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The present study aims to investigate Rayleigh wave propagation in an isotropic sandy layer overlying an 

isotropic sandy semi-infinite medium, with interface considered to be imperfect (slide contact and dislocation like 

model). Expressions for displacement components are obtained using the variable separation method. The 

dispersion frequency equation for the Rayleigh wave propagating in sandy media is derived using suitable boundary 

conditions. Particular cases, such as when the interface is in smooth contact and when sandy media are replaced by 

elastic media, are also discussed. Using MATLAB software, the effects of the imperfectness parameter (slide 

contact and dislocation like model) and sandy parameter on the Rayleigh waves’ phase velocity are investigated 

and compared with the already obtained results of the dislocation like model. The present study may find useful 

applications in geophysics, civil engineering and soil mechanics. 
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1. Introduction 

 
 Theoretical studies regarding seismic wave propagation play an important role in providing a rich and 

vast amount of information about the Earth’s interior. Studies involving seismic wave propagation are 

important to seismologists and earthquake engineers since these studies contribute to determining the nature 

and cause of earthquakes as well as understanding the earth's crust. 

Materials of the Earth may not always be isotropic and elastic. The Earth's crust. consisting of sedimentary 

layers is not perfectly elastic but can be considered as sandy layers. A sandy layer may be defined as the layer 

consisting of sand particles not retaining moisture or water vapour. Sand boils occurred due to the 7.1 Richter 

scale Loma Prieta earthquake of 1989, causing the liquefaction of superficial sandy materials. So, the 

assumption of sandy layer plays an important role in predicting seismic behavior and is very important to 

seismologists. Various researchers studied seismic or Rayleigh wave propagation in sandy or elastic media. 

Rayleigh waves propagation considering isotropic an elastic solid and stratified media was investigated by 

Rayleigh [1] and Bromwich [2]. Weiskopf [3] explored the dynamics for sandy soil introducing the sandiness 

parameter ‘ ’ and gave the relationship       
E

2 1   


 where  ,   and E denote Lame’s constant, Poisson’s 

ratio and Young’s modulus respectively. Kar et al. [4] studied Love wave propagation in a sandy medium, 

discussing the effects of irregularity. Abd-Alla [5] investigated Rayleigh wave propagation considering an 

orthotropic elastic half-space. Kuznetsov [6] investigated Love waves propagation in layered monoclinic 

media. Dispersion relations were derived using the Modified Transfer Matrix method. Effects of gravity field 

and initial stresses on Rayleigh wave propagation considering magnetoelastic half-space were discussed by 

Abd-Alla et al. [7]. Viswakarma and Gupta [8] investigated Rayleigh wave propagation in the Earth’s crustal 

layer for the sandy and elastic half-space cases, obtaining the effects of inhomogeneity and rigid boundary. Pal 

et al. [9] explored Rayleigh wave propagation considering a sandy half-space and an anisotropic layer and 
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derived the Rayleigh wave propagation dispersion frequency equation. Sahu et al. [10] examined Rayleigh 

wave propagation considering an orthotropic half-space with impacts of pre-stresses and self-weight and a 

liquid layer. Kuznetsov [11] investigated variation of Stoneley waves velocity using generalized Wiechert 

condition by introducing two dimensionless parameters instead of one. 

Rayleigh wave propagation in a geometry containing sandy media surrounded by couple stress media and 

orthotropic half-space was investigated by Mandi et al. [12]. Rayleigh wave propagation considering two 

cases, a heterogeneous sandy layer overlying an isotropic elastic half-space and isotropic elastic layer overlying 

on isotropic half-space with perfect contact was investigated by Kuznetsov [13]. Kuznetsov [14] investigated 

acoustic guided wave propagation in stratified media consisting of a sandy layer bounded by an isotropic layer 

and isotropic half-space. 

 As the Earth is a layered medium, various interfacial conditions such as irregularities or an imperfect 

interface do have a significant effect on seismic wave propagation and such studies provide a rich amount of 

information regarding the seismic behavior of the Earth. This imperfectly bonded surface is the actual contact 

between the layer and half-space as bonding between the interfaces are often affected by various environmental 

factors and thermal/mechanical loadings. Various researchers studied effects of these interfacial conditions. 

