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A b s t r a c t  

Recently conducted studies have shown that significant benefits are to be gained by joining steel beams and timber 

slabs. Steel-timber composite beams present a sustainable solution for the construction industry because of their 

high strength and stiffness, and lower carbon footprint and self-weight than steel-concrete composite beams. The 

behaviour of steel-timber composite beams is still being investigated to reduce knowledge gaps. This paper 

presents theoretical and numerical analyses of steel-timber composite beams consisting of steel girders and 

laminated veneer lumber slabs. The elastic and plastic resistance to bending were estimated analytically based on 

the elastic analysis and the rigid-plastic theory. The impact of the composite action, the LVL slab thickness, the 

cross-section of a steel girder and the steel grade on resistance to bending was evaluated. The load-deflection curve 

of the composite beam was obtained using a 2D finite element model, in which timber failure was captured using 

the Hashin damage model. The results of the numerical simulation were in good agreement with the ones of the 

theoretical analyses. 
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1. INTRODUCTION 

Sustainable construction is an important trend in civil engineering. New solutions using renewable, 

green building materials with a low embodied carbon footprint are preferred [1]. Buildings with timber 

structural elements store carbon for decades and reduce dependence on non-renewable materials [2]. 

For this reason, timber – one of the oldest building materials – is still used in structures. Thanks to 

engineering wood products such as laminated veneer lumber (LVL), new applications for timber are 

developed. The benefits of engineering wood products include decreased impact of imperfections, more 

homogenous mechanical properties, increased dimensional stability, greater durability and development 

of bigger structural elements [3, 4]. LVL consists of several glued softwood veneers about 3 mm thick 

[5]. In Poland, LVL is made from pine and spruce [6]. Defects in LVL are evenly distributed because 
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knots are limited to a single sheet of veneer [7]. In the case of LVL production, wood resources are used 

efficiently. LVL slabs and beams can be obtained from trees of relatively small diameters thanks to 

using the rotary peeling method. LVL beams can be easily and quickly reinforced with carbon fibre-

reinforced polymer sheets [8]. LVL is used in floor structures, roof diaphragms and overhangs, lintels, 

building walls and I-beam flanges [6, 9–12]. One of the relatively new applications for LVL are steel-

timber composite beams. Steel and timber can be used effectively in structural elements. Steel 

connectors have long been used to join timber elements. However, not only steel connectors can be used 

with timber. Ganowicz and Plenzler used 6 and 8 mm steel bars in their tests to reinforce the tensioned 

parts of the timber beams [13, 14]. Based on the results of these tests, in 1977, timber purlins reinforced 

with steel bars were used in a hall roof in Poznań. Jasieńko used epoxy resin, steel plates and bars to 

reinforce timber beams [15–18] (Fig. 1). Rapp elaborated and used in practice adhesive finger timber 

joints reinforced with steel plates [19].  

 

 
Fig. 1. Timber reinforced beams tested by Jasieńko [15–18] 

In the above solutions steel elements were only used as reinforcement of timber beams. However, steel 

and timber can also be used in a single composite member. A composite structural beam is composed 

of minimum two parts. The parts are made of materials of different properties and they are permanently 

connected [20]. The components are connected using shear connections, which play a crucial role and 

transfer the longitudinal shear force in composite beams [21]. Thanks this combination, multiple benefits 

can be gained, e.g., reduced weight, better material efficiency [22]. Composite beams have a higher 

load-bearing capacity and stiffness than non-composite elements [23]. For this reasons, it is possible to 

reduce deflections and use a lower cross-section [24]. Furthermore, slabs increase the local and lateral 

stability of the girders [25]. In 1984, the project of a steel-wood composite bridge was demonstrated at 

the 12th IABSE Congress in Canada [26]. The bridge was completed in 1993 and the results of its field 

tests were presented by Bakht and Krisciunas [27]. It consisted of a post-tensioned laminated wood 

deck, welded plate steel girders and steel cross-frames. The composite action was achieved through the 

shear bulkheads, i.e., shear studs installed on the girder flanges and located in large holes drilled in the 

slab and filled with expansive concrete (Fig. 2). 
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Steel-timber composite structures have several important performance characteristics which make them 

