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A similarity analysis of non-Newtonian fluid flow past an accelerated vertical infinite plate in the presence of 
free convection current is carried out. A group theoretic generalized dimensional analysis is employed to achieve the 
governing non-linear ordinary differential equations in the most general form. Numerical solutions of these equations 
are given with the plot of their velocity profiles with the effects of Pr-Prandtl number and Gr-Grashof number.  
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1. Introduction 
 
 For a long time, there has been considerable interest in non-Newtonian fluids (Skelland, 1967; 
Wilkinson, 1960; Bird et al., 1960; Dunn, 1999; Kapur, 1963; Metzner, 1965; Nakayama and Koyama, 1988; 
Hansen and Na, 1968). The complex rheology of biological fluids has motivated investigations involving 
different non-Newtonian fluids. In recent years, non-Newtonian fluids have become more and more 
important industrially. Polymer solutions, polymer melts, blood, paints and slurries, shampoo, toothpaste, 
clay coating and suspensions, grease, cosmetic products, custard, are the most common examples of non-
Newtonian fluids. Academic curiosity and practical applications have generated considerable interest in 
finding the solutions of differential equations governing the motion of non-Newtonian fluids. The property of 
these fluids is that the stress tensor is related to the rate of deformation tensor by some non-linear 
relationship. These fluids present some interesting challenges to researchers in engineering, applied 
mathematics and computer science. Thus wide usages of these fluids have prompted modern researchers to 
explore extensively; the fields of non-Newtonian fluids (Surati and Timol, 2010; Neosi Nguetchue et al., 
2009; Patel and Timol, 2004; 2005; 2009a; 2008; 2009b; 2010). 
 Soundalgekar and Pop (1980) studied a flow past an accelerated vertical infinite plate in the presence 
of free convection currents. His problem is limited to the Newtonian fluids only. A steady laminar free 
convection flow of an electrically conducting fluid along a porous hot vertical plate in the presence of a heat 
source is investigated by Sharma and Pankaj, (1995). The velocity and temperature distributions are shown 
graphically for two cases Gr >0 and Gr<0. An exact analysis of rotation effects on an unsteady flow of an 
incompressible and electrically conducting fluid past a uniformly accelerated infinite vertical plate, under the 
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action of a transversely applied magnetic field was presented by Muthucumaraswamy et al. (2011). 
Theoretical solution of an unsteady radiative flow past a uniformly accelerated isothermal infinite vertical 
plate with uniform mass diffusion is presented by Muthucumaraswamy and Shankar (2011), taking into 
account homogeneous chemical reaction of first order. 
 The present work further extends the recent work of Soundalgekar and Pop (1980) and also 
generalized dimensional analysis criteria of Morgan (1952) for non-Newtonian fluids. In the present paper 
we have carried out a complete similarity analysis of all non-Newtonian fluids flow past an accelerated 
vertical infinite plate in the presence of free convection currents. A group theoretic generalized dimensional 
analysis is employed to achieve the governing non-linear ordinary differential equations. A numerical 
solution is obtained for viscous Newtonian fluids, power-law non-Newtonian fluids and Powell-Eyring non-
Newtonian fluids for different flow indices and different values of parameters and Prandtl as well Grashof 
numbers by spline collocation method. The numerical solution of the power-law fluid for the case k=1 and 
n=1 is in good agreement with Soundalgekar and Pop (1980).  
 The Powell-Eyring model is mathematically more complex and deserves our attention because it has 
certain advantages over the power-law model. Firstly, it is deduced from the kinetic theory of liquid rather 
than the empirical relation as in the case of the power-law model. Secondly, it correctly reduces to 
Newtonian behavior for low and high shear rate. 
 
2. Generalised dimensional analysis method 
 
 Groups with the form 
 
  � �,... ; ..., ,i1 irp p

i r i1z A A Z i 1 n� �                                 (2.1)  
 
bear a close relationship to traditional approaches to dimensional analysis. As a concrete example, consider a 
flat plate which is immersed in an incompressible viscous fluid, and which is accelerated from rest to a 
constant plate velocity U > 0, mathematically 
 
  ut – �  uyy = 0     (momentum).   (2.2) 
 
 Subject to  
 

  

, as when ,

, as when ,

, as when .

u 0 t 0 y 0

u 0 y t 0

u U y 0 t 0

� � �

� �� �

� � 	

   (2.3) 

 
 The conventional dimensional approach to this problem would be to associate with the significant 
quantities. Thus 
 

  
 �u , 
 �U : L+1  1�
 , 
 

  
 �y : L+1  0
 ,                   
 

  
 �t  : L0  1�
 ,    (2.4)  
 

  
 �� : L+2  1�
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where in the brackets [  ] mean “the dimension of”. The formulas (2.4) may be regarded as shorthand 
expressions for the scale change equations 
 

  

; ,

; ,

.

