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An incompressible unsteady free convective viscous MHD rotating flow past a moving plate embedded in a porous 
medium is considered with the influence of viscous dissipation, heat source effects. It is assumed that the flow rotates 
with angular velocity which is normal to the plate and also that a transverse magnetic field is applied along the normal 
to the plate. Appropriate dimensionless quantities are applied to change the governing equations into dimensionless 
form. Then the equations are solved numerically using the Galerkin finite element method. Some important 
characteristics of the fluid are studied. The results are in good agreement with the available literature. 
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1. Introduction 

 
 Solutal and thermal forces acting on a fluid in a porous medium have been investigated by many 
authors. They were considered in a rotating system. In this rotating system two forces are produced. Those are 
viscous force and Coriolis force at the end points. In some investigations, viscous dissipation is neglected with 
the usual circumstances. 
 Effects of viscous dissipation on micropolar fluids were investigated by Khonsari et al. [1]. The 
problem generated with the both primary and secondary flow which causes a rotation was described in Iynger 
et al. [2]. In the heat transfer phenomena the impact of viscous dissipation has an important role. In particular, 
viscous flows are regardless of mild velocities. Here the viscous dissipation transforms the kinetic energy to 
inner energy and because of this fluid motion increases. Different devices are designed in streambeds to 
decrease the kinetic energy of flow of water. Muthucumaraswamy et al. [3] discussed the consequences of 
MHD flow with rotation beyond an elevated isothermal plate. Muthucumaraswamy et al. [4] discussed a fluid 
rotating on a vertical plate. It was found that with time the temperature and concentration increase and that 
velocity increases with a reduction in radiation. Kendoush [5] studied the effect on magneto-hydrodynamic 
flow past an exponentially accelerated plate. The effect of radiation on an MHD flow is important in 
manufacturing processes like steel rolling, casting, the design of fins and elevations. Kishore et al. [6] 
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discussed the importance of various effects of a free convection magneto hydrodynamic unsteady flow past a 
vertical plate. The viscous dissipation leads to temperature decrease. Muthucumaraswamy et al. [7] 
investigated transverse velocity. Ananda Reddy et al. [8] discussed the rotating fluid with ramped wall 
temperature. It is observed that the temperature and velocity are lower at the ramped temperature plate than 
the isothermal plate. Hussain et al. [9] discussed the effects of heat absorption, Hall current and chemical 
reaction. Prabhakar Reddy [10] studied the radiation and thermal diffusion of a hydro-magnetic free convection 
unsteady flow of a rotating fluid past an infinite vertical flat plate with heat absorption.  
 
2. Mathematical model 
 
 Consider an unsteady MHD flow of a conducting fluid past an infinite vertical plate embedded in a 
porous medium in a rotating system. Here, the flow is three dimensional because of the Hall current. The flow 
is assumed along the 'x -axis. Here, the 'z - axis is perpendicular to the plate. A transverse magnetic field is 
applied parallel to the 'z - axis. Here we assume a rotating system along the 'z -axis with angular velocity in 
an anticlockwise direction. At 't 0≤ the fluid and the plate are at rest and uniform temperature 'T∞ . Let the 

vector component of the velocity be ( )' ', ,u v 0  along the 'y axis and 'x  axis. At time 't 0> , the plate starts 

moving along the 'x  direction with a velocity '
0u u=  in its own plane. Now the temperature is raised to a 

uniform temperature '
wT  and concentration is raised to a uniform concentration '

wC . It is assumed that the plate 

is infinite in extent, hence all physical quantities depend only on 'z and 't .Under these assumptions the 
equations that govern the flow are given: 
 

 
 

Fig.1. Flow geometry and coordinate system. 
 