sustainable: small self-weight, high strength to weight ratio, fast assembly, low environmental impact, 

and possibility of demounting and recycling elements at the end of their service life. Full-dry systems 

make it possible to speed up the assembly process of such structures. The use of timber results in reduced 

carbon footprint. LVL (8 × 10−6 1/°C [28]) and steel (12 × 10−6 1/°C [29]) have similar thermal expansion 

coefficients; therefore, temperature change will not cause stress at the interlayer. Timber slabs have a 

lower self-weight than slabs made of concrete used in steel-concrete composite beams. For this reason, 

the use of timber reduces not only the dead load of the structure, but also seismic forces. 

 

 
Fig. 2. Shear connections used in the first steel-timber composite bridge [27] 

However, there are some disadvantages to using steel-timber composite structures. The first one is the 

low fire resistance of steel-timber composite elements. This, however, can be remediated by using fire 

protective materials [30]. Steel girders can be encased by timber elements [31]. Alternatively, fire 

resistance can be improved by using stainless steel, which loses strength at fire slower than carbon steel 

[32]. Despite the fact that many analyses have been conducted on steel and timber composite structures, 

no standards for designing such structures have been developed. However, in 2022, Design Guide 37 

was published, and it contained a multi-disciplinary review of hybrid steel-timber structures [33]. 

Another disadvantage of steel-timber structures results from the fact that corrosion of steel girders can 

cause structural failure. For this reason, steel girders should be protected against it. Stainless steel or 
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aluminium alloys may also be used instead of carbon steel [34, 35]. The use of stainless steel can provide 

for a durable solution. Stainless steel is more expensive than carbon steel but has low maintenance costs. 

What is more, stainless steel exhibits superior stiffness and strength retention at high temperatures and 

greater thermal expansion than carbon steel [36–38]. Last but not the least, it is impossible to achieve 

full shear interaction, since connections used in steel-timber structures are flexible and slip occurs at the 

interface [39]. However, it is possible to obtain a steel-timber beam with full shear connection, in which 

the number of the shear connectors is such that the load-bearing capacity of the beam is controlled by 

the flexural capacity of the steel-timber composite beam, and not by the shear capacity of the 

connections. Steel-timber composite beams have many applications. They can be used in prefabricated 

buildings, bridges and footbridges. They can also be used in multi-story buildings at seismic areas due 

to their light weight, which reduces the seismic forces [40, 41]. Furthermore, they can be applied in 

rehabilitation work. Existing timber ceilings and bridges can be reinforced with steel structural elements. 

Both beams and columns can be developed as steel-timber composite elements. A sustainable steel-

timber composite beam consists of a steel girder and a timber panel. Steel girders in steel-timber 

composite beams can be made of hot-rolled, welded or cold-formed steel beams (Fig. 3). 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3. Steel-timber composite beams with: (a) a cold-formed girder [42]; (b) a hot-rolled girder [43]; 

(c) a welded girder [44] 

The use of thin-walled steel structures reduces steel consumption [45]. Cold-formed steel beams are 

light, which results in lower transportation costs and faster construction of buildings. However, thin-

walled structures are at risk of buckling and when they are designed, stability problems should be taken 

into account [46]. It is possible to improve the structural performance and the load-carrying capacity of 

cold-formed steel elements by combining them with the structural elements made of timber. Derlatka 

developed a steel-oriented strand board composite beam consisting of steel thin walled plates and 

oriented strand boards [47]. Awaludin et al. attached timber laminated elements to the webs of cold-

formed steel beams using screws (Fig. 4) [48]. Composite steel-timber and reference steel beams were 

subjected to compression tests. Elements of five different lengths were analysed, i.e., 200 mm, 300 mm, 

600 mm, 900 mm, and 1200 mm. The load-carrying capacity of the cold-formed steel beams increased 
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1.4−6.7 times after they had been joined with timber elements. The lowest increase in the load-bearing 

capacity was observed in the longest elements. 

 

 
Fig. 4. Composite steel-timber elements tested by Awaludin et al. [48] 

Attaching timber elements to the webs of cold-formed steel beams is not the only possible solution. 

