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The present research article deals with the study of a boundary value problem of a one-dimensional semi-infinite 

hygro-thermoelastic rod of length l. The deformation of the rod is under consideration when the left boundary of the 
hygro-thermoelastic rod is subjected to a sudden heat source. The solutions of the considered variables are decomposed 
in terms of normal modes. Analytical expressions of displacement, moisture concentration, temperature field, and 
stresses are obtained and presented graphically for different periods. By studying the one-dimensional thermal shock 
problem for a semi-infinite hygrothermoelastic rod, the authors aim to gain insights into the fundamental behavior of 
materials subjected to rapid temperature changes and moisture effects. 
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1. Introduction 

 
 The theory of dynamic thermoelasticity finds applications in different fields of science has been 
explored by researchers. The classical coupled theory of thermoelasticity was developed which is parabolic in 
nature and predicts infinite velocity of heat propagation thereby making it impossible to accept. To overcome 
this paradox, different theories of generalized thermoelasticity which involve a hyperbolic heat equation have 
been developed in the past few decades. This type of equation admits a finite speed of thermal signals. 
Chandrasekharaiah and Srinath [1] considered the linear theory of thermoelasticity without energy dissipation 
to discuss the effect of continuous point heat source in homogeneous and isotropic thermoelastic media. 
Sharma et al. [2] investigated a homogeneous isotropic thermoelastic half-space under the effect of a 
mechanical and thermal source. Baksi et al. [3] investigated a three-dimensional problem in a rotating 
magneto-thermoelastic medium with thermal relaxation. Mallik and Kanoria [4] discussed periodically varying 
heat source in a functionally graded isotropic thermoelastic medium. The problem of a moving heat source in 
a magneto-thermoelastic strip was discussed by He and Cao [5]. A problem of heat sources in a semi-infinite 
thermoelastic cylinder was discussed by Tripathi et al. [6]. The dynamic response of a semi-infinite 
thermoelastic plate by the finite element method was presented by Xia et al. [7]. Ailawalia and Budhiraja [8] 
studied deformation in a thermo-microstretch elastic medium underlying a non-viscous fluid layer subjected 
to an internal heat source. Abbas [9] applied the eigen-value approach in a fractional-order thermoelastic 
medium.  Ailawalia and Sachdeva [10] presented the effect of an internal heat source in a thermoelastic solid 
with micro-temperatures. Sarkar and Mondal [11] inspected thermoelastic interactions in a slim strip under a 
dual-phase-lag model due to a moving heat source. They also discussed the transient responses in a two-
temperature generalized thermoelastic infinite medium due to a time-dependent heat source [12]. Mondal et 
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al. [13] derived a new thermoelastic mathematical model to describe the transient response under a moving 
heat source in a rod. Kaur and Lata [14] discussed deformation in a thin circular plate of transversely isotropic 
nature subjected to a periodically varying heat source. Marin [15-16] studied some problems in a thermoelastic 
medium with voids. 
 The interaction between heat, moisture, and deformation is considered an important issue in 
engineering science. Materials get damaged when moisture and temperature interact with mechanical stresses. 
These results suggest that more study is required for the interaction of moisture and temperature. In solids, 
atoms move randomly, and the average spacing between them remains constant as long as they vibrate about 
their equilibrium positions in a symmetric manner. Motion of particles from one part to another also occurs 
which is known as diffusion. Further exchange of kinetic energy occurs between adjacent particles in the form 
of heat which travels from high to low temperature. But it follows from the second law of thermodynamics 
that the exchange of heat can be reversible if heat flow occurs at an infinitely small rate in the presence of a 
temperature gradient. The principle of irreversible thermodynamics governs physiochemical processes such as 
heat conduction, diffusion, etc. Sih et al. [17] and Weitsman [18] developed coupled equations for a 
hygrothermoelastic medium keeping in view principles of irreversible thermodynamics and continuum 
mechanics. Basi et al. [19] analyzed anisotropic inhomogeneous and laminated plates under 
hygrothermoelastic effects. Fluid-saturated porous media subjected to finite deformation under 
hygrothermoelastic theory were examined by Advani et al. [20]. A coupled micro-macro mechanical approach 
was adopted by Aboudi and Williams [21] to examine hygrothermoelastic composites. Altay and Dokmeci 
[22] derived Hamiltonian-type variational principles for governing the behavior of a hygrothermoelastic 
medium. Rao and Sinha’s [23] research analyzes how multidirectional composites behave in a hygrothermal 
medium. Vibration characteristics of hygrothermoelastic laminated composite doubly curved shells were 
studied by Kundu and Han [24]. Chiba and Sugano [25] discussed how layered plates behave under the 
influence of hygrothermal loading. Alsubari et al. [26] studied on the bending behavior of simply supported 
anisotropic cylindrical shells under the influence of moisture and temperature. The bending of simply 
supported orthotropic cylindrical shells under hygrothermoelasticity was demonstrated by Mohamed et al. 
[27]. Hosseini and Ghadiri [28] discussed two-dimensional problems in a coupled hygrothermoelastic medium. 
The potential theory method was adopted by Zhao et al. [29] to obtain a steady-state solution in a 
hygrothermoelastic medium. Zhang et al. [30] solved the time-fractional hygrothermoelastic problem of a 
centrally symmetric sphere. Lamba and Deshmukh [31] discussed the unsteady state responses of a finite long 
solid cylinder subjected to axisymmetric hygrothermal loading. Bhoyar et al. [32] employed a two-temperature 
model for hygrothermoelastic diffusion theory and discussed the bending of an elliptic plate. Recently 
Ailawalia et al. [33] discussed wave propagation in an initially stressed hygrothermoelastic medium. Anand 
et al. [34] investigated the reflection of hygrothermal waves in a nonlocal theory of coupled thermo-elasticity. 
In addition to the above-mentioned work, some other prominent work [35-41] has been done in the field of 
thermoelasticity. 
 This paper deals with the study of deformation in a hygrothermoelastic rod of length l. The rod is 
subjected to sudden heating at one end. The displacement components, moisture concentration, temperature 
distribution, and stress components are evaluated and presented graphically to show the effect of these 
quantities at different time intervals. 
 
