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 The problem of heat and mass transfer in a visco-elastic fluid flow over a stretching sheet in the 
presence of a uniform magnetic field is examined. The important physical quantities such as the skin friction co-
efficient, heat transfer co-efficient and the mass transfer co-efficient are determined. It is found that the heat and 
mass transfer distribution decreases with the increasing values of the visco-elastic parameter k1. 
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1. Introduction 
 
 The flow and heat transfer on a moving solid boundary ( viz. a polymer sheet or filament ) extruded 
continuously from a die or a long thread traveling between a feed roll and a wind up roll in a fluid have many 
applications. Studies have been made by many researchers on Newtonian fluids considering various aspects 
such as the effect of mass transfer, wall temperature, magnetic field, porous medium etc. The heat transfer 
and mass transfer for the visco-elastic fluid is found to be smaller as compared with that of a Newtonian 
fluid. The power required in stretching the sheet in a visco-elastic fluid is smaller than when it is placed in a 
viscous fluid. At present visco-elastic fluids have gained considerable importance due to their extensive use 
in polymer industries and other industries. A visco-elastic boundary layer flow past a stretching sheet has 
been the subject of a large number of publications (Crane, 1970; Sakiadis, 1964; Tsou et al., 1967; Rajagopal 
et al., 1987; Siddeshwar and Mahabaleshwar, 2005; Chaim, 1982; Takhar and Soundalgekar, 1986; Takhar 
and Gorla, 1991) and also a great deal of interest has focused on the knowledge of the rheological effects of 
non-Newtonian (visco-elastic) fluids on the steady and un-steady flows through porous media.  
 Siddappa and Subhas (1985) and Rajgopal et al. (1984) studied the problem of a visco-elastic fluid 
flow over a stretching sheet. The uniqueness of the solution of the problem for Newtonian (viscous) fluids 
was examined by McLeod and Rajagopal (1987) and Troy et al. (1987). Weng-Dong Chang (1989) obtained 
another closed form solution for the non-Newtonian parameter k = ½. There are many extensions of this 
problem which include consideration of more general stretching velocity.The situation where suction and 
blowing exist at the moving surface is discussed by Gupta and Gupta (1977), and Chen and Char (1986). 
Surmadevi and Nath (1990) solved the problem numerically for the small non-Newtonian parameter, 
whereas Ahmed et al. (1990) obtained the solution for large Prandtl numbers and found that the heat transfer 
co-efficient has no significant effect on the to non-Newtonian parameter. 
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 Lawrence et al. (1992) studied the heat transfer in the flow of a visco-elastic fluid over a stretching 
sheet. Lawrence et al. (1993) also re-investigated the study of non-uniqueness of the flow of a visco-elastic 
fluid over a stretching sheet.   
 All the above investigations are restricted to flow behavior and only heat transfer study in the 
absence of porous media and a magnetic field. Further, flow through porous media has gained attention and 
an analysis has been carried out by Abel and Veena (1998) of a non-Newtonian flow through a porous 
medium over an impermeable stretching surface. Singh et al. (2000) studied the effect of a transverse 
magnetic field on a flat plate thermometer. Layek et al. (2007) mode a heat and mass transfer analysis for a 
boundary layer stagnation point flow towards a heated porous sheet with heat absorption and suction or 
blowing. Veena et al. (2007) studied the unsteady mass transfer flow of a visco-elastic fluid over a stretching 
sheet saturated in a porous  medium with suction or blowing. Rajgopal et al. (2008) worked on the study of 
diffusion of chemically reactive species of MHD visco-elastic fluid immersed in a porous medium with PST 
and PHF cases. 
 Thus motivated by all the above analyses, our present work envisages to study the visco-elastic 
second order fluid flow past a stretching sheet with a uniform magnetic field immersed in a saturated porous 
medium with both heat and mass transfer studies. 
 