Wood-based particle boards were connected with cold-formed steel joists by Kyvelou et al. The results 

of numerical tests showed that the flexural capacity of the analysed composite element increased by 

140% and its stiffness increased by 40% [42]. Timber slabs can be made of cross laminated timber 

(CLT), laminated veneer lumber (LVL) or wood-based particle boards. There are several types of shear 

connectors used in steel-timber composite structures, i.e., screws, bolts, screws with epoxy adhesive, 

bolts embedded in grout, bolt-in-tube connections, screws surrounded by outer fittings (Fig. 5) [49–57]. 

bolts 

 

screws 

 

self-drilling screws 
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bolts embedded in 

grout 

 

mortar-timber and 

epoxy-timber hybrid 

anchored screws 

 

steel perforated plates 

and epoxy-based resin 

poured into cavities in 

CLT panels  

 

bolt-in-tube 

connections 

 

Fig. 5. Shear connections used in steel-timber composite beams [50–57] 

The recently conducted studies have not eliminated all knowledge gaps. Design provisions are still 

lacking [58]. New and innovative solutions require a significant amount of research to demonstrate that 

all requirements for construction industry can be met [59]. For this reason, the behaviour of sustainable 

steel-timber composite elements is still being investigated. In this paper, the results of theoretical 

analyses and a numerical simulation of a steel-timber composite beam were compared. Based on the 

theoretical and numerical analyses, the increase in the load-carrying capacity and stiffness of a steel 

girder after connecting it with an LVL slab were evaluated. The numerical model can be used in future 

numerical analyses, such as parametric studies. 
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2. THEORETICAL ANALYSES 

2.1. Theoretical models 

The theoretical analyses were based on a few assumptions. It was assumed that the beams acted as 

monolithic beams (full shear interaction). This assumption is difficult to achieve in regular beams 

because the longitudinal slip between the beam components cannot be completely eliminated, since 

connectors always undergo deformation. However, the slip can be reduced by using an epoxy adhesive 

in connections and a higher number of connectors [43]. Secondly, it was assumed that the analysed steel-

timber beams were with full shear connections. It means that the number of the employed connectors 

was such that the load-bearing capacity of the beams was controlled by the flexural capacity of the steel-

timber beams and not by the shear capacity of their connections. Yet another assumption referred to 

timber. The timber subjected to tension in the slab was taken into account in the flexural capacity 

calculations. In the case of steel-concrete composite beams, the concrete subjected to tension was not 

taken into account [60]. The LVL tension strength (parallel to grain) was only 1.11 times lover than the 

LVL compression strength (parallel to grain) [6]. For this reason, the impact of the timber subjected to 

tension on the flexural capacity was taken into account. In the calculations of the plastic resistance 

moment of the composite cross-sections, the effective area of the LVL in compression resisted a stress 

equal to the LVL compression strength (parallel to grain), constant over the whole depth between the 

plastic neutral axis and the most compressed fibre of the LVL. The effective area of the LVL in tension 

resisted a stress equal to the LVL tension strength (parallel to grain), constant over the whole depth 

between the plastic neutral axis and the most tensioned fibre of the LVL. The models used to calculate 

the elastic and the plastic resistance to bending of the steel-timber composite beams are presented in 

Figs. 6 and 7. 

 

(a) 

 
(b) 

 
Fig. 6. The model used to calculate the elastic resistance to bending of the steel-timber composite beams: (a) the 

elastic neutral axis is in the timber slab; (b) the elastic neutral axis lies within the steel section 
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(a) 

 
(b) 

 
(c) 

 
Fig. 7. The model used to calculate the plastic resistance to bending of the steel-timber composite beams: (a) the 

plastic neutral axis is in the timber slab; (b) the plastic neutral axis lies within the web of the steel beam; (c) the 

plastic neutral axis lies within the flange of the steel beam 

2.2. The impact of composite action on resistance to bending 

A 4-metre simple supported girder (IPE 100) made of S235 steel was connected with an LVL slab to 

evaluate the impact of composite action [61]. The effective width of the slab was 1000 mm and its 

thickness was 75 mm. The design lateral torsional buckling resistance moment of a laterally unrestrained 

girder Mb,Rd was 4.27 kNm. The moment capacity of the bare steel section Mc,Rd was 9.26 kNm. The 

design elastic and plastic resistance to bending of the steel-timber composite beam are presented in 

Tables 1 and 2. 

