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Abstract

This paper proposes a Q-learning based fault estimation (FE) and fault toler-

ant control (FTC) scheme under iterative learning control (ILC) framework.

Due to its repetitive property of the demand on the control actuator, ILC

is sensitive to actuator faults. Moreover, unknown faults could bring uncer-

tainties to the system dynamics, which is a challenge to the control perfor-

mance. Therefore, this paper introduces Q-learning algorithm to estimate

the unknown actuator faults without need of prior knowledge for controller

reconfiguration. Then, the design of FTC adopts the norm-optimal iterative

learning control (NOILC) framework, where the controller is adjusted based

on the FE results from Q-learning in real time to counteract the influence of

faults. Finally, the simulation of a mobile robot verifies the effectiveness of

the proposed algorithm.
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1. Introduction

Iterative learning control (ILC) is an intelligent control algorithm for

systems executing repetitive task during a finite interval, whose core idea is

to modify the input signals by incorporating information from the previous

trial with the purpose of driving the system to follow the desired reference

more precisely. In recent years, ILC has been widely applied to various

control areas on account of its simplicity and high tracking performance,

typically for instance, industrial robotic systems [1], network systems [2],

batch processes [3], automotive systems [4] and clinical mechanical support

[5], etc. For comprehensive information of ILC, please refer to [6], [7] and

therein.

Due to the uncertainties and challenges in complex working conditions,

it is not practical for repetitive task systems to maintain the same system

parameters and more probability is brought to expose the system to faults.

Meanwhile, ILC schemes could be especially sensitive to faults due to the re-

peated nature of the demand on the control actuator [8], which means more

consideration should be taken into actuator faults under ILC framework. As

the modern technology becomes more sophisticated, the controlled systems

are increasingly vulnerable to faults. Fault tolerant control (FTC) aims to

maintain the safe operating of the systems with faults and mitigate the in-

fluence of the faults, in which case the minor faults can be prevented from
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developing into major problems. Therefore, although fault tolerant control

(FTC) issues arise in other field [9], approaches to FTC under the ILC frame-

work still have profound research value. At present, limited work has been

devoted to ILC schemes with actuator faults. The work in [10] proposes a

design of closed-loop ILC which shortens the control time period with the

iteration proceeding to improve the robustness of the system when actuator

faults occur. In [11, 12], reliable control, a traditional passive FTC method

is introduced to the design of ILC update law with actuator faults. How-

ever, the above works only pay attention to the reliability of the systems in

the presence of actuator faults, which motivates the design objective of this

paper to not only focus on the reliability but also raise more concerns about

the tracking performance of the systems under the ILC framework with the

existence of actuator faults.

High tracking performance is a main focus of the ILC framework, in

order to take its full advantage, there are plenty of literatures studying on

performance optimization [13]. In [14, 15], conventional optimal methods

such as gradient descent method and newton method are employed to derive

the optimal ILC update law. In [16], the general optimization form of ILC

is proposed and the controlled system is redescribed in form of super vectors

in the trial domain through lifted technique, which lays a foundation for

the following work about norm-optimal iterative learning control (NOILC)

[17, 18]. A parameter optimal iterative learning control (POILC) can perform

well in convergence speed but has a limitation of the convergence property

for the practical systems, e.g. [19]. It can be seen from the above work that

general optimal ILC requires the exact model of the controlled system. Then

3



based on the model information, the performance criterion is optimized to

complete the optimal control task. However, the existence of the unknown

faults introduces uncertainties into a definite system dynamics, which results

in the poor control performance. In addition, with the negative effect of

the faults gradually accumulating, the systems will finally deviate from the

desired control objective. Hence, the other design objective of this paper is to

compensate the uncertain change of the system dynamics caused by actuator

faults.

The key to maintaining the performance of the system with actuator

faults is to mitigate the influence of the unknown faults. Fault estimation

(FE) method can directly reconstruct the fault signals and provide power-

ful support for FTC, which can counteract the uncertainties resulting from

the unknown faults. It is a thorny issue to estimate the complicated and un-

known faults, whereas reinforcement learning (RL) provides a feasible way to

learn in an unknown environment without need for abundant prior data [20].

Regarding the unknown faults as the unknown environment, Q-learning al-

gorithm, one of the most significant advances in RL field, can be introduced

to learn and estimate the unknown faults, which takes state action func-

tion into consideration and controls the system based on temporal difference

method without need of model information [21]. In other words, Q-learning

algorithm has a relatively simple structure with no need of prior knowledge

and can provide real-time faults information for FTC. Recently, Q-learning

has been involved to estimation related work in limited study. The work

in [22], Q-learning is used for estimating the probability matrix of random

graphs. The study in [23], the secure state is estimated by Q-learning in
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cyber-physical system. These works inspire this paper to utilize the learning

ability of Q-learning to estimate the unknown faults. Then, the FE results

are used to support FTC, which is realized by adjusting the controller in real

time to accommodate to the influence of faults and maintain the performance

of the controlled systems with actuator faults.

In conclusion, this paper aims at dealing with the FE and FTC task un-

der the ILC framework for the systems with actuator faults. Q-learning al-

gorithm is employed for FE task to counteract the negative effects of faults.

The design of FTC considers the NOILC framework. This paper accom-

plishes the FTC by reconfiguring the controller based on FE results in real

time to maintain the control performance. The main contributions of this

paper are listed as follows:

(1) A scheme is developed for the FE and FTC task under the ILC frame-

work for discrete-time multi-input multi-output (MIMO) systems with

actuator faults.

