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An unsteady Couette flow between two parallel plates when upper plates oscillates in its own plane and is 

subjected to a constant suction and the lower plate to a injection velocity distribution through the porous medium 
has been analyzed. The approximate solution has been obtained using perturbation technique. It is seen that the 
primary velocity increases whereas the secondary velocity decreases with an increase in permeability parameter. 
It is also found that the primary velocity increases with an increase in the Reynolds number as well as the suction 
parameter. The magnitude of the secondary velocity increases near the stationary plate but decreases near the 
oscillating plate with an increase in the Reynolds number. Whereas, it increases with an increase in the suction 
parameter.  
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1. Introduction 
 
 The unsteady boundary layer flow has been the subject of intensive studies in the last two decades, 
deals with the boundary layer responses to imposed oscillations. The oscillatory flow and heat transfer 
problems are important in view of their applications to astrophysics, geophysics and engineering. Fluid 
through a porous medium is important in many branches of science and technology. The study of such flows 
was first initiated by Lighthill (1954) who studied the effect of free stream oscillations on the boundary layer 
flow of a viscous, incompressible fluid past an infinite plate. Varshney (1979) discussed an oscillatory two-
dimensional flow through porous medium bounded by a horizontal porous plate subjected to a variable 
suction velocity. Rapits (1983) analysed the unsteady flow through a porous medium bounded by an infinite 
porous plate subjected to a constant suction and variable temperature.Rapits and Perdikis (1985) further 
studied the problem of a free convective flow through a porous medium bounded by a vertical porous plate 
with constant suction when the free stream velocity oscillates in time about a constant mean value. Singh and 
Sharma (2001) studied the three-dimensional Couette flow through a porous medium. Singh and Sharma 
(2002) also studied the effect of periodic permeability on three-dimensional convective flow and heat 
transfer through a porous medium. 
 The objective of this paper is to study the effect of permeability on a three dimensional Couette flow 
when the upper plates oscillates in its own plane and is subjected to a constant suction and the lower plate to 
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a injection velocity distribution. It is seen that the primary velocity increases whereas the secondary velocity 
decreases with an increase in the permeability parameter. It is found that the primary velocity increases with 
an increase in the Reynolds number as well as the suction parameter. The magnitude of the secondary 
velocity increases near the stationary plate but decreases near the oscillating plate with an increase in the 
Reynolds number, whereas it increases with an increase in the suction parameter.  
 
2. Basic equations and solution 
 
 Consider the unsteady flow of a viscous incompressible fluid between two infinite parallel flat 
porous plates through a porous medium. Let d  be the distance between two plates. The upper plate oscillates 
in its own plane with velocity distribution of the form 
 

  i tu =U 1 e
      

 (2.1) 

 

where  1   is the amplitude of the oscillation,   is the frequency of the oscillations, t  is the time and 

U  is the free stream velocity. We choose the x   axis in the direction of the flow, y   axis perpendicular 

to the direction of the flow and z   axis normal to the x y    plane, lying in the plane of the lower plate 

which is assumed to be at rest. The upper plate is subjected to a constant suction 0V  and the lower plate to a 
transverse sinusoidal injection velocity distribution of the form 
 

  cos .0
z

v = V 1
d


   

        
 (2.2) 

 

 Let , ,u v w    be the velocity components in the directions of ,x y   , and z   axes respectively, 
then the problem is governed by the following equations 
 

  ,
v w

= 0
y z

 

 
 


 

 (2.3) 

 

  ,
2 2

2 2

u u u u u u
v w =

t y z y z K

     
 

     

      
           

 (2.4) 

 

  ,
2 2

2 2

v v v 1 p v v v
v w =

yt y z y z K

     
 

     

       
              

 (2.5) 

 

  
2 2

2 2

w w w 1 p w w w
v w =

zt y z y z K

     
 

     

       
              

 (2.6) 

 

where   is the kinematic coefficient of viscosity,   is the density, p  is the fluid pressure, K  is the 
permeability of the porous medium. 
 The boundary conditions of the problem are 
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  , cos , at ,0
z

u = 0 v = V 1 w = 0 y = 0
d


     

        
 

   (2.7) 

  , , ati t
0u =U 1 e v = V w = 0 y = d.