Table 1. The design elastic resistance to bending of the steel-timber composite beam 

Parameter Value 

Modular ratio n [–] 15.0 

Ideal slab width b [mm] 66.7 

Location of the neutral axis xel [mm] 48.6 

Second moment of area Iy [cm4] 1068.2   

Design compressive strength of LVL (parallel to grain) fcd [MPa] 26.7  

Design yield strength of steel fyd [MPa] 235.0 

Design elastic bending resistance Mc,el,Rd [kNm] 19.86 
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Table 2. The design plastic resistance to bending of the steel-timber composite beam  

Parameter Value 

Location of the plastic axis xpl [mm] 40.3 

Design tensile strength of LVL (parallel to grain) ftd [MPa] 24.0  

Design plastic bending resistance Mc,pl,Rd [kNm] 56.61 

 

The design plastic moment resistance of the beam section increased from 9.26 kNm to 56.61 kNm (6.1 

times) after the steel girder was connected with the LVL slab (Fig. 8). In the case of the laterally 

unrestrained steel girder, the increase in the load-bearing capacity was higher because the cooperation 

of the steel girder with the LVL slab eliminates the problem of lateral-torsional buckling in simply 

supported beams. The load-bearing capacity of the laterally unrestrained steel girder increased from 

4.27 kNm to 56.61 kNm. 

 

 
Fig. 8. The design resistance to bending of the steel girder and the steel-timber composite beam 

2.3. The impact of LVL slab thickness on resistance to bending 

The increase in the LVL slab thickness provided for the increase in the bending resistance (Fig. 9).  

 

 
Fig. 9. The impact of the LVL slab thickness on the design resistance to bending of the steel-timber composite 

beam 
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In the case of elastic bending resistance, the increase was linear, whereas in the case of plastic bending 

resistance, exponential growth was observed. The markers represent the results for the analysed LVL 

slab thickness [6]. 

2.4. The impact of the steel girder cross-section 

Using a larger cross-section provided for the increase in the bending resistance (Fig. 10). In the case of 

elastic bending resistance, the bending resistance growth was linear, whereas in the case of plastic 

bending resistance, it was exponential. The markers represent the IPE cross-sections. 

 

 
Fig. 10. The impact of the steel girder cross-section on the design resistance to bending of the steel-timber 

composite beam 

2.5. The impact of the steel grade 

The steel grade had an impact on the bending resistance (Fig. 11).  

 

 
Fig. 11. The impact of the steel grade on the design resistance to bending of the steel-timber composite beam 

with an IPE 100 girder 
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The increase in the yield strength of the steel provided for the increase in the bending resistance. The 

changing of both the cross-section and the steel grade had a strong impact on the plastic bending 

resistance of the steel-timber composite beam (Fig. 12). 

 

 
Fig. 12. The impact of the steel girder cross-section and the steel grade on the design resistance to bending of the 

steel-timber composite beam 

2.6. Worked example 

The authors analysed two steel-timber composite beams differing in girder material. Each beam was 

2.7 m long and consisted of a steel girder (IPE 140) and an LVL slab (75 mm × 370 mm). In the first 

beam, the girder was made of S355 steel, whereas in the second it was made of 1.4547 stainless steel. 

The characteristic yield strength of 1.4547 stainless steel (300 MPa) is comparable to that of S355 steel 

(355 MPa). 1.4547 stainless steel is more expensive than S355 steel. However, it provides for low 

maintenance costs and increases durability. Furthermore, austenitic stainless steel exhibits higher 

strength at high temperatures (> 550ºC) than carbon steel [62]. The elastic and the plastic resistance to 

bending of the steel-timber composite beams was calculated (Figs. 13 and 14, Tables 3 and 4). In these 

analyses, the characteristic parameters of the materials were used. The results of the analysis of the 

composite beam with the S355 girder were later compared with the results of the numerical simulation 

presented in Chapter 3. 
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Fig. 13. The model used to calculate the elastic resistance to bending of the steel-timber composite beams 