(2) Q-learning algorithm is introduced to estimate the actuator faults. In the

meantime, the FE results provide supports for FTC in order to maintain

the reliability and performance of the system with actuator faults.

(3) A convergence condition of fault tolerant ILC update law is derived and

proved, which increases the theoretical reliability of the proposed scheme.

This paper is structured as follows. In Section 2, the preliminary knowl-

edge about ILC and Q-learning is introduced. In Section 3, the problem of

the fault tolerant ILC design is formulated. In Section 4, the proposed al-

gorithm is presented, which includes the design of FTC and FE. Meanwhile,

the analysis of convergence property is provided. In Section 5, a numerical
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simulation of a mobile robot is presented to verify the effectiveness of the

proposed algorithm. Finally in Section 6, the conclusions are given.

Notation: N is the set of non-negative integers. Rn denotes the set of

n-dimensional real vectors. Rn×m denotes the sets of n × m matrices.‖ · ‖

is the Euclidean norm of a vector. ln2 [a, b] denotes the space of Rn valued

Lebesgue square-summable sequences defined on an interval [a, b]. ‖ · ‖2R is

the induced norm of matrix defined in Hilbert space with weighting matrix

R. δ̂ik(t) denotes the estimated effectiveness factor of ith actuator at tth

sample time in the kth trial. A† denotes the pseudo-inverse of matrix A.

2. Preliminaries

This section first introduces the basic framework and conventional ob-

jective of ILC. Then, the main components of RL and the procedures of

Q-learning is presented.

2.1. Knowledge for ILC

Consider the state space form of a discrete-time, `-input, m-output linear

system operating on the time interval t ∈ [0, N ] asxk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

where the subscript k ∈ N denotes the trial number index. xk(t) ∈ Rn,

uk(t) ∈ R` and yk(t) ∈ Rm represent the state, input and output respectively.

Meanwhile, t is the time index with N denoting the total sample number

in a trial. The system matrices A, B and C have compatible dimensions,

and CB 6= 0 needs to be guaranteed to ensure the controllability of system.
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Without loss of generality, the state xk(t) should be reset to an identical

initial value x0 at the end of each trial.

Reformulate the system (1) into a lifted system framework in the trial

domain, i.e.,

yk = Guk + d, (2)

where the input signals uk ∈ l`2[0, N − 1] and output signals yk ∈ l`2[1, N ] are

denoted as

uk = [uTk (0), uTk (1), . . . , uTk (N − 1)]T , (3)

yk = [yTk (1), yTk (2), . . . , yTk (N)]T . (4)

The matrices G and d representing the system model and the initial state

response are denoted as

G =



CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...
...

CAN−1B CAN−2B CAN−3B · · · CB


, (5)

d = [(CA)T , (CA2)T , . . . , (CAN)T ]Tx0. (6)

The input Hilbert space l`2[0, N − 1] and the output Hilbert space l`2[1, N ]

are equipped with inner products and associated induced norms as

〈u, v〉R = uTRv, ‖u‖R =
√
〈u, u〉R, (7)

〈y, z〉Q = yTQz, ‖y‖Q =
√
〈y, y〉R, (8)

where R ∈ R Ǹ× Ǹ and Q ∈ RmN×mN are the real positive definite weighting

matrices.
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The conventional objective of ILC is to revise the input signal uk during

the repetitive task in an iterative manner. Eventually, the input uk converges

to a unique value ud. The output yk tracks on the desired reference profile

r, which means the tracking error ek converging to zero, i.e.,

lim
k→∞

uk = ud, lim
k→∞

ek = 0. (9)

The tracking error at kth trial is denoted as

ek = r − yk. (10)

In addition, based on (2), the desired output yd, which tracks on the reference

profile r, can be defined by the desired input ud as

r = yd, (11)

yd = Gud + d. (12)

Based on the lifted technique, the controlled system is redescribed in form

of super vectors in the trial domain, which simplifies the computation in

the time domain and provides more convenience for introducing the optimal

technology into the ILC framework. General optimization methods need the

exact model of the controlled system, but faults could bring uncertainties to

a definite system dynamics. Therefore, Q-learning is introduced to handle

the negative effects of faults in real time.

2.2. Knowledge for Q-learning

As is shown in Figure 1, the RL problem consists of agent, environment,

states, actions and rewards. The agent is the learner and the decision maker.

The environment is the thing interacted with the agent, which comprises
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everything outside the agent. With the interaction continuing, for each step

t ∈ 0, 1, 2, 3, . . ., the agent selects action At in the state St at t step. Then,

the agent transfers to the state St+1 and receives the reward Rt+1 from the

environment at (t+ 1) step. Finally, the agent takes actions by learning the

optimal policy to maximize the cumulative rewards or achieve other objec-

tives such as reaching the desired end point as fast as possible. RL tasks

are commonly described by the Markov Decision Process (MDP). A typical

finite MDP is represented by the quintuple (S,A, p,R, γ) , which is shown

as follows:

• S is the set of states, where the state s ∈ S and the state at t step is

denoted as St ∈ S.

• A is the set of actions, where the action selected on the basis of the

state s at t step is denoted as At ∈ A(s) .

