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The implication of a stagnation-point flow together with the influence of activation energy in a Williamson 
fluid, which consists of tiny particles, over an expansive plate is analyzed numerically. Conditions of convective 
heat and mass motion with features of irregular movement and thermal-migration of particles influenced by viscous 
dissipation and convective heat surface condition are checked in the study. The conversion of the model equations 
from the initially formulated partial derivatives to ordinary ones is implemented by similarity transformations while 
an unconditionally stable Runge-Kutta-Fehlberg integration plus shooting technique are then used to complete the 
integration. Various interesting effects of the physical parameters are demonstrated graphically and explained 
appropriately in order to make accurate predictions. Moreover, the accuracy of the solution is verified by comparing 
the values of the skin friction factor with earlier reported ones in literature under limiting constraints. It is worth 
mentioning that the velocity profiles flatten down as the magnitude of the magnetic field factors expands but this 
causes a boost in the fluid’s temperature. The concentration field also appreciates with activation energy but 
depreciates with chemical reaction and Schmidt number.  
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1. Introduction 
 

Many industries, including those that produce polymers, have found it useful to study the boundary 
layer flow originated by expanding materials, including wire drawing, glass and polymer processes, textile and 
paper production, etc. [1]. Crane [2] discussed a the solution to such problem in a closed-form precise manner 
for a time-independent motion induced by an extending plate. After such brilliant introduction a vast number 
of scholars [3-5] have engaged the phenomenon taking into account the relevant factors of interest [6-8]. 
Besides, various categories of fluids have been studied on stretchable devices by scientists and researchers. 
However, much time and energy have been given to analyze non-Newtonian fluids because of the vast range 
of fields in which such knowledge may be useful. For instance, in the fields of oil drilling, fluid suspensions, 
molten polymers, mud drilling, medicines, plus other engineering activities. A great number non-Newtonian 
fluids models exist due to inability of any constitutive model to account for the whole range of fluid properties, 
examples are: the Williamson, micropolar Casson, Maxwell fluid and many more [9-10].  

The Williamson fluid has its inherent shear thinning trait, in which an increase in the shear stress rate 
results in a drop in viscosity. The fluid dynamics of plasma, blood, and emulsion sheets like photographic films 
fall under this umbrella of Williamson fluid [11]. Many scholars have evaluated various physical terms on this 
particular fluid with reports on various configurations of geometry, parameters, and boundary conditions. 
When investigating the effects of the Williamson fluid on Blasius flow, stretching flow, and stagnation, Khan 
and Khan [12] used a homotopy analytic approach. Additionally, Hayat et al. [13] analyzed the unsteady flow 
of such fluids via a permeable stretchable sheet linked with thermal radiation and Ohmic heating, while 
Megahed [14] enhanced such research by using a nonlinear stretched sheet related with dissipative effects.  
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Stagnation point flow research has practical applications in emergency shut down cooling of nuclear reactors, 
fan-based cooling of electronic goods, aerodynamic extrusion of plastic sheets, and many other areas [15-16]. 
When a fluid invades a solid, the fluid velocity at the site of intrusion is zero, and the pressure, heat transfer, 
and mass deposition are all at their peak. Scientists have now found better solutions to this kind of phenomenon 
by taking into account flows on a variety of geometries while making a wide range of assumptions and 
constraints. For example, Chiam [17] studied this topic for a linearly stretching plate where the stretching 
velocity is proportional to the straining velocity, and Mohapatra and Gupta [18] expanded this work by 
including a uniform magnetic field under the influence of a prescribed surface heat flux and assuming varying 
velocities. The case of a nonlinear stretched surface corresponding to the Williamson fluid transport associated 
with the impact of radiation was discussed by Monica et al. [19], while Agbaje et al. [20] investigated the 
phenomenon with features of heat transfer characteristics being configured in a porous medium.  

The term "nanofluid" refers to fluids that are made up of minute particles (nanoparticles) of metals, 
oxides, etc. [21]. When compared to traditional base fluids, the thermal conductivity of this new kind of fluid 
is much higher. It is essential to improve the cooling process in high-energy equipment because many 
technological, engineering and manufacturing processes, such as power manufacture and atomic reactors, need 
the heating and cooling of fluids. The wide range of potential applications of nanofluids research, including 
the pharmaceutical and industrial cooling sectors, the transportation sector, and the cooling of electronic 
component. A lot of researchers have deliberated on this concept as found in [22-26]. 