          
  

 
 Introducing the non-dimensional variables 
 

  , , , , , , .
2

y z p u v w
y = z = t = ct p = u = v = w=

d d U U UU

     



 (2.8) 

 
 Equations (2.3)-(2.6) become 
 

  ,
v w

= 0
y z

 


 
 (2.9) 

 

  Re ,
2 2

2 2

u u u u u u
v w =

t y z Ky z

     
          

 (2.10) 

 

  Re Re ,
2 2

2 2

v v v p v v v
v w =

t y z y Ky z

       
                  

 (2.11) 

 

  Re Re
2 2

2 2

w w w p w w w
v w =

t y z z Ky z

       
                  

 (2.12) 

 

where Re=Ud /  , the Reynolds number, 0S =V / U , the suction parameter and 2= d   , the frequency 

parameter, 2K = K d , the permeability parameter. Using Eqs (2.8), the boundary conditions Eqs (2.7) become 
 
   , cos , at ,u = 0 v = S 1 z w = 0 y = 0        

   (2.13) 

   , , ati tu = 1 e v = S w= 0 y = 1.     

 
3. Solution 
 
 In order to solve the differential Eqs (2.9)-(2.12), we assume the solution of the following form 
 

         , , , , , , ,2
0 1 2u y z t = u y u y z t u y z t      

 

         , , , , , , ,2
0 1 2v y z t = v y v y z t v y z t      

   (3.1) 

         , , , , , , ,2
0 1 2w y z t = w y w y z t w y z t      

 

         , , , , , , .2
0 1 2p y z t = p y p y z t p y z t       
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 Assume 0w = 0  and 0p =  constant. On substituting Eq.(3.1) in Eqs (2.9)-(2.12) and equating the 
term free from  , we get the following system of differential equations 
 
  0v = 0,  (3.2) 
 

  Re 0
0 0

u
u S u = 0

K
    (3.3) 

 
where primes denote differentiation with respect to y  and the corresponding boundary conditions become 
 
  , at , and , at .0 0 0 0u = 0 v = S y = 0 u = 1 v = S y = 1   (3.4) 
 
 The solutions of Eqs (3.2) and (3.3), using Eq.(3.4) are 
 

     
 
 

,

n y n y1 2

0 0 n n1 2

e e
v y = S u y =

e e

 

 





 (3.5) 

where 
 

   , Re Re .
1/ 22 2

1 2
1

n = S S 4 K
2
    

 (3.6) 

 
 On substituting Eqs (3.1) in Eqs (2.9)-(2.12) and equating the coefficient of  , we get the following 
system of differential equations 
 

  ,1 1v w
= 0

y z

 


 
 (3.7) 

 

  Re ,
2 2

01 1 1 1
1 12 2

uu u u u
S v = u K

t y y y z

    
          

 (3.8) 

 

  Re Re ,
2 2

1 1 1 1 1
12 2

v v p v v
S = v K

t y y y z

    
     
    

 (3.9) 

 

  Re Re .
2 2

1 1 1 1 1
12 2

w w p w w
S = w K

t y z y z

    
     

    
 (3.10) 

 
 The corresponding boundary conditions become 
 

   , cos , at ,1 1 1u = 0 v = S z w = 0 y = 0   

   (3.11) 

  , , at .i t
1 1 1u = e v = 0 w = 0 y = 1   
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 These are the linear partial differential equations describing the three-dimensional flow. To solve Eqs 
(3.8)-(3.10), we assume velocity components and pressure as 
 

         , , cos ,i t
1 11 12u y z t = u y z u y e    (3.12) 

 

         , , cos ,i t
1 11 12v y z t = v y z v y e    (3.13) 

 

         sin ,i t
1 11 12

1
w y,z,t = v y z zv y e       

 (3.14) 

 

         cos .i t
1 11 12p y,z,t = p y z p y e    (3.15) 

 
 Substituting Eqs (3.12)-(3.15) in Eqs (3.8)-(3.10) and comparing the coefficients of harmonic terms, 
we obtain the following set of differential equations 
 

  Re Re ,2
11 11 11 0 11

1
u S u u = u v

K
       
 

 (3.16) 

 

  Re Re ,12 12 12 0 12
1

u S u i u = u v
K

       
 

 (3.17) 

 

  Re Re ,2
11 11 11 11

1
v S v v = p

K
       
 

 (3.18) 

 

  Re Re ,12 12 12 12
1

v S v i v = p
K

      
 

 (3.19) 

 

  Re Re ,2 2
11 11 11 11

1
v S v v = p

K
        
 

 (3.20) 

 

  Re .12 12 12
1

v S v i v = 0
K

      
 

 (3.21) 

 
 When K  , Eqs (3.16)-(3.21) coincide with Eqs (2.13)-(3.2) of Guria et al. (2007). The 
corresponding boundary conditions are 
 
  , , , , , at ,11 12 11 12 11 12u = 0 u = 0 v = S v = 0 v = 0 v = 0 y = 0   
   (3.22) 
  , , , , , at .11 12 11 12 11 12u = 0 u = 1 v = 0 v = 0 v = 0 v = 0 y = 1    
 