• p is the state transition function, which is the probability of the state

s ∈ S transfering to the next state s′ ∈ S.

p(s′, r|s, a) = Pr {St+1 = s′,Rt+1 = r|St = s,At = a} (13)

where p is a deterministic function with four parameters, where p :

S ×R× S ×A → [0, 1].

• R is the reward function, the instant reward at (t+ 1) step is denoted

as Rt+1 ∈ R ⊂ R .

• γ ∈ [0, 1] is the discount factor, determining the present value of future

rewards.
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Through the quintuple, the following concepts can be represented. The

policy π determines the probability distribution of different actions. The

Q-learning algorithm aims at obtaining the optimal strategy by iteratively

updating the state-action value function Qπ(s, a), which is denoted as the

reward expectation when adopting the policy π in the state s ∈ S of taking

action a ∈ A as follows

Qπ(s, a) = E

[
∞∑
k=0

γkRt+k+1|St = s,At = a

]
. (14)

Generally, Qπ(s, a) is adopted for value evaluation. Hence, the optimal policy

is defined as π∗, which maximizes the action-value function Qπ(s, a):

π∗ = arg max
a∈A

Qπ(s, a). (15)

The objective of Q-learning is the optimal action-value function Q(St,At),

which is updated by

Q(St,At)← Q(St,At) + α
[
Rt+1 + γmax

a
Q(St, a)−Q(St,At)

]
. (16)

where α ∈ [0, 1] is the learning rate, which is usually a small scalar to en-

sure that the result does not oscillate at the expense of convergence speed.

Through Q-learning, the optimal policy π∗ can be extracted by (15) via the

optimal action-value function Q(St,At) without information of environment

or the state transition function p.

This paper regards the unknown faults as the unknown environment and

the fault estimator as the agent. Q-learning algorithm is employed to es-

timate the varying faults. In addition, the estimated fault information is

provided for designed FTC to reconfigure the controller in real time. Finally,

the performance of system with actuator faults can be guaranteed.
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3. Problem formulation

This section firstly introduces the system dynamics with actuator faults

under ILC framework. Then, the fault tolerant ILC problem definition is

given.

3.1. System dynamics with actuator faults

Faults are usually divided into actuator, sensor and component faults.

Due to its repetitive property of the demand on the control actuator, ILC is

sensitive to actuator faults. Therefore, this paper focuses on addressing the

influence of actuator faults under ILC framework. Considering the practical

operating condition, the actuator faults vary along with the time and trials.

In that case, the system with actuator faults of (1) can be defined asxk(t+ 1) = Axk(t) +Bδk(t)uk(t), xk(0) = x0,

yk(t) = Cxk(t),
(17)

where the input signal uk(t) changes into uFk (t) = δk(t)uk(t) and uFi,k(t) =

δi,k(t)uk(t), i.e.,

uFk (t) =
[
uF1,k(t), u

F
2,k(t), · · · , uFm,k(t)

]T
, (18)

which means there are some losses in the actuator driving power.

The fault matrix δk(t) represents the effectiveness factor of actuator,

which is denoted as

δk(t) = diag {δ1,k(t), δ2,k(t), . . . , δm,k(t)} (19)

and the elements inside have ranges as follows

0 6 δi 6 δi,k(t) 6 δi, i = {1, 2, · · · ,m} . (20)
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Similarly, the estimated fault mode is defined as

δ̂k(t) = diag
{
δ̂1,k(t), δ̂2,k(t), . . . , δ̂m,k(t)

}
, (21)

0 6 δi 6 δ̂i,k(t) 6 δi, i = {1, 2, · · · ,m} . (22)

The fault modes of the bound are denoted as

δ = diag {δ1, δ2, . . . , δm} , (23)

δ = diag
{
δ1, δ2, . . . , δm

}
. (24)

The minimum value and the maximum value of the above fault modes are

defined as

δmin = min
16i6m

δi, (25)

δmax = max
16i6m

δi. (26)

Note that both fault scalars δi(0 6 δi 6 1) and δi(δi > 1) are assumed to

be known, which means that the entries δi,k(t) of the fault matrix δk(t) and

the entries δ̂i,k of the fault matrix δ̂k(t) are unknown but vary in a known

range. In particular, δi = 0 represents the ith actuator completely failed.

Otherwise, δi = 1 represents the ith actuator operates normally. 0 < δi < 1

represents the residual driving power of the ith actuator under fault. δi > 1

represents the overmuch driving power of the ith actuator under fault.

Adopting the lifted technique as (2) in the trial domain, controlled system

(17) with actuator faults can be reformulated into

yk = Gδkuk + d, (27)
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where G and d are in accordance with (5) and (6), and δk is a diagonal matrix

defined as

δk =



δk(0)

δk(1)

δk(2)
. . .

δk(N − 1)


. (28)

The lifted nominal model of the lifted system (27) with estimated actuator

faults can be described as

ŷk = Gδ̂kuk + d, (29)

where the estimated δ̂k is defined as

δ̂k =



δ̂k(0)

δ̂k(1)

δ̂k(2)
. . .

