j=0

αt−j‖ek(j + 1)‖

+ l2

t∑
j=0

αt−j+1‖ek(j)‖

+ l3

t∑
j=0

αt−j+1‖ek+1(j)‖,

(14)

in which α ≥ sup
t∈ψ
‖At‖ , l1 , sup

t∈ψ
‖Ct+1‖‖Bt‖‖Lt‖, l2 , sup

t∈ψ
‖Ct+1‖‖Bt‖‖Γt‖α−1

and l3 , sup
t∈ψ
‖Ct+1‖‖Bt‖‖Kt‖α−1 respectively. By noticing ek(0) = C0[xd(0)−

xk(0)] = 0,∀k ∈ Z+, from the above equation it can be further derived that

‖ek+1(t+ 1)‖ ≤‖I − Ct+1BtLt‖‖ek(t+ 1)‖

+ (l1 + l2)

t−1∑
j=0

αt−j‖ek(j + 1)‖

+ l3

t−1∑
j=0

αt−j‖ek+1(j + 1)‖.

(15)

Multiplying both sides of the above equation by α−λ(t+1) and taking the supremum
with respect to the time interval t ∈ ψ gives rise to

Prepared using sagej.cls



12 Journal Title XX(X)

sup
t∈ψ

α−λ(t+1)‖ek+1(t+ 1)‖

≤ ρsup
t∈ψ

α−λ(t+1)‖ek(t+ 1)‖

+ (l1 + l2)sup
t∈ψ

α−λ(t+1)
t−1∑
j=0

αt−j‖ek(j + 1)‖

+ l3sup
t∈ψ

α−λ(t+1)
t−1∑
j=0

αt−j‖ek+1(j + 1)‖,

(16)

where ρ , supt∈ψ‖I − Ct+1BtLt‖ is applied. According to the definition of λ-norm,
we can obtain

sup
t∈ψ

α−λ(t+1)
t−1∑
j=0

αt−j‖ek(j + 1)‖

= sup
t∈ψ

α−(λ−1)t
t−1∑
j=0

α−λ(j+1)‖ek(j + 1)‖α(λ−1)j

≤ ‖ek(t+ 1)||λsup
t∈ψ

α−(λ−1)t
t−1∑
j=0

α(λ−1)j

≤ ρ1‖ek(t+ 1)||λ,

(17)

where ρ1 , 1−α−(λ−1)(NL−1)

αλ−1−1
. By combining (16) and (17), it follows that

‖ek+1(t+ 1)||λ ≤ ρ0‖ek(t+ 1)||λ, (18)

where ρ0 , ρ+(l1+l2)ρ1
1−l3ρ1 . By Theorem 1, 0 < ρ < 1, so that when λ is chosen

sufficiently large, it is feasible that ρ0 < 1 with 1− l3ρ1 > 0, which implies
that lim

k→∞
‖ek(t+ 1)||λ = 0,∀t ∈ [0, NL − 1], and it can be further concluded that

lim
k→∞

ek(t) = 0,∀t ∈ [0, NL]. Meanwhile, from Ek(t) = e∗k(t) = ek(t),∀k ∈ Z+, t ∈
[0, NL], the result lim

k→∞
ek(t) = Ek(t) = e∗k(t) = 0,∀k ∈ Z+, t ∈ [0, NL] can be

easily derived, this completes the Part-I of the proof.

Part-II. Prove that Theorem 1 holds when t ∈ [NL + 1, Nd]. It has already been
proved that Theorem 1 holds when t ∈ [0, NL] in Part-I. By inductive analysis
method, assume that for any T ∈ [NL, Nd − 1], lim

k→∞
e∗k(t) = 0,∀t ∈ [0, T ] holds, thus

lim
k→∞

Ek(t) = 0,∀t ∈ [0, T ] can be obtained, now we need to prove that lim
k→∞

e∗k(t) = 0

when t = T + 1.
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Define a subset ∂(T + 1), which contains all the iterations whose trial length
Nk ≥ T + 1. Rearrange the elements of ∂(T + 1) in the order of their occurrence,
thus we have ∂(T + 1) = {ki : i ∈ Z+}. And from Assumption 1 it is clear that the
distance between ki and ki+1 is less than or equal to σ. With this subset, it is easy to
obtain

lim
k→∞

e∗k(t) = 0⇔ lim
i→∞

e∗ki(t) = 0, (19)

when t = T + 1 and

eki(T + 1) = e∗ki(T + 1) = Eki(T + 1), i ∈ Z+. (20)