Equation of momentum: 
 

  ( ) ( )
' ' ' ' '

' ' ' ' * ' '
' '

2 22
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Kt z 1 m∞ ∞

 σ μ∂ ∂ + υ= υ + β − − + Ω + β − −   ρ∂ ∂ + 
, (2.1) 
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. (2.2) 
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Equation of energy: 
 

  ( )
' ' '

' '
' ' ' '

22
0r

2
p p p p

QqT k T 1 uT T
c c c ct z z z∞

 ∂∂ ∂ μ ∂= − − − +   ρ ρ ρ ρ∂ ∂ ∂ ∂ 
. (2.3) 

 
Equation of diffusion: 
 

  ( )
' '

' ' '
' '2

2

r
C CD C C
t z

∞
∂ ∂= − γ −
∂ ∂

. (2.4) 

Here 'u  and 'v are axial and transverse velocities of the flow. Here Ω = 
2

2
mM
1 m+

. 

The initial value and boundary conditions are given as below: 
 
  ' ' ' ' ' ' '' ', , and ,t 0 u v 0 C C T T z∞ ∞≤ = = = = ∀ . (2.5) 
 
  ' ' '' ' ' ' ' ' ', , , , atw 0 wt 0 T T u u v 0 C C z 0∀ > = = = = = . (2.6) 
 
  ' '' ' ' ' ', , , as .T T u 0 v 0 C C z∞ ∞→ → → → → ∞  (2.7) 
 
The local radioactive heat flux is given below: 
 

  ( )' '
'

4 4rq 4a T T
z

∗ ∗
∞

∂ = − − σ
∂

 (2.8) 

 
where the mean absorption coefficient a∗  and the Stefan-Boltzmann constant is ∗σ . It is assumed that 
temperature difference within the flow is small. After using the Taylor’s series about 'T∞ , after neglecting 
higher-order terms, we get: 
 
  ' ' ' '4 3 4T 4T T 3T∞ ∞≅ − . (2.9) 
 
Equations (2.5), (2.6), (2.7) and (2.8), Eq.(2.3) reduce to: 
 

  ( ) ( )
' ' '

' ' ' ' '
' ' '

22
4

P 02
T T uC k 16a T T T Q T T
t y y

∗ ∗
∞ ∞ ∞

 ∂ ∂ ∂ρ = + σ − + μ − −  ∂ ∂ ∂ 
. (2.10) 

 
We introduce the non-dimensional quantities: 
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  0
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We put Eq.(2.10) into Eqs (2.1)-(2.3) and (2.9) and as a result the transformed governing non-dimensional 
equations of the flow become: 
 

  ( )*
2

2
u u uM u mv Gr Gm 2 v
t Kz

∂ ∂= − + + θ + ϕ − + Ω
∂ ∂

, (2.12) 

 

  ( )*
2

2
v v v2 u M mu v
t Kz

∂ ∂+ Ω = + − −
∂ ∂

, (2.13) 

 

  
22

2
r

1 uR Ec S
t P zz

∂θ ∂ θ ∂ = + θ + − θ ∂ ∂∂  
, (2.14) 

 

  
2

r 2
1K

t Sc z
∂ϕ ∂ ϕ+ ϕ =
∂ ∂

. (2.15) 

 
Boundary conditions: 
  
  at , , , for all ,t 0 u 0 v 0 0 0 z≤ = = θ = ϕ =   (2.16) 
 
  when , , , at ,t 0 u 1 v 0 t 1 z 0> = = θ = ϕ = =  
 
  , , , as .u 0 v 0 0 0 z→ → θ → ϕ → → ∞  (2.17) 
 

When Ω =
2

2
mM
1 m+

the transverse velocity vanishes. 

 
3. Solution of the problem 
 
 Over the a typical element ( )e , i jz z z≤ ≤ , the FEM approach to the linear function (2.12) is 
implemented. 
 