δ̂k(N − 1)


. (30)

The corresponding tracking error at kth trial based on (10) and (27) is defined

as

ek = r −Gδkuk − d. (31)

The numerically computed error at kth trial using the nominal model (29)

is defined as

êk = r −Gδ̂kuk − d. (32)
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3.2. Fault tolerant ILC problem definition

The fault tolerant ILC design problem of systems with actuator faults

considering in this paper is to design an fault tolerant ILC update law

uk+1 = f(uk, ek, δ̂k, δ̂k+1) (33)

to actively be reconfigured through the estimated fault information in each

trial. Note that the estimated fault information is provided by the Q-learning

based FE process, which is described in section 4.2. With the update proce-

dure going on, the input signal uk is iteratively modified in order to enable

the output yk to maintain good tracking performance with actuator faults,

i.e.,

lim
k→∞
‖ek+1‖ 6 εe, (34)

where εe, a relatively small constant, is the upper bound of the tracking

error ek. Note that due to the existence of faults which is not taken in to

consideration by the classic ILC task, the tracking error ek can not converge

to zero. It makes sense in practical condition that the tracking error ek

obtains a bounded convergence.

Remark 1. The fault tolerant ILC strikes a balance between reliability of

fault tolerance and tracking performance of ILC, which means that the ob-

jective of the proposed scheme is to maintain relatively high tracking perfor-

mance of the controlled systems with the existence of faults. Therefore, the

design objective does not require the tracking error converging to zero. In a

sense, the tracking error only need to converge to a bounded range in order

to maintain the reliability and the tracking performance.
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4. Design of FE and FTC under ILC framework

This section firstly introduces NOILC framework to design a fault tolerant

ILC update law with the purpose of dealing with the problem in subsection

3.2. Then the specific settings of Q-learning based FE is given. Next, the

detail of the proposed scheme for FE and FTC under the ILC framework is

described. Finally, the convergence property of the proposed ILC update law

is analyzed.

4.1. Fault tolerant ILC design

To deal with the problem presented in subsection 3.2, the norm-optimal

ILC framework is considered in this paper to optimize the multi-objective

performance criterion at each trial [24]. The performance criterion is defined

as

Jk+1 ,
∥∥∥r −Gδ̂k+1uk+1 − d

∥∥∥2
Q

+ ‖uk+1 − uk‖2R , (35)

in which the performance criterion is made of two components, the numeri-

cally computed tracking error and the input change between adjacent trials.

Minimizing the tracking error aims at tracking on the reference to obtain

the essential ILC objective. Meanwhile, smoothing the input index intends

to introduce robustness into the algorithm. The symmetric positive weight-

ing matrices Q and R denote the priority of error deduction and robustness

during the optimization procedure.

The optimal control input uk+1 is derived from minimizing the perfor-

mance criterion

uk+1 = arg min
uk+1

{Jk+1} . (36)
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Theorem 1 (ILC Update Law). The solution followed from the necessary

condition of optimality (36) is given by

uk+1 = Luk+1uk + Lek+1ek, (37)

where the operators Luk+1 and Lek+1 are defined as

Luk+1 =
(
δ̂Tk+1G

TQGδ̂k+1 +R
)−1 (

δ̂Tk+1G
TQGδ̂k +R

)
, (38)

Lek+1 =
(
δ̂Tk+1G

TQGδ̂k+1 +R
)−1

δ̂Tk+1G
TQ. (39)

Proof. Based on the induced norms (7) and (8), substitute (31) into (35)

to give

Jk+1 = (uk+1 − uk)T R (uk+1 − uk)

+
(
r −Gδ̂k+1uk+1 − d

)T
Q
(
r −Gδ̂k+1uk+1 − d

)
.

(40)

Then, differentiate the performance criterion with respect to uk+1 and let

∂Jk+1/∂uk+1 = 0,which yields

R (uk+1 − uk)− δ̂Tk+1G
TQ
(
êk +Gδ̂kuk + d−Gδ̂k+1uk+1 − d

)
= 0. (41)

Merging the similar terms gives rise to(
δ̂Tk+1G

TQGδ̂k+1 +R
)
uk+1

=
(
δ̂Tk+1G

TQGδ̂k +R
)
uk + δ̂Tk+1G

TQêk.
(42)

Since the matrices δ̂k+1, G andR are positive definite,
(
δ̂Tk+1G

TQGδ̂k+1 +R
)

is invertible. After replacing the numerical computed tracking error êk with

the measured tracking error ek, the ILC update law (37) can be derived,

which completes the proof.
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The numerical computed tracking error êk depends on the estimated faults

information δ̂k and lacks real fault information δk, which will result in poor

robustness of the system. Therefore, in order to improve the robustness, the

measured tracking error ek is employed to introduce real fault information

into the ILC update law.

Remark 2. There is no strict rule for selection of the weighting matrices Q

and R. However, the effect of the choice about Q and R has been commented

in [25]. Generally, increasing the value of Q or decreasing the value of R will

increase the speed of convergence but decrease the robustness, which will be

verified by the simulation in Section 5.

4.2. FE design using Q-learning

Fault estimation aims at providing fault information δ̂k and δ̂k+1 for fault

tolerant ILC update law (37). Since the upper and lower bounds of the

fault modes are known, searching for the value of the unknown fault could

be regarded as searching for the terminal point in a grid world having fixed

range. Therefore, this paper employs the Q-learning algorithm, which is

frequently used to solve similar cases. The FE task is to estimate δk+1(t) in

kth trial at time t.