Hua et al. [15] studied effects of the imperfectness parameter on propagation of Love wave considering a 

geometry consisting of layered graded composite structures. Rayleigh wave propagation in an orthotropic 

elastic layer overlying an orthotropic elastic space with the interface assumed to be in spring contact finite 

sliding contact was investigated by Vinh and Anh [16] while Kaur [17] considered same geometry but with 

sliding contact. Vishwakarma and Xu [18] investigated dispersion of Rayleigh wave considering a sandy layer 

overlying an orthotropic mantle. Effects of irregular boundaries on upper plane were discussed observing the 

initial stress and sandiness parameter effect. Dispersion equation for SH wave propagation in a layer of 

viscoelastic overlying a couple stressed substrate with the interface assumed to be imperfect was derived by 

Sharma and Kumar [19]. They described the effects of imperfectness, heterogeneity, friction and imperfectness 

parameter. Kumar et al. [20] examined shear wave propagation considering a micropolar elastic half-space 

and a piezoelectric layer under the effects of initial stresses with an imperfect interface. Kumar and Madan 

[21] discussed Love wave propagation considering a layer consisting of sand particles overlying an orthotropic 

semi-infinite media and discussed the effects of imperfectness and sandy parameter. Madan et al. [22] 

investigated propagation of Rayleigh wave an considering orthotropic elastic medium under effects of pre-

stresses. An explicit secular equation for perfect and sliding contact was derived. 

Effects of imperfect interfacial conditions (arising due to thermal/mechanical loadings or environmental 

factors) for Rayleigh wave propagation in sandy media remains yet unexplored. So, an effort has been made 

to study propagation of Rayleigh wave in a geometry comprised of an isotropic sandy layer and isotropic sandy 

semi-infinite medium. The interface is assumed to be in sliding contact as various interfacial conditions have 

a significant effect on seismic waves propagation. A parameter G (sliding parameter) with 0≤G≤1 is introduced 

whose extreme values correspond to smooth and perfect contact, respectively. Dispersion equation has been 

derived for Rayleigh wave propagation using appropriate boundary conditions. Particular cases for smooth 

contact and for an isotropic layer with sliding contact have also been discussed. MATLAB software has been 

used for plotting phase velocity against wave number to demonstrate graphically the significant effects of 

various parameters (sliding and sandiness) involved in the dispersion equation for the sliding contact and 

dislocation like model.  

 

2. Geometry of the problem 
 

 The model comprised of an isotropic sandy layer with thickness ‘h’, overlying an isotropic sandy semi-

infinite medium is considered. The Cartesian co-ordinate system is used for the study. The Rayleigh wave is 

assumed to be propagating along the x-direction, the z-axis is taken in the increasing depth direction with origin 

O located at the layer and semi-infinite medium interface. The layer and semi-infinite medium are assumed to 

be in sliding contact. This contact is shown by using a sliding parameter denoted by  G 0 G 1   and G 0
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corresponds to perfect contact and  0 G 1   corresponds to finite sliding contact The geometry for the 

considered problem is shown in Fig.1.  

 

 
 

Fig.1. Geometry of the problem. 

 

For a 2-dimensional problem (-xz plane), displacements components are assumed independent of y, i.e.    0
y





 

and are zero in -y-direction. 

 

3. Dynamics of sandy layer and semi-infinite medium 

 
 For Rayleigh wave propagation, the dynamical equation of motion without external forces for 

displacement components 1u  and 1w  along the x and z direction for a sandy layer is given as (Biot [23]): 

 

     
1 1 2
xx xz 1

1 2

u

x z t

  
 

  
, (3.1) 

 

     
1 1 2
xx xz 1

1 2

w

x z t

  
 

  
 (3.2) 

 

where ,   , 1 1 1
xx xz zz    denotes stress components and 1  denotes the density of material in the sandy layer. 

We use stress-displacement relations for the sandy layer (Weiskopf [3]): 

  

            1 1 1
xx 1 1 1 1

u w
2

x z

  
      

  
, (3.3) 

 

            1 1 1 1 1
zx 1 1 1 1 1

u w u w
2

z x x z

     
         

     
, (3.4) 

 

              1 1 1
zz 1 1 1 1

w u
2

z x

  
       

  
 (3.5) 

 

where 1  and  1 denote Lame’s constant, 1  denotes sandiness parameter. 