Table 3. The characteristic elastic resistance to bending of the steel-timber composite beams 

Parameter S355 1.4547 

Modular ratio n [–] 15.0 13.9 

Ideal slab width b [mm] 24.7 26.6 

Location of the neutral axis xel [mm] 87.5 85.6 

Second moment of area Iy [cm4] 1632.5 1674.0 

Characteristic compressive strength of LVL (parallel to grain) fck [MPa] 40.0 40.0 

Characteristic yield strength of steel fyk [MPa] 355.0 300 

Characteristic elastic bending resistance Mc,el,Rk [kNm] 45.4 38.8 

 

 
Fig. 14. The model used to calculate the plastic resistance to bending of the steel-timber composite beams 

Table 4. The characteristic plastic resistance to bending of the steel-timber composite beams 

Parameter S355 1.4547 

Location of the plastic axis xpl [mm] 56.2 53.0 

Characteristic tensile strength of LVL (parallel to grain) ftk [MPa] 36.0  36.0 

Characteristic plastic bending resistance Mc,pl,Rk [kNm] 77.4 69.3 
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3. NUMERICAL ANALYSIS 

3.1. Numerical model 

The Abaqus program, which has been widely used for the analysis of composite beams [63–66], was 

chosen for the conducted numerical analysis. A 2D numerical model of the steel-timber composite beam 

consisted of a steel beam with stiffeners, an LVL slab, steel loading and support plates (Fig. 15). A four-

point bending test was simulated (Fig. 16). 

 

 
Fig. 15. The numerical model of the steel-timber composite beam: 1 – loading steel plates located on the LVL 

slab, 2 – support plate, 3 – stiffener, 4 – girder flanges, 5 – girder web 

 

 
Fig. 16. The composite beam in the four point bending test 

 
The behaviour of numerical models of composite beams depends, among others, on shear connection 

modelling and material characteristics. In this study, it was assumed that the analysed beam was a full 

composite beam. Full composite action was modelled by tying the contact surface between the girder 

flange and the LVL slab. The continuous “tie” type contact can be used to model full composite action 

[67]. The numerical analysis used the same assumptions as the theoretical analyses. However, full shear 

interaction is difficult to achieve because connections for steel-timber composite beams are flexible. For 

this reason, future studies should focus on the impact of the slip between the steel girder and the LVL 
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panel on the ultimate load and stiffness of steel-timber composite beams. The steel was described as 

a linear hardening material (fy = 235 MPa, E = 210 GPa, fu = 490 MPa). The LVL was modelled as an 

orthotropic material with a failure model. The Hashin damage model was used to capture the failure of 

LVL. The material parameters were based on the material tests and the numerical simulations of the 

LVL slabs [5] (Table 5). 4-node bilinear plane stress quadrilateral elements with reduced integration 

and hourglass control (CPS4R) were used to model all members. The maximum mesh size was 10 mm 

and the total number of finite elements was 7057 (Fig. 17). 

 

Table 5. The properties of the LVL modelled as an orthotropic material with the Hashin damage model, based on 

[5] (1 – parallel to the laminated veneer lumber grain) 

Elastic orthotropic material (lamina) 

E1 

[MPa] 

E2 

[MPa] 

ν12 

[–] 

G12 

[MPa] 

G13 

[MPa] 

G23 

[MPa] 

16 000 430 0.48 600 600 96 

Hashin damage model 

σt1 

[MPa] 

σc1 

[MPa] 

σt2 

[MPa] 

σc2 

[MPa] 

σv12 

[MPa] 

σv23 

[MPa] 

41.9 50.3 10 15 10 5 

Longitudinal 

tensile 

fracture 

energy 

[kJ/m2] 

Longitudinal 

compressive 

fracture 

energy 

[kJ/m2] 

Transverse 

tensile 

fracture 

energy  

[kJ/m2] 

Transverse 

compressive 

fracture 

energy 

[kJ/m2] 

Viscosity 

coefficient 

 

45 45 0.1 0.1 1.0 × 10-6  

 