Next, the concepts presented in subsection 2.2 are successively given the

specific meaning in the FE task. In the Q-learning based FE process, assume

the agent to be the fault estimator and assume the environment E to be the

controlled system. Other Q-learning related settings are as follows:

State. Denote the state space as Snδ×nδ , where the state s ∈ Snδ×nδ , and

nδ depends on the estimation precision of δ̂i,k(t). The state can be defined
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as

s =
[
δ̂1,k(t), δ̂2,k(t), , · · · , δ̂m,k(t)

]
. (43)

Action. Denote the action space Am×m, where a ∈ Am×m. The action can

be described as

a =
[
∆δ̂1,k(t),∆δ̂2,k(t), · · · ,∆δ̂m,k(t)

]
. (44)

State transition formula. The state transition formula is followed:

s′ = s+ a

=
[
δ̂1,k(t) + ∆δ̂1,k(t), δ̂2,k(t) + ∆δ̂2,k(t), · · · , δ̂m,k(t) + ∆δ̂m,k(t)

] (45)

Policy. The policy for action selection is ε-greedy policy:

A = π(s) =


arg max

a
Q(a), if p < (1− ε)

random action, if p ≤ ε

(46)

where ε is the greedy probability. The controller has probability of ε to

randomly choose an action and has probability of (1−ε) to choose the action

returning the maximum value according to the current Q-table as (15).

Q-table. As what has been mentioned in (16), the action-value function

Qπ(s, a) is updated by

Qπ(s, a)← Qπ(s, a) + α
[
Ra
s→s′ + γ max

a′
Qπ(s′, a′)−Qπ(s, a)

]
. (47)

Reward. Aiming at accurately estimate the effectiveness factor of actuator

δk(t), design a loss function as

L =
∥∥∥xk(t+ 1)− Axk(t)−Bδ̂k(t)uk(t)

∥∥∥2 . (48)
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According to the loss function, the reward can be designed as

R =

Rc , if L 6 εL

− 1, if L > εL

(49)

where Rc = nδ × nδ is a constant related with the number of the states and

the loss function threshold εL > 0 is a small scalar representing the accuracy

of the Q-learning based estimation.

Remark 3. The advantage of the FE methods proposed in this paper is

that the Q-learning algorithm is introduced to disassemble the continually

changing fault estimation task into sub-tasks of fault values estimation at

each sample time. Therefore, the real-time support can be provided for FTC

procedure.

Remark 4. Due to the causality of time lapsing, the estimated δ̂k+1 is actu-

ally the direct approximation of δk. However the estimated δ̂k+1 can always

keep up with the change of actual δk in each trial. Therefore, the fault

tolerant ILC based on FE results can still obtain good control performance.

4.3. Algorithm description

In this subsection, the detail of the proposed scheme is described in Algo-

rithm 1 and Algorithm 2, where Algorithm 1 presents the procedure of Fault

tolerant ILC and Algorithm 2 presents the procedure of FE. In addition,

the operation procedure is illustrated in Figure 2. As is shown, in kth trial,

firstly FE is realized by estimating the effectiveness factor of actuator δk+1(t)

during sample time t ∈ [0, N − 1] through Q-learning algorithm. Then, FTC
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Algorithm 1 Fault tolerant ILC

Input: The total sample time N ; the total trial number kmax; the tracking

reference r; The system matrices A, B and C; The weighting matrices Q and

R.

1: Initialization: The initial input u0; the initial state x0; the initial esti-

mated effectiveness factor of actuator δ̂0(0).

2: Run u0 to the system (2) and obtain y0. Then, compute e0 and obtain

u1 through the designed ILC update law (37).

3: for k = 1, 2, · · · , kmax
4: for i = 1, 2, · · · , N

5: Employ Q-learning based FE Algorithm 2 to obtain δ̂k+1(i).

6: end for

7: Update the next trial input uk+1 through the designed ILC update law

(37) by the δ̂k, δ̂k+1, uk and ek.

8: Obtain the next trial output yk+1 and error ek+1.

9: end for

is accomplished by using the estimated δ̂k+1(t) to actively reconfigure the

ILC update law.

Due to the real-time adjustment to the controller, the negative effects of

faults can be counteracted and good control performance can be maintained

for systems with actuator faults.

4.4. Analysis on convergence property

In this subsection, the analysis on convergence property of ILC update

law (37) is explained. Since the faults and the estimated faults are uncertain
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Algorithm 2 FE using Q-learning

Input: The state space S, where the state s ∈ S and s =[
δ̂1,k(t), δ̂2,k(t), , · · · , δ̂m,k(t)

]
; the action space A, where the action a ∈ A

and a =
[
∆δ̂1,k(t),∆δ̂2,k(t), · · · ,∆δ̂m,k(t)

]
; the learning rate α; the discount

factor γ; the greedy probability ε; the loss function threshold εL; the state

xk and input uk.

1: Initialize Q-table and the initial state s0.

2: Choose a0 from s0 using policy ε-greedy.

3: while L > εL:

4: Take action a, obtain the corresponding R, s′.

5: Choose a′ from s′ using policy ε-greedy.

6: Update the action-value function Qπ(s, a) through (47) .

7: s← s′, a← a′.

8: end while

and they both have the upper bound and lower bound, it is not necessary

to discuss the convergence property of the FE in the analysis. Therefore,

considering the faults and the estimated faults as bounded matrices varying

with the trail k, then the convergence of the ILC update law (37) can be

analyzed. The convergence condition and the proof are given, where the

following lemma will be used in the process of proof.

Lemma 1. For any given matrix A ∈ Rm×n which satisfies

ρ(A) < 1, (50)

where ρ(A) is the spectral radius of the matrix A. Then, there exists at least
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one type of matrix norm ‖A‖S such that

lim
k→∞
‖A‖kS = 0. (51)

Proof. Please refer to Appendix A in [26] for the detailed proof.