Using Eqs (3.3), (3.4) and (3.5) in (3.1) and (3.2), we have 
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2 2 2 2

1 1 1 1
1 1 1 1 1 1 1 1 12 2 2

u u w u
2

x zx z t

   
           

   
, (3.6) 

 

              
2 2 2 2

1 1 1 1
1 1 1 1 1 1 1 12 2 2

w w u w
2

x zx z t

   
         

   
. (3.7) 

 

Now, assume solution of Eqs (3.6) and (3.7) to be: 

 

     
           

ik x ctkpz kpz
1u Ae Be e

  , (3.8) 

 

     
          

ik x ctkpz kpz
1w Ce De e

  . (3.9) 

 

Using values of 1u  and 1w  in Eqs (3.6) and (3.7) and separating coefficients of 
kpze  and 

kpze , we have: 

 

              2 2
1 1 1 1 1 1 1 1 1 1 1c 2 p A i pC 0            

 
, (3.10) 

 

              2 2
1 1 1 1 1 1 1 1 1 1 1c 2 p B i pD 0            

 
, (3.11) 

 

              2 2
1 1 1 1 1 1 1 1 1 1 1c 2 p C i pA 0             

 
, (3.12) 

 

              2 2
1 1 1 1 1 1 1 1 1 1 1c 2 p D i pB 0             

 
. (3.13) 

 

Writing Eqs (3.10)-(3.13) in a determinant form in order to eliminate , ,   and  1 1 1 1A B C D , we must have: 
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On expanding the determinant, we obtain a biquadratic equation in p, given as 
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where 
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Let us assume 1p  and 2p  to be solution of Eq.(3.14), then displacement expression in Eqs (3.8) and (3.9) 

can be written as: 

 

     
                 1 2 1 2 ik x ctkp z kp z kp z kp z

1 1 2 1 2u A e A e B e B e e
 

    , (3.15) 

 

     
             1 2 1 2 ik x ctkp z kp z kp z kp z

1 1 1 2 2 1 1 2 2w n A e n A e n B e n B e e
 

     (3.16) 

where  
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       and      .
2 2
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In a similar manner the displacement expression for the sandy semi-infinite medium can be written as: 

 

     
                 1 2 1 2 ik x ctkq z kq z kq z kq z
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    , (3.18) 
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Also, we have displacement vanishing as the depth increases, i.e. 2u ,   2w  → 0 as z → ∞. So, 1F  and 2F  must 

be zero. Then from Eqs (3.18) and (3.19): 

 

     
           1 2 ik x ctkq z kq z

2 1 2u E e E e e
 

  , (3.21) 

 

     ' '       1 2 ik x ctkq z kq z
2 1 1 2 2w n E e n E e e

 
  . (3.22) 

 

Equations (3.21) and (3.22) represent expressions for displacement components for the semi-infinite medium. 

 

4. Boundary conditions and dispersion equation 
 

 To examine Rayleigh wave propagation in an isotropic sandy layer overlying an isotropic sandy semi-

infinite medium with sliding contact at the interface, a parameter,  G 0 G 1  termed as the sliding 

parameter, is introduced. The boundary conditions involving stresses, displacements and the sliding parameter 

may be presented as: 

i. Displacement vanishes at the rigid upper boundary plane. i.e. 1u 0  and 1w 0  at z h  . 

ii. For the slide contact at the interface z 0 , appropriate conditions are 

 

     2
zx 2 11 G FkGu FkGu   ;      1 2w w , 

 

     1 2
zx zxG   ;       1 2

zz zz         at     z 0 . 

 

where F is a constant quantity having dimension force per unit area. 

Applying the boundary conditions and using expressions for displacements and stresses for the sandy layer 

and semi-infinite medium, we obtain the following set of six homogeneous equations in terms of 

,  ,  ,  ,   and 1 2 1 2 1 2A A B B E E : 

 

                 1 2 1 2kp h kp h kp h kp h
1 2 1 2A e A e B e B e 0


    , (4.1) 

 

                 1 2 1 2kp h kp h kp h kp h
1 1 2 2 1 1 2 2A n e A n e B n e B n e 0


    , (4.2) 
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     ' '     .