1 1 1 0

0 1 2 1

1 1

u L u y L y

t L t L

U L U

� � �

� � �

� �

� 
 � 


� 
 � � 
 �

� 


  (2.5) 

 
 Equation (2.5) has a greater significance, however, than merely for changing scale; that is Eq.(2.5) 
constitutes a two-parameter group, with the scale factors L and 
 playing the role of group parameters. 
 Each of the variables in any set of the governing equations under consideration is regarded as being 
in one of three distinct categories: (i) dependent (ii) independent (iii) physical. Thus, the variables appearing 
in Eqs (2.2) – (2.3), u, y, t,� , U may be identified as follows: the fluid velocity u may be identified as the 
dependent variable; the position and time coordinates y, t may be identified as independent variables; and the 
quantities U, �  may be identified as physical variables. 
 In recognition of the foregoing three categories for variables, the class of r-parameter groups          
 
  � � � � � �,... ,... ..., ,i i 1 r i i 1 rz C A A z D A A i 1 n� � �                   (2.6)  
 
can be written somewhat more explicitly. Thus, we consider the following r-parameter groups of the form,  
 

  � �.... ,..., ,j1 jra a
j r j1Z A A Z j 1 n 1� � �     (2.7) 

 
  � �.... ,..., ,k1 krb b

k r k1X A A X k 1 m 1� � �     (2.8) 
 
  � �.... ,...,e1 erc c

r1Ye A A Ye e 1 p 1� � �     (2.9) 
 
where in the Z’s are to be associated with the dependent variables of a set of governing equations and the X’s 
are associated with the independent variables, but the Y’s are associated with the physical variables. 
 Subsequent discussions reveal that the dimensional matrix associated with Eqs (2.7) – (2.9) plays an 
important role. To facilitate the presentation, let B denote the � �m r�  matrix 
 �, ,k1 krb b� ; and let C denote 

the � � p r�  matrix 
 �, , .e1 erC C� Similarly, let BC denote the 
 �� � m p r� �  matrix, 
 

  
,....

: .
,....

k1 kr

e1 er

b b
BC

C C
� �
� �
� �

 

 
 The matrix BC is assumed to have rank r, while the matrix C has rank s, s �  r. Thus the dimensional 
matrix associated with Eqs (2.7) – (2.9) has rank r.  
 As an additional means of facilitating the presentation, the rows of BC are assumed to be arranged, 
so that 
 (i) when s = r, the first r rows of C are linearly independent, 
 (ii) when s < r, the first s rows of C plus the last [r – s] rows of B are linearly independent. 



764  M.Patel and M.G.Timol 

 To illustrate the foregoing motions, consider again Eqs (2.5). By inspection, the matrices, B. C and 
BC are given, respectively, by 
 

  : ; : ; : .

1 0
1 0 2 1 0 1

B C BC
0 1 1 1 2 1

1 1

� �
� ��� � � � � �� � � � � �� �� � � �
� ��� �

 

 
 Also for Eqs (2.5); n = 1, m = p = r = s = 2, having defined the class of r-parameter groups (2.7) – 
(2.9) and having introduced some important aspects of the dimensional matrix associated with such groups, 
attention now turns to certain features of the generalized dimensional analysis approach.  
 
Theorem 1: If the function Ij is invariant in form under an r-parameter group (2.7) – (2.9), i.e., if Zj = Ij 
� �, , , ,1 m 1 pX X Y Y� �  transforms to � �,..., , ,...,1 m 1 pZj Ij X X Y Y� , then Zj = Ij (---) is equivalent to a 

relationship in fewer variables, 
 
  � � � � � �� �, ,..., ; ,..., ,..., ; ,..., ,... ...j j 1 1 j 1 1 1Z X Xm Y Yp F X Xm Y Yp �� � � �    (2.10) 

 
where in 
 �m p r 0� � � � 	 , and � �,... ,...j 1 �� � �  are independent absolute invariants of Eqs (2.7) – (2.9). In 

the present discussion Theorem 1 plays the role of the so-called Pi theorem of the conventional dimensional 
analysis. 
 To apply Theorem 1 expressions for the absolute invariants of Eqs (2.7) – (2.9) are required. By 
definition: � �,..., ; ,...,1 1X Xm Y Yp�  are absolute invariants provided that under the transformations Eqs (2.8) 
– (2.9) 
 