 Solving Eqs (3.16)-(3.21) under boundary conditions Eqs (3.22) and on using Eqs (3.12)-(3.15), we 
get 
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         r n y r n y n yr y r y 1 1 2 1 11 2
1 9 10 1 2 3u y,z,t = C e C e C e C e C e

            

         n y r n y r n y n y1 1 2 2 2 2
4 5 6 7C e C e C e C e

            (3.23) 

     
 

cos ,

m y m y1 2
n y i t2

8 m m1 2

e e
C e z e

e e

 
  

 


   

 

 

     , cos ,r y r y y y1 2
1v y z = Ae Be Ce De z          (3.24) 

 

     , sin ,r y r y y y1 2
1 1 2

1
w y z = Ar e Br e C e D e z          

 (3.25) 

 

         , cos
Re

y y y y
1

1
p y z = S Ce De Ce De z

K
         

 (3.26) 

 
where  
 

  
     

Re
, , ,1 1 1 1

1 1 2n n1 2 1 1 2 1

AK n BK n
K = C = C =

2r n 1 K 2r n 1 Ke e 

 
 

 

 

  
     

, , ,
Re Re

1 1 1 1 1 2
3 4 5

1 1 1 2

CK n DK n K An
C = C = C =

S 2n S 2n 2r n 1 K


    

 

 

  
     

, , ,
Re Re

1 2 1 2 1 2
6 7 8

2 2 2 2

K Bn CK n DK n
C = C = C =

2r n 1 K S 2n S 2n    
 (3.27) 

 

  Re Re ,
1/ 2

2 2
1,2

1 1
m = S S 4 i

2 K

        
    

 

 

  Re Re ,
1/ 2

2 2 2
1,2

1 1
r = S S 4

2 K

         
    

 

 

  
 

     r n y r n yr r1 1 2 12 2
9 1 2r r2 1

1
C = C e e C e e

e e

    
 

    
 

         n y n yr r ( r n )y r1 12 2 1 2 2
3 4 5C e e C e e C e e

              

           ,
r n y n y n yr r r2 2 2 22 2 2

6 7 8C e e C e e C e e
             
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 

     r n y r n yr r1 1 2 11 1
10 1 2r r2 1

1
C = C e e C e e

e e

    
 

     
 

          n y n y r n yr r r1 1 1 21 1 1
3 4 5C e e C e e C e e

              

           .
r n y n y n yr r r2 2 2 21 1 1

6 7 8C e e C e e C e e
             

 

 
 When K   the solutions coincide with the solution of Guria et al. (2007). The solution also exists 
for the blowing at the plate. 
 
4. Results and discussion 
 
 We have presented the non-dimensional velocities u  and w  for different values of the permeability 
parameter K , Reynolds number Re  and suction parameter S  in Figs 1-5. In Fig.1 we have presented the 
primary velocity for several values of the permeability parameter K . It is seen the primary velocity increases 
withan increase in K . The effects of the Reynolds number and suction parameter on the primary velocity are 
shown in Figs 2 and 3. It is observed that the primary velocity increases with an increase either in the 
Reynolds number Re  or suction parameter S . 
 

 
 

Fig.1. Primary velocity for , , , ,Re , .t = 0 S = 1.0 t = 0.2 = 5 = 5.0 = 0.05    
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Fig.2. Primary velocity for , , , , , .t = 0 S = 1.0 t = 0.2 = 5 K = 0.4 = 0.05    
 

 
 

Fig.3. Primary velocity for ,Re , , , , , .t = 0 = 5.0 K = 0.4 z = 0.0 t = 0.2 = 5 = 0.05    
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Fig.4. Secondary velocity profile 1w  for , , .K = 0.4 = 5.0 S = 1.0  
 

 
 

Fig.5. Secondary velocity profile 1w  for , ,Re .K = 0.4 = 5.0 = 5.0  
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 The effect of the permeability parameter on the secondary velocity is shown in Tab.1. It is observed 
from Tab.1 that the secondary velocity decreases near the plate and increases away from the plate with an 
increase in the permeability parameter K .  
 