 
Fig. 17. The mesh used in the numerical simulation 

 
The chosen point for the measurement of the deflection, the boundary conditions and the points were 

the displacement in y direction was set are presented in Fig. 18. The calculations were done using the 

Newton-Raphson method. Surface-to-surface “hard” contact and friction were defined between the steel 

plates and the LVL slab, and between the support plates and the steel beam. The friction coefficient was 

assumed as 0.3 [68]. The stiffeners were tied to the girder web and flanges and the flanges were tied to 

the girder web. 
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Fig. 18. The measure point and the boundary conditions: 1 – displacement in x and y directions (fixed), 2 – 

displacement in y direction (fixed), 3 – displacement in y direction 

3.2. Results of the numerical analysis 

Figure 19 summarises the results of the finite element analysis and presents a comparison between the 

values of resistance to bending of the steel-timber beam obtained in the theoretical and numerical 

investigations. In Figure 19, M–u (FEA) represents the moment versus deflection curve from the 

numerical simulation, Mel,Rk,T stands for theoretical elastic bending resistance, Mpl,Rk,T stands for 

theoretical plastic bending resistance, and Mc,Rk,T represents the flexural capacity of the bare steel section. 

 

 
Fig. 19. The moment versus deflection from the numerical simulation and the comparison between the values of 

resistance to bending of the steel-timber beam obtained in the theoretical and numerical investigations 

The elastic bending resistance was obtained in the numerical model when the steel achieved its yield 

strength at the bottom girder flange (Fig. 20). 
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Fig. 20. The yield strength achieved at the bottom girder flange (M = 46.4 kNm) 

 

The elastic bending resistance from the theoretical analysis (45.4 kNm) was 2.2% lower than the one 

from the numerical calculation (46.4 kNm). The load-bearing capacity of the steel-timber beam in the 

numerical analysis was achieved when a peak on the moment-deflection curve was observed. The plastic 

bending resistance from the theoretical analysis (77.4 kNm) was 3.1% higher than the one from the 

numerical calculation (75.0 kNm). The plastic moment resistance of the beam section increased 2.4 

times after the steel girder was connected with the LVL slab. Due to the fact that the Hashin damage 

model was used in the numerical analysis, it was possible to observe the damage initiation in the LVL 

panel. HSNFCCRT is the fibre compressive initiation criterion and HSNFTCRT is the fibre tensile 

initiation criterion (Fig. 21) [69, 70]. At the ultimate moment (M = 75.0 kNm), the yield strength was 

achieved in the whole cross-section of the steel girder (Fig. 22). 

 

(a) 

 
(b) 

 
Fig. 21. Damage initiation areas: (a) due to the compression (M = 75.0 kNm); (b) due to the tension 

(M = 75.0 kNm) 
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Fig. 22. The yield strength achieved in the whole cross-section of the girder (M = 75.0 kNm) 

4. CONCLUSIONS 

In this paper, steel-timber composite beams with LVL slabs were analysed. Engineering wood products, 

e.g., laminated veneer lumber, have reintroduced wood as a viable material for complex structures. It is 

possible to replace slabs made of non-renewable concrete with slabs made of renewable and eco-friendly 

LVL. The significant advantages of using LVL in conjunction with steel were demonstrated. Composite 

action provided for increased bending resistance. The design plastic moment resistance of the beam 

section increased 6.1 times after the steel girder was connected to the LVL slab. In the case of the steel-

timber composite beam with the slab narrower than the effective width, the plastic moment resistance 

of the beam section increased 2.4 times. The increase in the LVL slab thickness, the cross-section of the 

steel girder, and the yield strength of the steel provided for the increase in the bending resistance. The 

elastic and plastic resistance to bending estimated analytically and obtained in a numerical simulation 

were compared, yielding similar results. However, only the beams with full shear interaction and full 

shear connection were analysed and only theoretical and numerical analyses were conducted. 

Connections in steel-timber composite beams are flexible and the impact of slipping on the stiffness and 

the load bearing capacity of steel-timber composite beams should be investigated in future studies. 

Laboratory tests are recommended, and their results should be weighed against the results of theoretical 

and numerical analyses. Last but not the least, the effects of the degree of shear connection should also 

be investigated. 
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