By using the above equation (20) and uki+1
(t)− uki(t) is defined as ∆̄uki+1

(t), t ∈
[0, T ], we can have

e∗ki+1
(T + 1)

= e∗ki(T + 1)− CT+1

[
xki+1(T + 1)− xki(T + 1)

]
= e∗ki(T + 1)− CT+1AT

[
xki+1(T )− xki(T )

]
− CT+1BT ∆̄uki+1

(T ).

(21)

Because for all k /∈ ∂(T + 1), Ik(T + 1) = 0, this means that Uk(T ) and Ek(T + 1)

are not updated at the end of these iterations, namely, Uki+1−1(T ) = Uki(T ) =

uki(T ), Eki+1−1(T + 1) = Eki(T + 1) = e∗ki(T + 1), i ∈ Z+. According to the ILC
update law (8), one could have

∆̄uki+1
(T )

= uki+1
(T )− uki(T )

= LTEki−1(T + 1) + ΓTEki+1−1(T ) +KTEki+1(T )

= LTEki(T + 1) + ΓTEki+1−1(T ) +KTEki+1
(T ).

(22)

Then substituting (22) into (21) and defining ∆̄xki+1(t) , xki+1(t)− xki(t), t ∈
[0, T ] further yields

e∗ki+1
(T + 1)

= (I − CT+1BTLT )Eki(T + 1)− CT+1AT ∆̄xki+1
(T )

− CT+1BT [ΓTEki+1−1(T ) +KTEki+1
(T )]

= (I − CT+1BTLT )e∗ki(T + 1)− CT+1AT ∆̄xki+1(T )

− CT+1BT [ΓTEki+1−1(T ) +KTEki+1(T )],

(23)
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For ∆̄xki+1(T ), we can recursively get

∆̄xki+1(T ) =AT−1∆̄xki+1
(T − 1) +BT−1∆̄uki+1

(T − 1)

=(

T−1∏
j=0

Aj)∆̄xki+1
(0)

+

T−1∑
j=0

(

t−j−2∏
l=0

At−1−l)Bj∆̄uki+1
(j)

=

T−1∑
j=0

(

t−j−2∏
l=0

At−1−l)Bj∆̄uki+1(j),

(24)

in which ∆̄xki+1
(0) = xki+1

(0)− xki(0) = 0 according to Assumption 2.

From the generation rule for the update input sequence Uk(t) it follows that Uki(t)
will be updated only if the trial length of kith iteration Nki ≥ t+ 1. Considering
this, define a number of subsets ∂̄(t), t ∈ [0, T ] between kith and ki+1th iteration,
similarly, arrange the elements in ∂̄(t) in the order of occurrence as ∂̄(t) = {ktj : j ∈
{0, 1, ...,max}}. This means that for input uki+1

(t) of time instant t ∈ [0, T ], it will
only be updated at the end of the iterations in ∂̄(t+ 1). It is easy to conclude that kt1
and ki are the same iteration, and also that ktmax and ki+1 are the same iteration. Thus
when t ∈ [0, T ], we can have

∆̄uki+1
(t)

= uki+1
(t)− uki(t)

= ukt+1
max

(t)− ukt+1
1

(t)

= Lt

max−1∑
m=1

Ekt+1
m −1(t+ 1) + Γt

max−1∑
m=1

Ekt+1
m −1(t)

+Kt

max−1∑
m=1

Ekt+1
m −1(t).