  � � � �,..., ; ,..., ,..., ; ,..., ,1 1 1 1X Xm Y Yp X Xm Y Yp� � �   (2.11) 
 
upon differentiation of Eq.(2.11) with respect to each of the parameters in turn, 
 

  � �, ,... ,
pm

k e

k ek 1 e 1

X Y 0 1 r
X A Y A� �� �

� ��� ��
� � � �

� � � �� �      (2.12) 

 
with Eqs (2.8) – (2.9) it follows that 
 

  , ,k k e e
k e

X b Y CX Y
A A A A

� �

� � � �

� � � �� �
� �� � � �� �� � � �

        (2.13) 

 
combining Eqs (2.12) and (2.13), a system of first order, linear partial differential equations evolves, 
 

  � �, ,... .
pm

k k e e
k ek 1 e 1

b X C Y 0 1 r
X Y� �

� �

�� ��
� � � �

� �� �  (2.14) 
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 According to the theory of first order linear partial differential equations Eq.(2.14) has [m + p – r] 
independent solutions. It will now be shown that each of the independent solutions may be determined in the 
form, 
 

  

 � 
 � 
 �

... ...

... ... .

p1

p1

1 m
1 m 1 p

m1
1 m 1 p

X X Y Y

X X Y Y

�  �

�  �

� �� � � � � �� � � � � � � � � �

� �� � �

 (2.15) 

 
 Indeed, upon substitution of Eqs (2.15) into (2.14) and simplification, a linear system of ordinary 
equations is derived, 
 

  . . ..
. . .

k1 e1

k 2 e2pm

k e
k 1 e 1

kr er

b C 0
b C 0

b C 0

� �

� � � � � �
� � � � � �
� � � � � �
� � � � � � � � �
� � � � � �
� � � � � �
� � � � � �� �� � � �

� �    (2.16) 

 
 Therefore, to determine the [m + p- r] independent absolute invariants � needed to apply Theorem 1 
requires only that [m + p – r] independent solutions be established by Eq.(2.16). A like procedure can be 
involved to show that the absolute invariants j!  of Theorem 1 may be established in the form  
 

  ... ... ,jpji jm j1A A
j j 1 m 1 pZ X X Y Y

"" � �� � � � � �! � � � � � � � � �  

 

  ... ... jpji jm j1A A
j 1 m 1 pZ X X Y Y

""� � � �� � � � � �� � � � � � �� � � �       (2.17) 

 
wherein, 
 

  . . ..
. . .

j1k1 e1

j2k 2 e2pm

jk je
k 1 e 1

kr er jr

ab C
ab C

A

b C a

� �

� �� � � �
� �� � � �
� �� � � �
� �� � � �� " �
� �� � � �
� �� � � �
� �� � � �� � � � � �� �

� �    (2.18) 

 
 With the foregoing preliminaries in hand, the principal results are presented below: 
 
Principal results 
 
 The statement of Theorem 1 does not suggest a preferred form for the required absolute invariants. 
However, experience reveals that for practical applications of the theorem it is frequently good practice to 
establish the required set of absolute invariants in one of the two forms to be given in Theorem 2 and 
Theorem 3.   
 Theorem 2 treats the case where the rank r of the matrix BC associated with r-parameter groups (2.7) 
– (2.9) equals the rank s of the matrix C, the case r > s is then considered in Theorem 3.  
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Theorem 2: If, and only if, r = s, the set of [n + m + p – r] independent absolute invariants required by 
Theorem 1 may be obtained in the form, 
 
  
 � 
 � � �... ,... ,j1 jr

j j 1 rZ Y Y j 1 n" "! � �    (2.19) 
 
  
 � 
 � � �... ,... ,k1 kr

k k 1 rX Y Y k 1 m� �� � �                (2.20) 
 
  
 � 
 � � �... ,... .1 r

p p 1 rY Y Y j 1 n# #� �� � ��     (2.21) 
 
 Equation (2.19) is readily established via Eqs (2.17) – (2.19) upon utilizing the assumed condition 
that when s = r, the first r rows of the matrix C are linearly independent. Thus Eq.(2.18) yields the following 
system of equations for the exponents j�"  of Eq.(2.19), 
 

  . .
. .

j11

j22r

j
1

r jr

aC
aC

C a

�

�

�
��

�

� �� �
� �� �
� �� �
� �� �" ��
� �� �
� �� �
� �� �� � � �� �

�     � �,... .j 1 n�   (2.22) 

 
 When r = s, Eq.(2.21) follows from Eqs (2.15) – (2.16), indeed (2.16) yields the following system of 
equations for the exponents #�� of Eq.(2.21)  
 

  � �. ; [ ],..., ..
. .