Table 1. Secondary velocity 1w  for z =0.5 , Re= 5  and .10  
 

 
 
 
 
 
 
 
 
 
 The variations of the secondary velocity for different values of the suction parameter S  and 
Reynolds number Re  are shown in Figs 4 and 5. The magnitude of the secondary velocity increases near the 
lower plate and decreases away from the lower plate with an increase in the Reynolds number. The 
magnitude of the secondary velocity increases with an increase in the suction parameter. 
 Knowing the velocity field it is interesting to know the shear stress at the plates. The non-
dimensional shear stress at the plate due to the primary flow is given by 
 

     x 0 1
y=0

u
= = u 0 u 0 .

y

       
 (4.1) 

 
          In terms of the amplitude and phase shift, the shear stress due to the primary flow can be expressed as 
 
       cos cosx 0 11= u 0 u 0 z | R | t           (4.2) 

 

where   tan .2 2 i
r i

r

t
| R |= t t =

t


  


 

 
 The amplitude | R |  and phase shift tan  of the shear stress due to the primary flow are shown in 

Figs 6 and 7 for different values of K  against Re.  It is seen that the amplitude increases with an increase in 
either K  or Re . The magnitude of the phase shift decreases with an increase in the Reynolds number but 
increases with an increase in the permeability parameter. 
 The non-dimensional shear stress due to the secondary flow can be expressed as 
 

       , sinz 0 1 2
y=0

w
= = w 0 w 0 =| R | z

y

        
 (4.3) 

 

where   .2 2
2 1 2R = Ar Br C D      

 
 The shear stress due to the secondary flow is plotted in terms of 2| R |  against the Reynolds number 

for different values of the permeability parameter in Fig.8. It is seen that 2| R |  decreases with an increase in 
the permeability parameter but increases with an increase in the Reynolds number. 
 

\y K  0.2 0.6 1.0   
0.0 0.00000000 0.00000024 0.00000000 0.00000000 
0.2 0.57268330 0.56783800 0.56680730 0.56521980 
0.4 0.45605160 0.46108120 0.46213280 0.46373890 
0.6 0.28446830 0.28877630 0.28968340 0.29107200 
0.8 0.14370380 0.14388940 0.14393010 0.14398950 
1.0 0.00000417 -0.00000067 0.00000070 -0.00000367 



Three dimensional oscillating flow between two parallel … 1035 

 
 

Fig.6. Amplitude of the shear stress due to primary flow for S=1.0. 
 

 
 

Fig.7. Tangent of phase shift of shear stress due to primary flow for S=1.0. 
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Fig.8. Shear stress due to secondary flow for S=1.0. 
 
Nomenclature 
 

  ,...,iC i 1 10
 

 – constants 

 d  – distance between two plates 

 i  – imaginary unity  i 1 
 

 K  – non-dimensional permeability parameter 
 *K   – permeability of the porous medium 

 1K   – constant 

 ,1 2m   – constants 

 p  – dimensionless pressure 
 p  – non-dimensional pressure 

 *p   – pressure 
 R   – amplitude of shear stress due to primary flow 
 2R   – amplitude of shear stress due to secondary flow 

 Re  – Reynolds number 
 ,1 2r   – constants 

 S  – suction parameter 
 t  – dimensionless time 

 *t   – time 
 U  – free stream velocity 
 u, v, w  – non-dimensional velocity components 

 * * *, ,u v w   – velocity components 
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 0V   – suction velocity 

 x, y, z  – dimensionless Cartesian coordinates 

 * * *, ,x y z   – Cartesian coordinates 
    – amplitude of oscillation 
    – density of the fluid 
    – kinematic coefficient of viscosity 
    – phase shift 
    – frequency parameter 

 *   – frequency of oscillation 

 
References  
 
Guria M., Jana R.N. and Pop I. (2007): Three dimensional oscillating flow between two parallel plates with heat 

transfer. – International Journal of Applied Mechanics and Engineering, vol.12, No.1, pp.19-35. 

Lighthill M.J. (1954): The response of laminar skin friction and heat transfer to the fluctuating in the stream velocity. – 
Proc. Roy. Soc., vol.224A p.1-23. 

Raptis A.A. (1983): Unsteady free convective flow through a porous media. – Int. J. Engng. Sci., vol.21, pp.345-348. 

Raptis A.A. and Perdikis C.P. (1985): Oscillatory flow through a porous medium by the presence of free convective 
flow. – Int. J. Engng. Sci., vol.23, pp.51-55. 

Singh K.D. and Sharma R. (2001): Three-dimensional Couette flow through a porous medium with heat transfer. – 
Indian J. Pure Appl. Math., vol.32(12), pp.1819-1829. 

Singh K.D. and Sharma R. (2002): Three- dimensional free convective flow and heat transfer through a porous medium 
with periodic permeability. – Indian J. Pure Appl. Math., vol.33(6), pp.941-949. 

Varshney C.L. (1979): Fluctuating flow of viscous fluid through a porous medium bounded by a porous plate. – Indian 
J. Pure Appl. Math., vol.10 pp.1558-64. 

 
 
 

Received: March 19, 2012 
 

Revised:   September 3, 2013 

 
 
 