(25)

Again, by the definition of ∂(T + 1) and ∂̄(t), it can be seen that ktj →∞ as
ki →∞, and ki →∞ as k →∞,∀t ∈ [0, T ]. As previously assumed, lim

k→∞
Ek(t) =

0,∀t ∈ [0, T ]. Meanwhile, from Assumption 1 it is clear that there are at most σ − 1

iterations between the kith and ki+1th iteration, which means for each time instant
t ∈ [0, T ], there are a finite number of elements in ∂̄(t), thus lim

i→∞
∆̄uki+1

(t) = 0 is

obtained. As a result we can ensure that lim
i→∞

∆̄xki+1
(T ) = 0.
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Based on the above, applying Lemma 1 to equation (23), we can conclude that
lim
i→∞

e∗ki(T + 1) = 0 if and only if ρ(I − CT+1BTLT ) < 1, that is, lim
k→∞

e∗k(T + 1) =

0. Meanwhile, from the definition of spectral radius, it is easy to obtain that ρ(I −
CT+1BTLT ) ≤ ‖I − CT+1BTLT ‖. Therefore, based on inductive analysis, we can
conclude that lim

k→∞
e∗k(t) = 0,∀t ∈ [NL + 1, Nd], and this completes the second part

of the proof.

Combining Part-I and Part-II of the proof, we can finally have that when under
Assumption 1 and 2, if the learning gain of the system is chosen such that 0 <

‖I − Ct+1BtLt‖ < 1,∀t ∈ [0, Nd] is satisfied, the tracking goal (2) can be achieved,
namely, lim

k→∞
e∗k(t) = 0,∀t ∈ [0, Nd]. Thus Theorem 1 is proved.

Assumption 2 is also referred to as the identical initial condition, which guarantees
the previously derived convergence properties of the system. The resetting of initial
state is one of the most important topics in the area of ILC (Park 2005). In some
practical industrial scenarios, the identical initial condition may not be maintained for
all iterations. More specifically, the initial state of the system may fluctuate in a small
bounded range around the desired initial state. In the coming section, the control law
proposed in this paper is extended to nonlinear systems, and the convergence property
is analyzed in the case that Assumption 2 is not satisfied.

Extension to nonlinear systems

Consider a class of discrete nonlinear time-varying affine systems as follows:{
xk(t+ 1) = f(xk(t), t) +Btuk(t),

yk(t) = Ctxk(t),
(26)

in which t ∈ [0, Nd], f(xk(t), t) ∈ Rn is the time-varying nonlinear function. For this
system, the following additional lemma and assumptions are given:

Lemma 2. (Sun and Wang 2001) For every k ∈ Z+, ak and bk are non-negative, a0

and b0 are bounded. Thus when lim
k→∞

bk = b∞, if 0 ≤ ρ < 1 is satisfied, the following

inequality

ak+1 = ρak + bk, k ∈ Z+, (27)

implies that lim sup
k→∞

ak ≤ b∞
1−ρ .

Assumption 3. The nonlinear function f(xk(t), t) ∈ Rn satisfies global Lipschitz

condition, which means there exist a constant kf > 0, for all t ∈ [0, Nd] and
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x1(t), x2(t) ∈ Rn,

‖f(x1(t), t)− f(x2(t), t)‖ ≤ kf‖x1(t)− x2(t)‖. (28)

Assumption 4. The initial state of the system changes in a bounded neighborhood of

the desired state at each iteration, satisfying

||xd(0)− xk(0)|| ≤ ω, ω > 0,∀k ∈ Z+. (29)

These lead to the following theorem:

Theorem 2. For the discrete nonlinear time-varying affine system (26) with ILC law

(8) applied, and Assumption 1, 3 and 4 hold, if the appropriate learning gain is chosen

such that

0 < ‖I − Ct+1BtLt‖ < 1,∀t ∈ [0, Nd], (30)

then as the number of iteration k approaches infinity, the tracking error of the system

converges to a bounded area proportional to ω, i.e.

lim
k→∞

||e∗k(t)|| ≤ ϑω,∀t ∈ [0, Nd], (31)

where ϑ is a suitable constant greater than 0.