Theorem 2 (Convergence Property). Adopt the ILC update law (37) to the

system (17) with actuator faults, Then, if the condition∥∥∥δk+1L
u
k+1δ

†
k − δk+1L

e
k+1G

∥∥∥ 6 ρ < 1 (52)

is satisfied, the norm of tracking error can obtain bounded convergence, i.e.,

lim
k→∞
‖ek+1‖ 6

buc

1− ρ
, (53)

where the positive constant bu = b ‖ud‖, c = ‖G‖. In addition, b is a positive

scalar defined as∥∥∥I − δ̂k+1L
u
k+1δ̂

†
k

∥∥∥ 6 b <
δmax
δmin

(
δ
2

max

∥∥R−1∥∥∥∥GT
∥∥ ‖Q‖ ‖G‖+ 1

)
+ 1. (54)

Proof. According to (11), (12) and (31) , the tracking error of kth trial can

be reformulated as

ek = yd − yk

= Gud + d−Gδkuk − d

= G(ud − δkuk). (55)

Define the input error ∆uk as

∆uk = ud − δkuk. (56)
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Then, (55) can be reformulated as

ek = G∆uk. (57)

Based on (56) and the ILC update law (37), the input error at (k+ 1)th trial

can be obtained as

∆uk+1 = ud − δk+1uk+1

= ud − δk+1L
u
k+1uk − δk+1L

e
k+1ek

= ud − δk+1L
u
k+1(δ

†
kud − δ

†
k∆uk)− δk+1L

e
k+1G∆uk

=
[
δk+1L

u
k+1δ

†
k − δk+1L

e
k+1G

]
∆uk +

[
I − δk+1L

u
k+1δ

†
k

]
ud. (58)

Taking forms of norm on both side of the formula, then there exists

‖∆uk+1‖ 6
∥∥∥δk+1L

u
k+1δ

†
k − δk+1L

e
k+1G

∥∥∥ ‖∆uk‖
+
∥∥∥I − δk+1L

u
k+1δ

†
k

∥∥∥ ‖ud‖ . (59)

Next, prove that
∥∥∥I − δk+1L

u
k+1δ

†
k

∥∥∥ has an upper bound. According to the

compatibility and the triangle inequality of norm, there exists an inequality∥∥∥I − δk+1L
u
k+1δ

†
k

∥∥∥ 6 ‖δk+1‖
∥∥Luk+1

∥∥∥∥∥δ†k∥∥∥+ 1. (60)

Since δk and δ̂k are diagonal matrices, the upper bound of ‖δk‖,
∥∥∥δ†k∥∥∥ and∥∥∥δ̂k∥∥∥ can be obtained

‖δk‖ 6 δmax,
∥∥∥δ†k∥∥∥ 6

1

δmin
,
∥∥∥δ̂k∥∥∥ 6 δmax. (61)

According to (38), (61), there exists

∥∥Luk+1

∥∥ =

∥∥∥∥(R−1δ̂Tk+1G
TQGδ̂k+1 + I

)−1 (
R−1δ̂Tk+1G

TQGδ̂k + I
)∥∥∥∥ . (62)
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Because the matrices R−1, δ̂k+1, G and Q are all positive and definite,

it is cleared that

∥∥∥∥(R−1δ̂Tk+1G
TQGδ̂k+1 + I

)−1∥∥∥∥ < 1 . Therefore, based on

(61), (62) can be reformulated as∥∥Luk+1

∥∥ < ∥∥∥R−1δ̂Tk+1G
TQGδ̂k + I

∥∥∥
<
∥∥R−1∥∥∥∥∥δ̂Tk+1

∥∥∥∥∥GT
∥∥ ‖Q‖ ‖G‖∥∥∥δ̂k∥∥∥+ 1

< δ
2

max

∥∥R−1∥∥∥∥GT
∥∥ ‖Q‖ ‖G‖+ 1. (63)

Substitute (61) into (60) to obtain∥∥∥I − δ̂k+1L
u
k+1δ̂

†
k

∥∥∥ < δmax
δmin

(
δ
2

max

∥∥R−1∥∥∥∥GT
∥∥ ‖Q‖ ‖G‖+ 1

)
+ 1. (64)

Then, define a positive scalar b as∥∥∥I − δ̂k+1L
u
k+1δ̂

†
k

∥∥∥ 6 b <
δmax
δmin

(
δ
2

max

∥∥R−1∥∥∥∥GT
∥∥ ‖Q‖ ‖G‖+ 1

)
+ 1. (65)

Based on (65), (59) can be represented as

‖∆uk+1‖ 6
∥∥∥δk+1L

u
k+1δ

†
k − δk+1L

e
k+1G

∥∥∥ ‖∆uk‖+ b ‖ud‖ . (66)

Define bu = b ‖ud‖. After kth trials, there exists

‖∆uk+1‖ 6
∥∥∥δk+1L

u
k+1δ

†
k − δk+1L

e
k+1G

∥∥∥k ‖∆u0‖
+

1−
∥∥∥δk+1L

u
k+1δ

†
k − δk+1L

e
k+1G

∥∥∥k
1−

∥∥∥δk+1Luk+1δ
†
k − δk+1Lek+1G

∥∥∥ bu.
(67)

Based on Lemma 1, if the condition (52) holds, it can be derived that

lim
k→∞

∥∥∥δk+1L
u
k+1δ

†
k − δk+1L

e
k+1G

∥∥∥k = 0 when the trial number k → ∞, the

norm of tracking error can be represented as

lim
k→∞

∆uk+1 6
bu

1− ρ
. (68)
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Combine (57) and (68) to give

lim
k→∞

ek+1 = lim
k→∞

G∆uk+1

6
bu ‖G‖
1− ρ

. (69)

Finally, let c = ‖G‖ to obtain

lim
k→∞

ek+1 6
buc

1− ρ
, (70)

which completes the proof.