  
( )

( )
( )k

j

z e e2
T

2
z

u u uN M u mv P dz 0
t Ky

∗
  ∂ ∂ − + − + − =  ∂∂    
  (3.1) 

 
where 
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   jT

k

N
N

N
 

=  
 

, 

 
  ( ) ( ) .mP Gr G C 2 v= θ + + Ω  
 
Integrating  
 

  ( )
( )

( )
( )

( ) ( )
( ) ( )k k k T

j jj

z z ze e e e
e e eT T

z zz
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∗   ∂ ∂ ∂  − − + + − + =  ∂ ∂ ∂     
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By ignoring the initial term in the preceding equation, we can get the following outcome: 
 

  ( )
( )

( ) ( )
( ) ( )k k T

j j

z ze e e
e eT

z z

u u uN dz N M u mv P dz 0
z t K
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On integrating, we get: 
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  ( )e

k jl z z h= − = . 
 
Taking i 1 iz z z− ≤ ≤  and i i 1z z z +≤ ≤ ; 
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We get: 

  
( )

[ ] [ ]2 i 1 i i 1i 1 i i 1 i 1 i i 1
e

1M
1 1 Ku 2u u u 4u u u 4u u P

6 6l

∗
• • •

− +− + − +
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 

. 

 
By the trapezoidal rule, the equations are obtained via the Crank-Nicholson method. 
 
  n 1 n 1 n 1 n n n

1 i 1 2 i 3 i 1 4 i 1 5 i 6 i 1A u A u A u A u A u A u 6 Pk+ + +
− + − ++ + = + + +  

 
where 
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   
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By applying the FEM to Eqs (2.13)-(2.15), we get: 
 
  ( )n 1 n 1 n 1 n n n
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where 

  2
1 r c c

1D 3r K S rh S
2

= − + + ,       2
4 r c c

1D 3r K S rh S
2

= − + , 

 
  2

2 r c cD 6r 2K S rh 4S= + + ,       2
5 r c cD 6r 2K S rh 4S= − − + , 

 

  2
3 r c c

1D 3r K S rh S
2

= − + + ,      2
6 r c c

1D 3r K S rh S
2

= − + . 

 
Here  
 

  2
kr
h

= , 

 
k , h  are mesh sizes. Here i is space and j is time. Taking .k 0 001= and .h 0 1= . 
In Eqs (2.13)-(2.15) i 1=  in Eq.(2.1) and using boundary conditions (2.16) and (2.17), we get: 
 
  i i iA X B=      for     ( )i 1 1 n= . 
 

iA  are the matrices of order n range and ,i iX B are the column matrices of n range. By using Thomas algorithm 
we obtain the solutions for velocity, temperature and concentration. Through the MATLAB we get the 
numerical solution for equations. Convergence and stability of the FEM the MATLAB is implemented. So 
there is no important change in concentration, temperature, secondary velocity and primary velocity. The 
method is convergent and stable. 
 
4. Result and discussion 
 
 The parameters like M , R , m , Kr , Ω , rP , cS , rG , Ec , S , K  are shown in graphs

. , , , , , . , , , , . , , . , .rKr 0 2 2 Gr 5 Gm 10 M 2 m 0 5 R 2 t 2 P 7 Sc 2 01 S 2 K 0 5 Ec 0 1= Ω = = = = = = = = = = = = . 
 

 
 

Fig.2. Variation of u for different M. 
 

The primary velocity decreases with an increasing magnetic parameter. Since the Lorenz force performs 
normal to the field. 
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Fig.3. Variation of v for different M. 
 

The secondary velocity increases when the magnetic parameter increases.  
 

 
 

Fig.4. Variation of u for different m. 
 
The primary velocity increases due to an increase in the Hall parameter. Since an increase of m results in a 
decrease in conductivity and a decrease in the effect of magnetic field resistance. The fluid velocity increases 
in both directions. 

 
 

Fig.5. Variation of v for different m. 
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The secondary velocity increases with higher values of the Hall parameter. So the secondary velocity is 
consistent throughout the boundary layer. 
 

 
 

Fig.6. Variation of u for different Ω . 
 

By increasing the rotation parameter, primary velocity gets decreased because rotation has a tendency to retard 
the fluid flow. 