Proof. The proof of Theorem 2 can be proved using similar steps as Theorem 1, only
noticing that the global Lipschitz condition is applied and Assumption 3 is combined
at the appropriate time to construct the inequality, recursively we have

‖xk+1(t+ 1)− xk(t+ 1)‖

≤ ‖f(xk+1(t), t)− f(xk(t), t)‖

+ ‖Bt‖‖uk+1(t)− uk(t)‖

≤ (kf )
t+1‖xk+1(0)− xk(0)‖

+

t∑
i=0

kf
t−i‖Bi‖‖∆uk+1(i)‖

≤ 2(kf )
t+1

ω + kb

t∑
i=0

kf
t−i‖∆uk+1(i)‖,

(32)
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where kb , sup
t∈ψ
‖Bt‖. With this, for the Part-I of the proof, when t ∈ ψ the equation

(12) in the proof of Theorem 1 can be rewritten into

e∗
k+1

(t+ 1)

= ek+1(t+ 1)

= ek(t+ 1)− Ct+1 [xk+1(t+ 1)− xk(t+ 1)]

= ek(t+ 1)− Ct+1 [f(xk+1(t), t)− f(xk(t), t)]

− Ct+1Bt∆uk+1(t)

= (I − Ct+1BtLt) ek(t+ 1)

− Ct+1 [f(xk+1(t), t)− f(xk(t), t)]

− Ct+1BtΓtek(t)− Ct+1BtKtek+1(t).

(33)

Then, taking the norm on both ends of the equation (33) and substituting (32)
subsequently gives rise to

‖ek+1(t+ 1)‖

≤ ‖(I − Ct+1BtLt)‖ ‖ek(t+ 1)‖

+ kf ‖Ct+1‖ ‖xk+1(t)− xk(t)‖

+ kb ‖Ct+1‖ ‖Γt‖ ‖ek(t)‖+ kb ‖Ct+1‖ ‖Kt‖ ‖ek+1(t)‖

≤ ‖(I − Ct+1BtLt)‖ ‖ek(t+ 1)‖

+ kfkb ‖Ct+1‖
t−1∑
i=0

kf
t−i−1 ‖∆uk+1(i)‖+ 2kf

tω

+ kb ‖Ct+1‖ ‖Γt‖ ‖ek(t)‖+ kb ‖Ct+1‖ ‖Kt‖ ‖ek+1(t)‖ ,

(34)

by replacing kc , sup
t∈ψ
‖Ct+1‖ which further leads to

‖ek+1(t+ 1)‖ ≤ ‖(I − Ct+1BtLt)‖ ‖ek(t+ 1)‖

+ k1

t−1∑
i=0

αt−i‖ek(i+ 1)‖

+ k2

t∑
i=0

αt−i+1‖ek(i)‖

+ k3

t∑
i=0

αt−i+1‖ek+1(i)‖+ 2kf
tω,

(35)
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where the parameters α ≥ kf , and denote k1 , sup
t∈ψ

kckb‖Lt‖ , k2 , sup
t∈ψ

kckb‖Γt‖α−1

and k3 , sup
t∈ψ

kckb‖Kt‖α−1 for simplicity.

Then by noticing Assumption 3, the equation 15 in Theorem 1 turns into

‖ek+1(t+ 1)‖ ≤ ‖I − Ct+1BtLt‖‖ek(t+ 1)‖

+ (k1 + k2)

t−1∑
i=0

αt−i‖ek(i+ 1)‖

+ k3

t−1∑
i=0

αt−i‖ek+1(i+ 1)‖+ φω,

(36)

with φ ,
[
kc(k2 + k3)αt+1 + 2kf

t
]
. Next, by applying the λ-norm technique and a

derivation procedure similar to that of Theorem 1 further yields

‖ek+1(t+ 1)||λ ≤ ρ̄0‖ek(t+ 1)||λ +
α−(λ−1)t

1− l3ρ̄1
φω. (37)

Because we only focus on system tracking performance for a finite period of time,
there can always be a constant φ̄ such that sup

t∈ψ

α−(λ−1)t

1−l3ρ̄1 φ < φ̄ , thus one could have

‖ek+1(t+ 1)||λ ≤ ρ̄0‖ek(t+ 1)||λ + φ̄ω. (38)