In engineering and industrial projects, thermal radiation is a must (e.g. hot rolling, solar power 
technology, gas turbines, etc.). The understanding of this concept is necessary for developing energy 
conversion appliances when a high-temperature differential is present in the flow field. Because of the 
importance of such a concept to a wide range of engineering operations as listed above, researchers have 
discussed it in various manner. For instance, Mukhopadhyay et al. [27] evaluated such a phenomenon on a 
Newtonian fluid and Ullah et al. [28] performed a numerical analysis on the topic with a nonlinear stretching 
sheet and Newtonian heating condition. Fatunmbi et al. [29] recently examined such a phenomenon on the 
micropolar fluid using the spectral quasi-linearization approach, while Patel [30] analytically treated such an 
issue using the Casson fluid and taking cognizance of nonlinear radiation.  

The emphasis in this investigation is to simulate the implication of stagnation-point flow with 
activation energy on the Williamson fluid consisting of tiny particles over an expansive plate with convective 
heat condition at the surface. The important practical applications in engineering and industries have motivated 
this study. The model also takes into account the consequence of thermal radiation, viscous dissipation in the 
field of energy plus chemical reaction and Brownian movement in the concentration region. The essential 
contributions of the involved parameters are demonstrated via a variety of graphs with proper explanation for 
reasonable prediction for the end users.  
 
2. Formulating the problem 
 

Formulation of the problem at hand requires stating the assumptions for modelling and then writing 
the expressions for the governing equations. The flow under investigation is a two-dimensional, 
incompressible and steady hydromagnetic Williamson nanofluid passing an expansive plate characterized by 
coordinate ( ), x y  with ( ), u v  as the respective components of velocity. An equal but opposing force is applied 
at the extending plate in a way to make the origin stable when  .y 0=  Thus, it is supposed that the motion is 
occasioned by the extending plate with features of tiny particles. It is believed that the perpendicular axis to 
the movement is y  whereas the movement of the fluid is along x . There is an imposition of a magnetic field 
from the external region in a way normal to the direction of the x  axis (see Fig.1) but the internal magnetic 
field impact is ignored in the analysis. All fluid characteristics are believed to be constant, the heat condition 
at the surface is convective in nature as shown in Eq.(2.5). More so, the concentration region comprises of 
chemical reaction, activation energy plus Brownian movement and thermophoresis forces. 
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Fig.1. The flow geometry. 
 
The combination of these assumptions as highlighted above in conjunction with the famous boundary layer 
approximation rule leads to, Eqs (2.1)-(2.4) which are the equations which properly define the current problem 
under study. 
 

  ,u v 0
x y

∂ ∂+ =
∂ ∂

 (2.1) 

  

  ( ) ,
2 2

2
02 2

duu u u u uu v u 2 B u u
x y dx yy y

∞
∞ ∞

 ∂ ∂ μ ∂ ∂ ∂ σ+ = + + Γ − − ∂ ∂ ρ ∂ ρ∂ ∂ 
 (2.2)  

 

  
( )

( ) ( )( ) ,

23 2
w

2
1p

2 32
20

p p

D16 TT T K T T T Nu v 1 Ds
x y 3k K T y y yyc

B u uu u
y yc c

∞

∞

∞

      σ∂ ∂ ∂ ∂ ∂ ∂ + = + + ϒ + +      ∂ ∂ ∂ ∂ ∂∂  ρ       
    σ μ ∂ ∂ + − + + Γ    ∂ ∂ρ ρ     



 (2.3)  

 

  ( ) exp .
a2 2

w e
2 2

D EN N N T Tu v Ds Cr N N
x y T T Ty y ∞

∞ ∞

   ∂ ∂ ∂ ∂  + = + − − −      ∂ ∂ λ∂ ∂    
 (2.4) 

 
At the boundary, the following conditions hold valid:  
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We have introduced the stream functions ,u v
y x