2. Basic equations 
 
 A thin semi-infinite hygrothermoelastic rod is considered. The rod occupies the region x 0≥ . 
Following Hosseini and Ghadiri [26], governing equations in the hygrothermoelastic medium without body 
forces and heat sources are given by: 
 
  , ,ji j iuσ = ρ  (2.1) 
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Further, constitutive stress-strain relations [26] are given by: 
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The displacement components for the problem under consideration are assumed to be of the form 

( ), ,x y zu u x t u u 0= = = . 
For the considered one-dimensional problem Eqs (2.1), (2.2), and (2.3) reduce to, 
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The stress component xxσ  in one dimension reduces to, 
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 (2.12) 

 
Introducing the following dimensionless variables, 
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in Eqs (2.9)-(2.11), we get the following equations in dimensionless form, 
 

  ( ) ,
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The dimensionless stress component xxσ  is given by, 
 

  ( ) .xx m T 0
1 u2 m T

x
∂ σ = λ + μ − β − β θ λ ∂ 

 (2.17) 

 
3. Solution 
 
 The solution of the physical variables may be assumed in the form of normal modes as: 
 
  { } ( ) ( ), , , , exp ,u m u m x t θ = θ ω   (3.1) 
 
where ω  is complex. frequency. 
 
Using the above solution in (2.14)-(2.16), we obtain the following equations: 
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On solving Eqs (3.2)-(3.4), we obtain a sixth-order differential equation in terms of , ,u m T  as: 
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The appropriate solution of Eq.(3.6) satisfying the radiation conditions may be expressed as: 
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4. Boundary conditions 
 
 We consider the stress-free hygrothermoelastic rod at a uniform temperature 0T  with its boundary 

.0 x l≤ ≤  The boundary  x 0= is subjected to sudden heating. The appropriate boundary conditions are given by, 
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Using (3.1), (3.8)-(3.10) in the boundary conditions (4.1), we get the following non-homogenous system of six 
equations: 
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The above non-homogenous system of six equations is solved by developing codes in MATLAB and the values 
of constants ( ),nB n 1 6= …  are evaluated. 
Using the expressions of ,u m  and θ  given by (3.8)-(3.10) in expressions (3.1), the displacement component, 
moisture concentration, temperature field, and stress in hygrothermoelastic medium are obtained. 
 