1 1 1 1 1 1 1 2 1 1 1 1 2 2

1 1 1 1 1 1 1 2 1 1 1 1 2 2

1 2 2 2 2 1 1 2 2 2 2 2 2 2

A i 2 n p A i 2 n p

B i 2 n p B i 2 n p

E i 2 n q E i 2 n q 0

             

              

              

  (4.6) 

 

To get the non-trivial solution of this homogeneous system from (4.1)-(4.6), we must have, 

 

  , ,ij 0 i j 1a    to 6 (4.7) 

 

where ija  are coefficients of , , ,  ,   and 1 2 1 2 1 2A A B B E E  in the system of six equations represented by Eqs (4.1)-(4.6). 

The real part of Eq.(4.7) represents the dispersion frequency equation for the Rayleigh wave propagating in an 

isotropic sandy layer overlying an isotropic sandy semi-infinite medium with sliding contact. 

 

5. Special Cases 
 

Case I. When G 0 , then Eq.(4.7) represents the frequency equation for Rayleigh wave propagation in a 

sandy layer overlaying a sandy semi-infinite medium with smooth contact. 

Case II. When    1 2 1  , then Eq.(4.7) becomes the frequency equation for propagation of Rayleigh wave 

in an isotropic elastic layer overlaying an isotropic elastic semi-infinite medium with a sliding contact 

interface. 

Case III. When    1 2 G 1   , then Eq.(4.7) becomes the frequency equation for Rayleigh wave propagation 

in an isotropic elastic layer overlying an isotropic elastic semi-infinite medium with a perfect 

interface. 

 

6. Numerical computations and discussion 

 
 Propagation of the Rayleigh wave considering a geometry comprised of an isotropic sandy layer and 

isotropic sandy semi-infinite medium has been examined, with the interface assumed to be in sliding contact. 

A parameter G (sliding parameter) with 0 G 1   is introduced such that G 0  corresponds to smooth contact 

of the layer and half-space, G 0  corresponds to perfect contact and 0 G 1   corresponds to finite sliding 

contact. The frequency equation, involving various parameters such as the sliding parameter, sandiness, has 

been derived for the considered model. In addition, the previously obtained frequency equation for Rayleigh 

waves in the dislocation type model is used to compare the sliding contact, smooth contact and dislocation 

type imperfection model ( ,T  N  denoting the imperfectness parameter in tangential and normal direction). 

To examine the effects of various parameters, the following data have been considered (Gubbins [24], at the 

depth of 10km and 500 km approximately): 

For the sandy layer:  

 

      / 3
1 2802kg m  ,         .   ,       .   . 1 132 3GPa 42 9GPa     

 

For the sandy half-space: 

 

        / ,       .   ,       .   .3
2 2 23865kg m 104 6GPa 154 5GPa        

 

 Graphs are plotted to show the effects of the sliding parameter, sandiness parameter for the layer and 

half-space on phase velocity variation against the wave number using the real part of Eq.(4.7) with help of 
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MATLAB software. Fundamental modes are plotted to observe the effects. Graphs are also compared with the 

dislocation like imperfection model. 

 Figure 2 shows the effects of the sliding contact (G) and imperfectness parameter ( ,T  N ). Variation of 

phase velocity against the wave number to observe the effects of the sliding and dislocation parameter is shown for 

the three cases, i) for sliding contact ii) for dislocation-type model iii) for sliding contact but when the layer and 

half-space becomes isotropic elastic, i.e.    1 2 1  . Three different values of the sliding parameter and 

dislocation-type imperfectness parameter are used for plotting with values of  and  1 2   taken as 1.5 for Fig. 2(a). 

It can be seen that phase velocity decreased with increase in sliding and dislocation parameter. 

 Figure 3 shows the effects of the sandiness factor ( )1  for the layer. Variation is shown for the sliding 

contact, smooth contact and dislocation-type model, respectively. Phase velocity is plotted against the wave 

number using three values of 1  with value of .G 0 5 and 0 and .T N 0 4  for Fig. 3(a),(b) and (c). The 

sandiness parameter for the layer first increased but then decreased the phase velocity of the Rayleigh wave 

for the sliding and smooth contact model but it increased for the dislocation-type model. 