Therefore, if the condition (52) is satisfied, the norm of tracking error

can obtain bounded convergence, which corresponds to what is mentioned in

subsection 3.2. The analysis of the convergence property provides theoretical

reliability for the proposed algorithm.

Remark 5. Due to the influence of the faults, the tracking error can not

decrease monotonically along the trials but oscillate with the varying faults

in a bounded range after the convergence of the first few trials, which can be

intuitively seen through the simulation in Section 5.

5. Simulation verification

To verify the performance of the proposed algorithm, a numerical model

of the mobile robot with two independent driving wheels is employed [27].

Decoupling and then discretizing the MIMO system with the purpose of

controlling the linear velocity v and the azimuth φ individually by the driving

voltage uv and uφ, in which way the mobile robot can make rigid move in the

absolute coordinate system o− xy. The results illustrate the effectiveness of
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the proposed algorithm and the comparisons with other algorithms implying

its advantages.

5.1. Simulation specification

The double-input and triple-output mobile robot system with two in-

dependent wheels is shown in Figure 3. Define the state variable as x =[
v φ φ̇

]T
, the input variable as u = [ur ul]

T , and the output variable as

y = [v φ]T . Then the state space model matrices are expressed as

A =


a1 0 0

0 0 1

0 0 a2

 , B =


b1 b1

0 0

b2 −b2

 , C =

1 0 0

0 1 0

 .
In addition, the a1, a2, b1 and b2 are denoted as

a1 = − 2c

Mr2 + 2Iw
, a2 = − 2cl2

Ivr2 + 2Iwl2
,

b1 =
kr

Mr2 + 2Iw
, b2 =

krl

Ivr2 + 2Iwl2
,

where the parameters inside are defined as Table 1.

The model of the mobile robot is a linear coupling system. In order to

be controlled as expectation, the system should be decoupled firstly byur
ul

 =

1 1

1 −1

uv
uφ

 , (71)

where the decoupled input variable is defined as ũ =
[
uv uφ

]T
. Meanwhile,

uv is the driving voltage to directly control the linear velocity of the robot

and uφ is also the driving power to directly control the azimuth of the robot.
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Eventually, the discrete-time state space form is defined asxk(t+ 1) = Ãxk(t) + B̃ũk(t)

yk(t) = C̃xk(t),
(72)

where the state space model matrices are derived as

Ã =


0.9975 0 0

0 1 0.0499

0 0 0.9956

 , B̃ =


0.0248 0

0 0.0037

0 0.1483

 ,

C̃ =

1 0 0

0 1 0

 .
During the discretization, consider using a zero-order holder and set the

sample time Ts as 0.01s. In the meantime, set the trial length T as 2s, i.e.,

the number of sampling points in each trial N = 40.

The ILC task is to track on the the desired linear velocity and the desired

azimuth of the robot

vd = 2 m/s, φd = πt rad, (73)

which means the desired tracking trajectory is a circle.

The partial degradation and wear during the repeated control operations

may result in faults. Therefore, considering the following actuator faults in

the simulation, in which the effectiveness factor of actuator is expressed as

δk(t) =

δ1,k
δ2,k(t)

 , (74)

where the entries inside are set as

δ1,k = 0.15sin(πk/10− π/2) + 0.7, (75)

δ2,k(t) = 0.1sin(πk/8− π/2) + 0.75 + 0.1sin(2πt), t ∈ [0, N − 1] . (76)
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and the entries inside have ranges, i.e.,

0.55 6 δi 6 δi,k(t) 6 δi 6 0.95, i = 1, 2 (77)

0.55 6 δi 6 δ̂i,k(t) 6 δi 6 0.95, i = 1, 2 (78)

In order to intuitively observe the performance of FE using Q-learning

along the time domain and trial domain at the same time, therefore set δ1,k

varying only along trials and set δ2,k(t) varying along the sample time and

trials simultaneously.

Referring to the parameters settings of FE using Q-learning, consider

the learning rate α = 0.1, the cost factor γ = 1, the ε-greedy probability

threshold ε = 0.1 and the loss function threshold εL = 10−11.

5.2. Performance of proposed algorithm

The proposed algorithm is applied to the control task specified in Section

5.1 for a total number of 30 trials with the weighting matrices as Q = I

and R = 0.001I. Figure 4 and Figure 5 respectively illustrate the desired

trajectory and the output trajectories of the linear velocity and the azimuth

at the first few trials and the final trial. Figure 6 implies the tracking proce-

dure of the mobile robot at the first few trials and the final trial. From these

figures, it is obvious that the output trajectory is rapidly tracking on the

reference at the first few trials, and nearly approaches the desired trajectory

at the final trial. Moreover, the final output can not perfectly tracking on

the desired reference because with the influence of the faults, the tracking

error will reach bounded convergence but not converge to zero, which is ac-

cordance with what is mentioned in subsection 3.2. Figure 7 and Figure 8

28



show the corresponding input signal of uv and uφ. It can be seen that the

input signals are gradually refined to achieve the tracking task.