2. Flow analysis 

 
 An incompressible second order fluid has a constitutive equation based on the postulate of gradually 
fading memory given by Fosdick and Rajgopal (1979) as   
 
  T = -pI + μA1 + α1A2 + α2A1

2       (2.A) 
 
where T is the stress tensor, p is the pressure, μ, α1, α2 are material constants with α1 < 0 and A1 and A2 are 
defined as  
 
  A1 = (grad v) + (grad v)T,       (2.B) 
 

  A2 =  T1 1 1
d

A A grad v grad v A
dt

    .                                         (2.C) 

 
 Dunn and Rajgopal (1995) showed that the model (A) displays a normal stress difference in shear 
flow and is an approximation to a simple fluid in the sense of retardation. This model is applicable to some 
dilute polymer solutions and is valid at low rates of shear. 
 We consider heat and mass transfer of a fluid obeying the model (A) past a porous stretching sheet 
coinciding with the plane y = 0, the flow being confined to y>0.The two equal and opposite forces are 
applied along the x-axis so that the wall is stretched keeping the origin fixed. 
 The steady incompressible two dimensional boundary layer equations for this visco-elastic second 
order fluid with heat and mass transfer in usual notation are  
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 The boundary conditions are  
 
  u = uw=bx,          v = 0,              T =Tw       at          y = 0,       (2.5) 
 
  u = 0,                 T = T∞             at              y = ∞.       (2.6) 
 
 Here u and v are the velocity components along the x and y directions, respectively. 
 T is the temperature, k is the parameter associated with the visco-elastic fluid , Pr is the Prandtl 
number and ν is the kinemetic viscocity. 
 Introducing the stream function ψ such that  
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 Equations (2.1) to (2.6) are transformed to 
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  ( ) Pr ( ) ( )f 0        , (2.9) 

 
  ( ) Sc ( ) ( )f 0        ,         (2.10) 

 
  f = 0,            fη = θ = φ = 1          at         η = 0, 
   (2.11) 
  fη = θ = φ = 0          at           η = ∞ 
 

where   , , , , Re0 1
x y KC

x y u cL k Y
L L

    


.         (2.12) 

 
Re = Lu0 is the Reynold’s number, L and u0 are the characteristic length and velocity, respectively. The 
momentum Eq.(2.8) is uncoupled with the energy and concentration Eqs (2.9) and (2.10). 
 By differentiating Eq.(2.8) with respect to η and applying the boundary conditions (2.11), one gets 
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for k1 = 1, the value of fηηηη at η=0 becomes infinity. So, the limit of applicability of the solution of the 
problem becomes k1<1. It is important to note that Eqs (2.8) and (2.11) represent a two point non linear 
fourth order differential equation having only three boundary conditions. The fourth boundary condition is 
obtained by using Eq.(2.11) in Eq.(2.8) 
 

   ( ) 2
1 1f 1 2k k f       21 M k  , (2.14) 

 
at    η =0. 
 
 It is interesting to mention that for k1 = ½ the non-dimensional surface velocity gradient, fηη(0) from 
Eq.(2.14) is found to be 
 

    22 1 M k   . (2.15) 

 
 Because of the boundary condition (2.14), we can obtain the following two closed form solutions for 
Eqs (2.8) and (2.11) 
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 The above solutions (2.15.1) and (2.15.2) are quite different solutions because 
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 For magnetic parameter and porous parameter, M = k2  = 0, our solution reduces to that of Lawrence 
et al. (1992), Troy et al. (1987). 
 Further it has been proved simultaneously by McLeod and Rajagopal (1987) and Troy et al. (1987) 
that Eqs (2.8), (2.11) and (2.14) have a unique solution, as 
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   f 1 e                for           k1 = 0. (2.16) 

 
 We assume the first solution (2.15.1) as a realistic solution of the problem because of the following 
reasons. 
 For small values of k1 = 0.01, M = 1.0 and k2 = 1.0, the surface velocity gradient from the first 
solution is  
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and its value from the second solution  
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       for      k1= 0,    M = 0,    k2= 0,    is     f 0 1   . 

 
 Such a major change cannot be expected in the value of fηη(0) for a small value of k1 because a 
viscous fluid with slight elasticity produces a boundary layer only slightly altered in its dimensions from a 
viscous fluid since the first solution (2.15.1) gives insight into the boundary layer for weakly elastic fluids, in 
the sense that k1<<1. It is the elastic solution for 0<k1<1. 
 