According to Lemma 2, (38) further implies

lim sup
k→∞

‖ek+1(t+ 1)‖λ ≤
φ̄

1− ρ̄0
ω, (39)

and this leads to

lim sup
k→∞

‖ek+1(t+ 1)‖ ≤ αλ(t+1)φ̄

1− ρ̄0
ω, t ∈ ψ, (40)

from which it is easy to obtain that the tracking error ek(t) is bounded to a region
proportional to ω while the iteration number k rises when t ∈ [0, NL]. Furthermore,
the second part of the proof can be done using the same idea as Theorem 1. Through
the utilization of Assumptions 3 and 4, the inequality that is similar to (23) and satisfies
Lemma 2 can be formed, which leads to the bounded convergence of ‖e∗k(t)‖ for
t ∈ [NL + 1, Nd] part. Combining the above obtained results, we can always find a
suitable constant ϑ such that lim supk→∞ ‖e∗k(t)‖ ≤ ϑω, thus the proof of Theorem 2
is completed.
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Simulation Results

To verify the effectiveness of the proposed ILC control law, two separate simulation
examples were performed. Firstly, Example 1 applies the proposed ILC control law to
a numerical simulation model of a linear time-varying system. The second example is
a nonlinear time-varying model of a single-joint robot system.

Example 1

Consider a discrete linear time-varying system (Shen et al. 2016b)

xk(t+ 1) =

0.2e(−t/100) −0.6 0

0 0.5 sin(t)

0 0 0.7

xk(t)

+

 0

0.3 sin(t)

1

uk(t),

yk(t) =
(

1 0.1 1 + 0.1 cos(t)
)
xk(t),

(41)

whose initial state is set as xk(0) = xd(0) =
[
0 0 0

]T
. The system’s trial length

varies between 45 and 55, which means NL = 45, Nd = 55 and Nk ∈ [45, 55]. The
desired output trajectory of the system is yk(t) = sin (2πt/50) + sin (2πt/5) , t ∈
[0, 55].

Further, apply ILC control law (8) with learning gains set as Lt = 0.5, Γt = 0.1,
Kt = 0.2, ∀t ∈ [0, Nd]. This will satisfy the requirement in Theorem 1 that 0 <

‖I − Ct+1BtLt‖ < 1, t ∈ [0, Nd]. It should be noted that this control law design
does not require the distribution probabilities of the actual trial lengths of the system
iterations, and only needs to satisfy the iteration recurrence interval σ in Assumption
1. In this example, σ is set as 20, this means that even the time instant t = 55 with a
minimum number of arrivals will be reached at least once in 20 consecutive iterations.
This requirement ensures the effectiveness of the ILC control law for the trial lengths
varying part of the system.

Setting the total iteration number of the system to 50, it can be seen from Figure 3
that the output of the system is very close to the desired trajectory by the third iteration,
and the output of 50th iteration almost coincides with the desired one.

As illustrated in Figure 4 that the tracking error of the system decreases as the
number of iterations increases and converges to zero asymptotically. In detail, the trial
length of the 3rd iteration is 45, and the 15th iteration’s trial length is 52, its error
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Figure 3. The reference signal and the output profiles of 3rd and 80th iterations.
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Figure 4. The tracking errors of 2nd, 15th and 50th iterations.
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Figure 5. The maximal tracking error along all iterations.

decreases significantly compared to the second iteration. N50 = 50, and the tracking
error within its trial length has almost converged to zero.

For comparison, the control output results using the iterative averaging operator
design and the conventional PD-type design are also depicted in Figure 5, where the
maximum tracking error is defined as maxt∈ [0, Nk]‖ek(t)‖. One could see that the
control law proposed in this paper can better track the desired trajectory with a faster
convergence speed.

As mentioned before, the analysis of convergence requires only the presence of σ
but not its specific value. However, it should be pointed out that a smaller value of σ
accelerates the convergence of the system since it implies more learning times for any
given time instant. A special case is that when σ equals 1, the non-uniform trial lengths
problem vanishes and the control of given system can be transformed into a traditional
ILC problem. To demonstrate this, the maximal tracking error along all iterations under
different values of σ is illustrated in Figure 6, from which it can be concluded that the
maximal tracking error decreases faster under a smaller value of σ.
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Figure 6. The maximal tracking error profiles under different σ.