∂ψ ∂ψ= = −
∂ ∂

 and the similarity variables associated with non-

dimensional quantities in Eq.(2.6) to restructure the partial derivatives governing the problem to ordinary 
differential variables.  
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Consequent upon using Eq.(2.6) there is assurance of validity of the continuity Eq.(2.1) whereas Eqs (2.2)-
(2.4) together with wall constraints (2.5) are changed to the under listed ordinary derivatives.  
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The main equations depend on the following wall constraints for validity  
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The physical quantities useful for the engineers are the skin frictional factor xS , Nusselt xH  and the Sherwood 

xSh  numbers which are respectively indicated in a dimensionless manner as follows: 
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3 Numerical procedures for the solution 
 
 Estimating the exact solution to the problem at hand is tedious because it involves nonlinear equations 
of higher order. Thus, we have implemented the solution through a numerical technique which is well-known 
as unconditionally stable Runge-Kutta-Fehlberg technique coupled with the method of shooting technique. 
Implementing this method means that a fixed value of η  has to be picked and the system of ordinary 
derivatives (2.7)-(2.9) with the wall conditions (2.10) is transmuted into simultaneous equations of first order. 
This idea reduces the system of the BVP to IVP using the shooting method. After this, the initial conditions 
are obtained and the resultant equations are then solved simultaneously by means of Maple 2016. We have 
verified the precision of the solution obtained in this work with those earlier published in the literature as 
collated in Tab.1. There is a strong correlation in the values of xS  as gotten in this study with that of Mabood 
and Das [31], and Xu and Lee [32]).  
The graphs have been plotted with the following values except if stated otherwise in the plots:  
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Table 1. Summary of xS  values as related to published items for a variety of M  values. 
  

M  [31] [32] Current work 
0  1.000008 - 1.0000 

1.0 1.4142135 1.41421 1.4142 
5.0 2.4494987 2.4494 2.4500 

10.0 3.3166247 3.3166 3.3256 
50.0 7.1414284 7.1414 7.1413 

100.0 10.049875 10.0498 10.0456 
 
4. Presentation and discussion of results 
 
 To see clearly the significant contributions of the physical quantities on the field of flow, a variety of 
graphs have been included in this section with necessary explanation for accurate prediction. 
 In Fig.2, there is a plot of the velocity field responding to variations in the magnetic field term M  (0, 
1, 2) when the stretching ratio term A  is in place. It is clear that uplifting M  acts inversely to the fluid motion. 
This is well-noted due to creation of the retarding Lorentz force to the electroconducting Williamson fluid by 
the magnetic field which in a transverse direction to the fluid. Therefore, when the strength of M  increases, 
then a proportionate rise in the Lorentz force occurs such that there is a higher resistance to the movement of 
the fluid. However, the velocity profile behaves otherwise with higher values of A ; an acceleration of fluid 
occurs by growing values of A . Then it can be concluded that the velocity profiles can be adjusted up by 
increasing the values of the velocity ratio term. 
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Fig.2. Velocity ( )f ′ η  against the magnetic field 

term M .  

 
Fig.3. ( )θ η  against the magnetic field term M . 

 
 

 
Fig.4. ( )φ η  against the magnetic field. 

 
Fig.5. ( )φ η  against the chemical reaction term ζ . 

 
 A depleted concentration profile occurs when the intensity of the chemical reaction term ζ  is raised 
as described in Fig.5. The chemical reaction parameter depreciates the concentration region as found in Fig.5. 
Whereas a higher value of thermophoresis term NT raises the thickness of the thermal boundary structure as 
well boosts the heat dissipation profile as displayed in Fig.6. In line with that, the surface convection term also 
called Biot number elevates the thermal region as it increases from 0.1 to 0.5 as indicated in Fig.6. The 
temperature and concentration fields act contrarily to that of the velocity profile when the values of M  
increase. With a growth in M , there is a higher temperature as indicated in Fig.3, while a rise in concentration 
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profile is found in Fig.4 due to escalating values of M . Meanwhile the presence of A causes both temperature 
and concentration to fall as noticed in Figs 3 and 4.  
 

 
Fig.6. ( )θ η  versus thermophoresis term NT . 

 
Fig.7. ( )θ η  versus Prandtl number Pr . 

 
 Raising the magnitude of the Prandtl number Pr  (0.7, 1.2, 1.5) as found in Fig.7 causes a decline in 
the thickness of the thermal boundary and also compels a fall in the surface heat distribution. Irrespective of 
the value of the Biot number, heat distribution appreciates with NT  while it decays with Pr  as respectively 
demonstrated in Figs 6 and 7.  
 