3. Heat and mass transfer analyses 
 
 Since the thermal boundary layer and concentration boundary layer thickness are of the orders of 

and
Pr Re Re

1 1

Sc
, the transformation co-ordinate η in the boundary layer equation for energy (2.9) and 

for concentration (Rajagopal et al., 1984) are further modified to  
 

  Pr and Sc      . (3.1) 
 
 Using relation (2.16), the boundary layer equations for energy and concentration can be written as  
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 And the corresponding boundary conditions are 
 
  at : at1 0 0    , (3.4) 
 
  at : at1 0 0    . (3.5) 
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 Integrating Eqs (3.2) and (3.3) with respect to the boundary conditions (3.4) and (3.5) one obtains the 
solutions for the energy equation and diffusion equation as 
 

  ( )( ) F

0

1 0 e d


     , (3.6) 

 

  ( )( ) G

0

1 0 e d


      (3.7) 

 

where   
Pr( )

( ) Pr
Pr

1

2

1 k
F f

1 M k

            
, (3.8) 

 

  
Sc( )

( ) Sc
Sc

1

2

1 k
G f

1 M k

   
         

, (3.9) 

 

and  ( )( )

1

F

0

0 e d


 

      
  
 , (3.10) 

 

  ( )( )

1

G

0

0 e d


 

      
  
 . (3.11) 

 
4. Skin friction 
 
 The skin friction co-efficient Cf is derived as follows  
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5. Nusselt number 

 
 The heat transfer co-efficient can be derived as  
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 Here Rex = Re x , ρ is the density, μ is the dynamic viscosity and k is the thermal conductivity. 
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6. Sherwood number 

 
 The mass transfer co-efficient can be obtained as  
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where D is the mass diffusivity. 
 
7. Results and discussion  

 
 The problem of heat transfer in a visco-elastic boundary layer flow past a stretching sheet is 
discussed in this study. Velocity profiles and temperature profiles are given in closed form. Mathematically 
two closed form solutions are possible for Walters’ liquid momentum equation out of which the first solution 
given by Eq.(15.5) is considered to be a physically realistic solution for the specified values of the Prandtl 
number (Pr), Schmidt number (Sc), non-Newtonian parameter (k1), permeability parameter (k2), magnetic 
parameter (Mn), the heat transfer co-efficient viz. the Nusselt number (Nu), the mass transfer co-efficient viz, 
the Shrewood number (Sh), velocity transfer co-efficient viz skin friction co-efficient () and the non-
dimensional temperature distribution (), concentration distribution () along the surface can be found from 
these figures by specifying Reynolds number Re. From Figs 3 and 4 we can observe that the magnitude of 
the velocity gradient f”(o) increases for increasing values of the permeability parameter and magnetic 
parameter.  
 
 

 
 

Fig.1. Visco-elastic fluid (Walter’s fluid) flow over a stretching sheet. 
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Fig.2.  Surface velocity gradient f’’(0) for the first and second solution with non-Newtonian parameter k1 for 
fixed values of permeability parameter k2=1 and magnetic parameter Mn = 1. 

 

 
 

Fig.3.  Velocity gradient f’’(0) for various values of permeability parameter k2=10, 100, 1000 and for fixed 
values of non-Newtonian parameter k1= 0.6 and magnetic parameter Mn = 1. 
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Fig.4.  Surface velocity gradient with magnetic parameter Mn = 1, 2, 3 for fixed values of permeability 
parameter k2=10 and non-Newtonian parameter k1=0.6. 

 

 Figures 5-7 depict the graphs of non-dimensional velocity profiles across the boundary layer for the 
non-Newtonian parameter k1 = 0.2, 0.6 and 0.8 and for fixed values of permeability and magnetic parameter 
k2 = M = 10. It is found from the figures that the velocity boundary layer thickness decreases with increasing 
values of the non-Newtonian parameter k1. 
 

 
 

Fig.5. Velocity profiles for the non-Newtonian parameter k1 = 0.2, 0.6, 0.8, 1.0 when k2 = 10, Mn = 10. 
 