5. Numerical computation 
 
 The analytical results are verified in this section by taking a wood slab as a hygro-thermoelastic 
material. The elastic constants given by Chang and Weng [42] and Yang et al. [43] are shown in Tab.1. 
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Table 1. Values of material constants. 
 

Symbol Value Symbol Value 

E  .  /9 264 3 10 N m×  k  ( ). /  K0 65w m   

 ρ  / 3370 Kg m  c  ( )/  2500 J Kg K  

ν  .0 33  mK  . /82 2 10 Kg msM−×  

 0m  %10  mD  .  / sec6 22 16 10 m−×  

mα  ( ).  / %3
22 68 10 cm cm H O−× . T

mD  ( ) ( ).  % /  6 2
20 648 10 m H O s K−×   

0T  283 K  m
TD  ( ) ( )-.   / %7 2 o

22 1 10 m s H OK×  

Tα  ( ).  /  6 K31 3 10 cm cm−×   TD  /k cρ  

 
The numerical results are obtained for displacement, force stress, moisture concentration, and temperature 
distribution for . , .0l 1 0 1 0= θ =  against the horizontal distance x . The graphical results are shown for four 
values of non-dimensional time ( . , . , .t 0 01 0 1 0 5=  and 1.5). 
 
6. Discussions 
 
 The variations of displacement follow a linear trend in the region .0 x 8 2≤ <  and then increase sharply. 
This sharpness is maximum for .t 0 01=  and more interestingly, the sharpness decreases with an increase in 
time t , respectively. This behavior in the region .0 x 8 2≤ <  can be attributed to the material's elastic response, 
where the displacement is directly proportional to the applied stress. The sudden increase can be attributed to 
the occurrence of a stress concentration or a localized deformation mechanism. It is possible that the material 
reaches its limit of linear elasticity and undergoes plastic deformation or experiences a structural discontinuity. 
The variations of force stress are linear in nature with differences in slope. Also, the slope of the variation of 
force stress decreases with an increase in time t . The difference in slopes suggests that different regions of the 
material experience different levels of stress, which can be attributed to varying mechanical properties, 
geometric constraints, or external loading conditions.  
 Similar to the variations of force stress, the variations of moisture concentration also follow a linear 
path. It is to mention here that the slope of the variation of moisture concentration is zero, i.e., the variations 
are parallel to the horizontal distance. However, the magnitude of the values decreases with an increase in 
time. The parallel nature of the variations (i.e., zero slope) suggests that the moisture concentration does not 
change along the horizontal distance, implying a constant moisture gradient. This behavior could be influenced 
by factors such as moisture diffusion, capillary action, or moisture transport through the material. The 
variations in the temperature field are similar in nature to the variations of displacement. These variations of 
displacement, force stress, moisture concentration, and temperature field are shown in Figs 1-4, respectively. 
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Fig.1. Displacement with distance x. 
 

 
 

Fig.2. Force stress with distance x. 
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Fig.3. Moisture concentration with distance x. 
 

 
 

Fig.4. Temperature field with distance x. 
 
7. Conclusion 
 
 The analytical and numerical findings of the research problem are as follows: 
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1 The results can help in the design and optimization of materials and structures for various engineering 
applications, where thermal and moisture-induced stresses can lead to failures or reduced performance. 

2 The analytical results show that three waves propagate in the medium namely displacement, moisture, 
and thermal wave. 

3 The variations of force stress and moisture concentration are linear in nature. 
4 The variations of displacement and temperature field are similar in nature. 
5 As expected, the moisture concentration remains constant with horizontal distance. 
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Nomenclature 
 
 ,rs  – components of strain 
 ijσ  – components of stress  

 iu  – components of displacement  
 ρ  – density 
 TD  – temperature diffusivity 

 θ  – temperature field 
 m  – moisture concentration 
 0T  – initial temperature 
 mD  – moisture diffusivity 

 ,  m T
T mD D  – diffusivities 

 c  – heat capacity 
 0m  – reference moisture 
 mk  – moisture diffusivity 

 T
ijα  and m

ijα  – material coefficients  

 ,λ μ  – Lame's constants such that 
( )( )

E
1 1 2

νλ =
+ ν − ν

 and 
( )

E
2 1

μ =
+ ν
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