 
Fig.8. ( )θ η  versus the Biot number h . 

 
Fig.9. ( )θ η  versus the activation energy AE . 
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It is clearly shown in Fig.8 that a growth in ( )θ η  is directly proportional to a rise h . It can be said physically 
that the ratio of the internal and the boundary film heat resistance of the hot fluid under the surface defines ,h  
i.e. the Biot number. In this view, a higher magnitude of h  strengthens the apparent convection and thereby 
the encourages heat region to grow. In Fig.9, the impact of activation energy AE  is revealed on the 
concentration region. Escalating nature of AE  causes the thickness of the concentration wall layer to rise, 
thereby the concentration profiles enhance with hke  in AE  as indicated in this figure. 
 

 
Fig.10. ( )θ η  versus the thermophoresis term NT . 

 
Fig.11. ( )θ η  versus the Prandtl number Pr . 

 

 
Fig.12. ( )φ η  versus the Schmidt number Sc . 

 
Fig.13. ( )'f η  versus the Weissenberg number We . 

 
 The Eckert number encourages higher temperature profile as seen in Fig.10. Thus as Ec  (0.0, 0.2, 0.4, 
0.6) moves up there is a hike in ( )θ η . This is as a result of frictional drag between the Williamson fluid 
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particles and the extending plate. In line with that, Fig.11 depicts what happens in the heat profile when the 
thermal radiation term is raised. The heat boundary film becomes thicker with rising values of  Ec  and with 
that trend, there is an increase in ( )θ η  as Nr  uplifts in the heat area. 
 Figure 12 exhibits the reaction of the concentration profile to variations in Sc . Here, critical 
observation reveals that higher values of  Sc  diminishes the boundary structure and with that occurrence, the 
lowering of ( )φ η  is established as demonstrated in this plot. There is a conformity with this trend and the 
physics of the model since large values of Sc  imply that there is less mass diffusivity, the consequence of 
which deteriorates the concentration boundary layer film.  
 Finally, the velocity profiles versus η  for different values of We  is evaluated in Fig.13. A growth in 
We  is found to impede the speed of the fluid because as the relaxation time increases there is a generation of 
the drag like force at the speed profile. 
 
5. Concluding remark 
 
 An assessment of the Williamson fluid comprising of tiny particles on a two-dimensional expanding 
plate is the focus of this study. The problem is considered in the neighbourhood of stagnation-point with 
convective heat condition, activation energy, chemical reaction, and irregular movement and thermo-movement 
of the tiny particles. The main equations are numerically solved while the impact of the emerging physical terms 
is appropriately explained with the aid of graphs. More so, under some limiting scenarios, the current solution is 
adjudged valid when verified with existing data in the literature. We realised from the study that:  

• An expanding heat boundary film exists with higher values of the magnetic field term, Eckert number, 
Biot number, radiation and thermophoresis parameters but there is a contraction in the thermal field 
with the Prandtl number and velocity ratio. 

• There is a depreciation in the hydrodynamic boundary film and the speed of the fluid with the magnetic 
field and material parameters but the reaction changes when the velocity ratio term is raised. 

• There is contraction in the solutal boundary layer field due to a raise in the magnitude of the chemical 
reaction term, Schmidt number, thereby leading to a downward trend in the concentration profile but 
activation energy reacts differently as it raises the concentration field.  
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Nomeclature 
 
 A  – velocity ratio 

 AE  – activation energy 

 0B  – magnetic field strength 

  c  – stretching rates 

 Cr  – chemical reaction 

 aE  – activation energy ratio 

 Ec  – Eckert number 

 h  – Biot number 

 K  – thermal conductivity 

 1k  – mean absorption coefficient 

 M  – magnetic term 
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 N  – fluid concentration 

 NT  – Brownian motion 

 Nr  – thermophoresis 

 , N∞  – far stream concentration  

 T  – liquid temperature 

 fT  – surface temperature 

 T∞  – far stream temperature 

 , u v  – velocity modules 

 We  – material term 

 Γ  – thermal conduction 

 δ  – radiation term 

 μ  – dynamic viscosity 

 ρ  – density 

 σ  – relaxation time 

 ϑ  – kinematic viscosity 
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