 
 

Fig.7. Variation of v for different Ω . 
 
The Coriolis force has a tendency to suppress the flow of fluid. So the secondary velocity decreases with an 
increases in the rotation parameter. 
 

 
 

Fig.8. Variation of u for different K. 
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Here the primary velocity increases with an increase in the permeability parameter. Since there is a decrease 
in resistance of the porous medium.  
 

 
 

Fig.9. Variation of v for different K. 
 

The secondary velocity decreases with the increase in permeability. 
 

 
 

Fig.10. Variation of u for different rP . 
 
The primary velocity decreases as the Prandtl number increases.  
 

 
 

Fig.11. Variation of v for different rP . 
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The secondary velocity increases throughout the boundary layer as the Prandtl number increases.  
 

 
 

Fig.12. Variation of u for different R. 
 

In the boundary layer there is additional scattered heat by the thermal radiation, so when the thermal radiation 
increases, velocity also increases. 
 

 
 

Fig.13. Variation of v for different R. 
 

An increase of the radiation parameter causes an increase in the secondary velocity.  
 

 
 

Fig.14. Variation of θ  for different S. 
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Here the temperature of the fluid decreases with an increasing heat absorption. This is because is when heat 
absorbed in the boundary layer, it is thickened. So the fluid temperature in the boundary layer decreases. 
 

 
 

Fig.15. Variation of θ for different Ec. 
 

Higher values of the Eckert number increase the temperature. 
 

 
 

Fig.16. Variation of θ for different R. 
 

Higher values of the radiation parameter cause an increase in temperature. Higher values of radiation increase 
the thermal boundary layer thickness. 
 

 
 

Fig.17. Variation of θ  for different rP . 
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For higher values of rP , the temperature decreases. An increase in rP  can decrease the thermal diffusivity. So 
the capacity of a material to maintain thermal energy is decreased, so the temperature decreases. 
 

 
 

Fig.18. Variation of θ for different t. 
 

Higher values of time increase the temperature of the fluid.  
 

 
 

Fig.19. Variation of ϕ  for different Sc. 
 

At all points in the flow of the fluid, concentration profile decreases with increasing Sc.  
 

 
 

Fig.20. Variation of ϕ  for different Kr. 
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Increasing the rate of chemical reaction causes a decrease in species concentration. Since growing chemical 
reaction in the fluid causes high molecular motion. 
 
5. Conclusions 
 

• When the radiation parameter, permeability parameter, rotation parameter increase, velocity also 
increases. 

• When the magnetic parameter increases, there is a reduction in the primary velocity. 
• With the increase of M, Ω and rP , the primary velocity is reduced.  
• With higher values of M and rP , the secondary velocity decreases.  
• The concentration decreases with increasing Kr.  
• Rotation has a tendency to decelerate the flow in the x direction and accelerate it in the z- direction for 

both types of thermal conditions.  
• A growing Eckert number is evident at all points of the flow field where the temperature increased.  
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Nomenclature 
 
 0B  – uniform magnetic field 

 'C  – species concentration  
 wc  – wall concentration 

 Ec  – Eckert number 
 cG  – mass Grashof number 

 rG  – thermal Grashof number 

 rK  – chemical reaction parameter  

 M  – magnetic parameter 
 m  – Hall current 
 rP  – Prandtl number 

 S  – heat source 
 cS  – Schmidt number 

 T  – temperature of the fluid near the plate  
 wT  – plate temperature  

 T∞  – temperature of the fluid far away from the plate 

 t  – dimensionless time 
 β  – volumetric coefficient of thermal expansion 

 θ  – dimensionless temperature 
 μ  – viscosity coefficient 

 v  – kinematic viscosity 
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 ρ  – density 

 σ  – electrical conductivity 
 ϕ  – dimensionless concentration 

 Ω  – dimensionless angular velocity 
 zΩ  – uniform angular velocity 
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