Example 2

Consider a single-joint robot system (Wu and Chen 2010), whose dynamic model can
be represented as

JM θ̈(t) +Mgl sin(θ(t)) = τ(t), (42)

where JM = 1.33Ml2 is the momentum of inertia, θ(t) is the rotation angle of the force
arm of the single-joint robot, M = 10kg is for mass, g = 9.8m/s2 is the acceleration
of gravity, l = 2.5m is the rotation distance of the center of mass to the center of the
connecting rod, τ(t) is for acting torque. Let the sampling period of the system be 0.1,
with θ(t) = x(1)(t), θ(t+ 1) = x(2)(t) and u(t) = τ(t), then the system can be further
described as

{
x(1)(t+ 1) = x(2)(t),

x(2)(t+ 1) = −JM−1Mgl sin(x(1)(t)) +−JM−1u(t).
(43)

The output signal is y(t) = (0.4 + 0.2 sin t)x(2)(t), which means the system matrix

Bt =
[
0 0.012

]T
and Ct =

[
0 0.4 + 0.2 sin t

]
in (26). The desired tracking

trajectory of the system yd(t) = 20 + 1.5t− t2, and the desired trial length is 5.5 with
a total of 55 sampling points. The actual trial length of the system per iteration varies
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Figure 7. The reference signal and the output profiles of 3rd and 80th iterations.

between 4.5 and 5.5, that is, NL = 4.5, Nd = 5.5 and Nk ∈ [4.5, 5.5]. σ is set to 20 as
in the previous example.

According to Theorem 2, the ILC control law gains are set to Lt = 120, Γt = 25,

Kt = 20, ∀t ∈ [0, Nd], the initial state is set to xk(0) =
[
0 50

]T
with 80 total

iterations.

Similar to Example 1, in the Figure 7 it can be seen that the trial length of the 10th
iteration is 4.5, its output is close to the desired tracking trajectory, but there is still some
error. The final iteration trial length is 5.2, its output can track the desired trajectory
well, and the two almost coincide.

The tracking error given in Figure 8 shows that the output error of the system
decreases significantly as the number of iterations k increases. Like Example 1, as
can be seen in Figure 9, the proposed ILC control law is compared with the designs
using the iterative averaging operator and conventional PD-type ILC for the maximal
tracking error in [0, Nk], we can find that the proposed control law can well realize
the control of nonlinear time-varying systems and can achieve faster tracking error
convergence. To verify the effectiveness of the proposed control law under Assumption
4, the initial states of the system are set to fluctuate within 0.05% and 0.005% around
the desired state respectively. These tracking performances are worse than the case
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Figure 8. The tracking errors of 3rd, 20th and 80th iterations.

where the initial state is always equal to the desired state, but the control law still has
robust performance. As depicted in Figure 10, fluctuations in the initial state lead to
bounds on the tracking errors, and as the fluctuation increases, the error will converge
to a larger range.

Conclusion

In this paper, we construct a recursively generated update error sequence and an update
input sequence for the non-uniform trial length problem that arises when applying
ILC to discrete time-varying systems, using which a feedback-aided PD-type ILC
law is developed to achieve asymptotic tracking of the system output to the desired
trajectory. A corresponding theorem is given for the control law gain selection of
linear discrete time-varying systems, and it is proved through the combination of
contraction mapping methodology and inductive analysis approach that the design
can guarantee the asymptotic convergence of the tracking error. Furthermore, the
design is extended to nonlinear systems and the convergence property under uncertain
initial state conditions is demonstrated. Finally, the validity of the design in this
paper is verified through a numerical simulation and a single-joint robot model by
comparing with the ILC design using iterative averaging operator. For future works, the

Prepared using sagej.cls



Guan et al. 25

0 10 20 30 40 50 60 70 80

Iteration number, k

0

5

10

15

20

25

m
a

x
im

a
l 
tr

a
c
k
in

g
 e

rr
o

r

Feedback-PD-Type

Averaging Operator

PD-Type

Figure 9. The maximal tracking error along all iterations.
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construction of recursively generated higher-order error sequences will be investigated,
and more kinds of systematic uncertainties will be taken into consideration.
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