Figure 9 and Figure 10 illustrate the mean square error of the linear

velocity and azimuth under both ordinary and logarithmic coordinates. The

tracking error of the linear velocity and the tracking error of the azimuth

monotonically reduce along the trial and then oscillate relatively smoothly

in a bound, which corresponds to what is explained in subsection 3.2 and

Remark 5. Figure 11 represents the comparison of different selection of the

weighting matrices Q and R. The mean square error of linear velocity is

taken for a example. It is clear that increasing the value of Q or decreasing

the value of R could speed up the convergence manner and improve the

performance, which is a verification of Remark 2.

Figure 12 and Figure 13 describe the mean square estimation error of δ̂1,k

and δ̂2,k(t) along trials. It is obvious to see that the estimation error can

oscillate in a small range which verifies the effectiveness of the Q-learning

based FE. The specific FE procedures along the sample time and trials are

illustrated in Figure 14 and Figure 15. From Figure 14, one can see that there

exists a delay which has a length of a trial during the estimation procedure,

as what is mentioned in Remark 4. Furthermore, Figure 15 illustrates that

at every sample time the current-trial estimated faults are consistent with

the last-trial practical faults. The delay is aroused because of the update

procedure, in which case the faults are estimated through the information of

the previous trial. The delay also results in the estimation error in Figure 12

and Figure 13.

To further elucidate the effectiveness and advantages of the proposed
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algorithm, two other algorithms are applied to this simulation task for com-

parison. One is classic P-type ILC in with a proportional gain as 0.012. The

other one is typical norm-optimal ILC, with Q = I, R = 0.001I and the ILC

update law maintain the same with the time-varying and trial-varying fault

existing. Figure 16 and Figure 17 give an illustration of the mean square

error of the linear velocity and azimuth using different methods. It can be

seen that the tracking error of three algorithms all rapidly converge at first

few trials and then oscillate in a certain accuracy. In terms of convergence

speed, the proposed algorithm is faster than norm-optimal and P-type ILC in

both linear velocity and azimuth. In terms of control precision, P-type ILC

has obviously poorer performance than norm-optimal ILC and the proposed

algorithm in both linear velocity and azimuth. Meanwhile, norm-optimal

ILC and the proposed algorithm both oscillate in a certain range after the

first few trials. However, in only a few sample times, norm-optimal ILC has

a little smaller tracking error than the proposed algorithm. In majority of

sample times, the proposed algorithm has obviously better performance in

tracking error than the norm-optimal ILC. The improvement in convergence

speed and control precision is attributed to that the algorithm estimates the

fault and reconfigured the ILC update law in real time, which in a sense

plays a role in adaptively controlling the system with time-varying and trail-

varying faults. With the combination of FE and FTC, the reliability and the

performance of the systems with actuator faults can be maintained. Conse-

quently, the effectiveness and the advantages of the proposed algorithm can

be verified.
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6. Conclusions

This paper proposed a scheme for Q-learning based FE and FTC under

the ILC framework. During the control procedure, Q-learning is introduced

for FE and controller reconfiguration. The design of FTC employed the

NOILC framework, where the controller is configured in real time based on

the FE results from Q-learning to counteract the system dynamic uncertain-

ties brought by faults. Moreover, this paper gave the analysis on convergence

property to enhance the theoretical reliability. In the meantime, the proposed

algorithm verified its effectiveness and advantages through a mobile robot nu-

merical simulation by comparison with two other algorithms, which makes

an improvement on the convergence speed and control precision.

Future will be concerned with verifying the effectiveness of the proposed

algorithm with practical experiment. In addition, the design of fault tolerant

ILC for nonlinear system with faults could attempt to be solved by RL.
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Table 1: The specific definition of the system parameters.

variable definition value

Iv moment of inertia around the robot 10 kgm2

M mass of the robot 200 kg

l distances between left or right wheel 0.3 m

Iw moment of inertia of the robot 0.005 kgm2

c viscous friction factor 0.05 kgm2/s

r radius of wheel 0.1 m

k driving gain factor 5

Agent

Environment


Figure 1: The interaction of agent and environment.
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Active Fault Tolerant Control

Figure 2: A scheme for FE and FTC under the ILC framework.

37



Right wheel

Left wheel

xo

y

Figure 3: A mobile robot with two independent wheels.
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Figure 4: Output signals of linear velocity at the first few trials and the final trial.
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Figure 5: Output signals of azimuth at the first few trials and the final trial.
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Figure 6: Tracking trajectory of the mobile robot at the first few trials and the final trial.
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Figure 7: Input signals of linear velocity at the first few trials and the final trial.

0 0.5 1 1.5 2
Time (s)

-10

0

10

20

30

40

u
,k

 (
V

)

u
,1

u
,3

u
,9

u
,30

Figure 8: Input signals of azimuth at the first few trials and the final trial.
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Figure 10: Mean square error of azimuth under both ordinary and logarithm coordinates.
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Figure 13: Mean square estimation error of δ̂2,k(t) along the trials.
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Figure 14: the comparison between the estimated δ̂1,k and the practical fault δ1,k.
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Figure 16: Mean square error of linear velocity using different methods.
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Figure 17: Mean square error of azimuth using different methods.
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