 

 
 

 

Fig.2a. Imperfectness parameter effect, using variations of phase velocity (c/𝛽1) against wave number (kh) for 

sandy media case with sliding contact 

 

 
 

Fig.2b. Imperfectness parameter effect, using variations of phase velocity (c/𝛽1) against wave number (kh) for 

sandy media with dislocation-type model, with sliding contact. 
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Fig.2c. Imperfectness parameter effect, using variations of phase velocity (c/𝛽1) against wave number (kh) for  

for isotropic elastic case          ,1 2 1    with sliding contact. 

 

 
 

Fig.3a. Sandy parameter ( 1 ) effect, using phase velocity (c/𝛽1) variations against wave number (kh) for 

sliding contact. 
 

 
 

Fig.3b. Sandy parameter ( 1 ) effect, using phase velocity (c/𝛽1) variations against wave number (kh) for 

smooth contact. 
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Fig.3c. Sandy parameter ( 1 ) effect, using phase velocity (c/𝛽1) variations against wave number (kh) for 

dislocation like model. 
 

 
 

Fig.4a. Effects of sandy parameter ( 2 ) using phase velocity (c/𝛽1) variations against wave number (kh) for 

sliding contact. 
 

 
 

Fig.4b. Effects of sandy parameter ( 2 ) using phase velocity (c/𝛽1) variations against wave number (kh) for 

smooth contact. 
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Fig.4c. Effects of sandy parameter ( 2 ) using phase velocity (c/𝛽1) variations against wave number (kh) for 

dislocation like model. 

 

Figure 4 shows the effects of the sandiness parameter ( )2  for the semi-infinite medium. Variation is shown 

for the contact, smooth contact and dislocation like model respectively using three different values of 2 1   

with value of .G 0 5 and 0 and T  and .N 0 5   for Fig. 4(a), (b) and (c). It has been found that the sandiness 

parameter acts against the Rayleigh wave phase velocity for the sliding and dislocation-type model but shows 

a different behaviour for smooth contact. 

 

7. Conclusion 

 
 A mathematical analysis of Rayleigh wave propagation in a sandy layer overlying a sandy half-space 

has been studied with the interface assumed to be imperfect dislocation like model. The dispersion frequency 

equation has been obtained by applying appropriate boundary conditions for the geometry. Earlier obtained 

results for Rayleigh wave propagation in sandy media for dislocation type model are compared with the results 

of sliding contact. Graphs have been plotted to show the impacts of imperfectness (both sliding contact and 

dislocation type model) and the sandiness factor (  and  1 2  ) on Rayleigh waves phase velocity. The 

conclusions for can be summarized as: 

1) The imperfectness parameter acts against the phase velocity of the Rayleigh wave for the isotropic sandy 

layer and isotropic elastic layer case. 

2) The sandiness parameter for the layer has significantly affected the phase velocity. As the sandiness 

parameter increases, the phase velocity increases for some wave number value but then decreases both for 

sliding and smooth contact and phase velocity increases for dislocation-type model. 

3) The sandiness parameter for the semi-infinite medium also significantly affected the phase velocity of 

Rayleigh waves for sliding contact, smooth contact and dislocation-type model. 

 Theoretical studies regarding seismic wave propagation considering layered media have various 

applications in geophysics, civil engineering and in understanding the effects and causes of earthquakes. The 

Rayleigh wave causes more damage during earthquakes in comparison to other surface waves due to its ground 

roll motion. The present results could be used in field applications. 
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Nomenclature 

 
 ,   i iu w  – displacement components for the layer and half-spaces for   ,i 1 2 respectively 

  , 1 2   – sandiness parameter for the layer and half-space  

 , 1 2   – density of material in the layer and half-space 

 , i i   – Lame’s constants for the layer and half-space for   ,i 1 2  respectively 

      
,   , 

i i i
xx xx zz    – stress components for the layer and half-spaces for   ,i 1 2  respectively 

 G – sliding contact parameter 

  , T N   – imperfectness parameter along tangential and normal direction 

 kh – wave number 
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