 In Figs 6 and 7 graphs of the non-dimensional temperature gradient and concentration gradients are 
drawn with the variation in the non-Newtonian parameter k1. It is noted from Fig.6 that (0) decreases with 
increasing values of k1 and the magnitude of (0) increases with the Prandtl number Pr.  
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 We found a negligible variation in the heat transfer co-efficient with respect to k1 and for larger values of 

Pr > 10. As Pr  , the magnitude of  0 2   , which is independent of the visco-elastic parameter k1. 
 

 
 

Fig.6.  Surface temperature gradient ( )0

  with Prandtl number Pr and for various values of non-Newtonian 

parameter k1 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. 
 

 
 

Fig.7. Wall concentration gradient with Schmidt number Sc and the non-Newtonian parameter k1. 
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 From Fig.7 we noticed that the concentration gradient also decreases for an increase in the values of 
the visco-elastic parameter k1 and there is a very negligible change in the mass transfer coefficient which is 
found for large values of the Schmidt number Sc. 
 Figures 8 and 9 present the non-dimensional temperature and concentration profiles across the 
boundary layer for the visco-elastic parameter k1 = 0.1, 0.5 and 0.9 and Pr = 1 to 10 and Sc = 1 to 10. It is 
found from the figures that the thermal boundary layer thickness and the concentration boundary layer 
thickness increase with the visco-elastic parameter k1.  

 

 
 

Fig.8. Temperature profiles for the non-Newtonian parameter k1 = 0.1, 0.5, 0.9 and Prandtl number, Pr=0.7. 
 

 
 

Fig.9. Concentration profiles for k1 = 0.1, 0.5, 0.9, and Schmidt number Sc = 2. 
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Nomenclature 
 

 A  constant 
 A1  constant 
 A2  constant 
 A3  constant 
 0B   magnetic induction 

 B0  magnetic field strength 
 b  stretching rate 
 C  species concentration 
 Cp  specific heat capacity 
 Cw  species concentration at the plate 
 C  species concentration far away from the plate 
 Fx, Fy  magnetic forces in x and y directions 
 f  dimensionless similarity variable 
 H   induced magnetic field 
 0H   applied magnetic field 

 Jw  local wall heat flux per unit area 
 k  thermal conductivity 
 k  coefficient of porosity 
 kw  conductivity of the fluid at the sheet  
 k  conductivity of the fluid far away from the sheet 
 k1  viscoelastic parameter 
 k2  permeability parameter 
 k0  coefficient of elastic velocity 
    characteristic length 
 M  Kummer’s function 
 Mn  magnetic parameter 
 mw  power law mass flux 
 N()  distribution function of relaxation times 
 Nux  Nusselt number 
 n  order of the reaction 
 P  pressure 
 Pr  Prandtl number 
 p  hydrostatic pressure 
 Q  heat source/sink 
 qw  local heat transfer rate per unit area 
 Re  Reynolds number 
 r, s  wall temperature parameters 
 S  nondimensional parameter representing the relative magnitude of frequency to stretching rate 
 Sc  Schimdt number 
 Tw  wall temperature 
 T0  on set temperature 
 T  free stream temperature 
 t  time 
 t*  dimensionless time 
 u, v, w  velocity components along x , y and zaxes respectively 
 v  characteristic velocity 
 vw  suction velocity 
   root of momentum equation 
   heat source/sink parameter 
 1  reaction rate parameter 
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   mass transfer parameter 
   small parameter 
    transformed dimensionless variable 

   dimensionless similarity variable 
   dimensionless temperature variable in PST case 
   characteristic length 
 1 and  2  dimensional constants 
   coefficient limiting viscosity 
   kinematic fluid viscosity 
    transformed dimensionless variable  

   density of the fluid 
 s  density of the sheet. 
   electrical conductivity 
   skin friction 
 ij  stress tensor 
 xy  shearing stress 
   dimensionless concentration variable 
   dimensionless stream function 
   freqency of fluctuation 
 
Subscripts 
 
 w  with continuous surface condition  
   ambient condition 
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