11

j2r

1

r r

CC
CC

r 1 p

C C

#�

#�

#�
��

� #

� �� �
� �� �
� �� �
� �� �� � � # � �
� �� �
� �� �
� �� �� � � �� �

�   (2.23) 

 
 In a similar manner (2.16) yields the following system of equations for the exponents k�� of 
Eq.(2.20) 
 

  � �. . ,..., .
. .

1 k1

2 k 2r

k
1

r kr

C b
C b

k 1 m

C b

�

�

�
��

�

� � � �
� � � �
� � � �
� � � �� �� �
� � � �
� � � �
� � � �� � � �

�    (2.24) 

 
[It is assumed that p > s. For the special case p = s, no absolute invariants are determined solely from the 
physical variables]. 
 
Theorem 3: If and only if r > s, the set of [n + m + p – r] independent absolute invariants required by 
Theorem 1 may be obtained in the form,  
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 � 
 � 
 � 
 � � �... ... , ,... ,j jm jsj1A A

j j m 1 sZ X X Y Y j 1 n$ ""
$! � �       (2.25) 

 
  
 � 
 � 
 � 
 � 
 �� �... ... , ,... ,s1m pp

m 1 sX X X Y Y 1 m s r%% %$  %
% % $� � % � � ��   (2.26) 

 
  
 � 
 � � �� �... ; ,...1 r

1 rY Y Y r 1 p# #� �
# #� � # � ��   (2.27) 

 
where   
 � .m s r 1 m$ & � � � �  
 
 Equation (2.25) is readily established via Eqs (2.17) – (2.18) upon utilizing the assumed condition 
that when r > s, the last [r – s] rows of the matrix B plus the first s rows of the matrix C are linearly 
independent. Thus (2.18) yields the following system of equations for the exponents of Eq.(2.25) 
 

  . . .
. . .

j11 w1

j22 w2m s

j jw
w 1

r wr jr

ab C
ab C

A

b C a

�

�

�
��$ �

�

� �� � � �
� �� � � �
� �� � � �
� �� � � �� " � �
� �� � � �
� �� � � �
� �� � � �� � � � � �� �

� � ,         (j = 1,…n),   (2.28) 

 
when r > s, (2.27) follows from Eqs (2.15) – (2.16), indeed (2.16) yields the following system of equations 
for the exponents of Eq.(2.27), 
 

  � �. ; [ ],..., ..
. .

1w1

2w2s

w
w 1

wr r

CC
CC

s 1 p

C C

#

#

#
�

#

� �� �
� �� �
� �� �
� �� �� � � # � �
� �� �
� �� �
� �� �� � � �� �

�   (2.29) 

 
 In a similar manner, Eq.(2.16) yields the following system of equations for the exponents of 
Eq.(2.26) 
 

  
 �� �. . . ..., .
. . .

1 w1 1

2 w2 2m s

w
w 1

r wr r

b C b
b C b

1 m s r

b C a

� %

� %

%
��$ �

� %

� � � � � �
� � � � � �
� � � � � �
� � � � � � %� � � � � % � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

� �     (2.30) 

 
3. Mathematical analysis 
 
 Considering a laminar, two-dimensional incompressible boundary layer equation with a Cartesian 
co-ordinate system, we take x'  axis along the sheet in the vertical direction and y'  axis is taken normal to it. 
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If wT ' and T�'  are the temperature of the plate and the fluid far away from the plate, then the boundary layer 
equations governing the flow and heat transfer in dimension less form are given by, 
 

  � � G r ,y x
u
t y

� �
� 
 � (

� �
                    (3.1) 

 

  ,
Pr

2

2
1

t y
�( � (

�
� �

                                              (3.2) 

 
and under the boundary layer assumption the stress strain relationship will be 
 

  ;y x
uF 0
y

) *�

 �+ ,�- .

,                                      (3.3) 

 
the form of which differs for different fluid models of non-Newtonian fluids. 
 The boundary conditions are 
 
  , for ,wy 0 u 0 T T T 0 t 0�� / � � � 0 �              (3.4) 
 
  ( ) , : f o r ,wy 0 u U t T T t 0� / � � 	   (3.5a) 
 
  ; : f o ry u 0 T T t 0�� � / � � 	   (3.5b) 
 
where in u is a velocity component in the x direction, y is a rectangular co-ordinate, y x
  is a component of 
shearing stress, F is an arbitrary function, t is dimensionless time, Gr is the Grashof number, Pr is Prandtl 
number, (  is dimensionless temperature, U(t) is dimensionless free stream velocity. 
 With the use of dimensionless quantities 
 

  , , , ,y x 0
y x 2

0 0

t Uu yu y t
U L LU

' '
'
' '

'� � 
 � �
#

                  

 

  , , Pr ,p

w w 0

T T cUU
T T T T U K

�

� �

' '� 1' '(
( � � � �

' ' ' '� �
      (3.6) 

 

  � �G r w2
0

L T T
U �' '� �       

 
where 0U is constant with the dimension of velocity; #  is the density of the fluid; K is thermal conductivity;
Cp  is specific heat at constant pressure; 1  is viscosity; (  is acceleration due to gravity, we may reduce the 
system of Eqs (3.1)–(3.3) by the group-theoretic generalized dimensional analysis will cause restrictions to 
be imposed on the function U(t) and ( )t(  in such a way that boundary conditions can be transformed into a 
meaningful form. 
 So in order to find a possible form of U(t) and ( )t( . The following group of transformations 1G  are 
introduced. 
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, , d e p e n d e n t  v a r ia b le s

: , in d e p e n d e n t  v a r ia b le s

, p h y s ic a l v a r ia b le s

1 4 y x 5y x

1 3 2

6 7

u A u A A

G y A y t A t

A U A U

2 � 
 � 
 ( � (
33 � �4
3
# � # �35

  

 
where � �.................iA S i 1 7' �  in 1G  are positive real parameters. 

 At the first step of similarity requirement iA S  of 1G  must be inter-related in order for system (3.1) 
(3.5a) (3.5b) to be an invariant in form. Indeed, this requirement will be met under following three-parameter 
groups of transformation 
 

  

; ,

; ,
:

; ,

.

0 0 1 0 1 0
1 2 3 1 2 3
0 1 2 1 0 0

1 2 3 1 2 3
1 1 1 1 1 0 0

y x 1 2 3 y x 1 2 3

1 1 0
1 2 3

y A A A y t A A A t

A A A U A A A U

A A A u A A A u

A A A

�

�

�

� �

#� # �
 


 � 
 �

(� (

 

 
 Now in order to apply Theorem 3, a pi theorem stated by Moran and Murshek (1972), (given in 
section-2) the rank of dimensional matrix associated with independent and physical variables BC  and 
physical variables C of 1  is required to be determined. 
 The associated dimensional matrix will be 
 

  : .

0 0 1
0 1 0BC
0 1 2
1 0 0

� �
� �
� �
� ��
� �
� �

                                          (3.7) 

 
 By inspection, the rank of B C r 3� �  and rank of C = S = 2 and since r and s in the light of 
Theorem – 3 following set of �̂ s can be obtained. 
 

  ˆ , , , .

11
22 y x

1 2 3
u t ty

t U U U

 ) *# () *� � � � � � � � + ,+ , #- . - .

       (3.8) 

 
 Clearly, �̂  is a similarity independent variable whereas , and1 2 3� � �  are similarity variables, i.e., 
in the usual notation. 
 
  � � � � � �ˆ ˆ ˆ, , .1 1 2 2 3 3f f f� � � � � � � � �                  (3.9) 
 
 Now for a non uniformly accelerated plate, if we consider U (t) = kt  and put �̂ �6  then the set of 
absolute invariants (3.8) will be 
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  � � � � � �, , , .

1
2 y x

1 2 3k k 1 1 1k
2 2

uy f f f
t t t

t
�

�


# () *6� 6 � 6 � 6 �+ ,
- .

#

    (3.10) 

 
 Under this set of transformations, the system (3.1) – (3.5a,b) will be reduced to the following set of 
ordinary differential equations. 
 

  � � Gr ,1 1 3 2
1 dk f f f f
2 d

'� 6 � # �
6

                           (3.11) 

 

  � �
Pr2 2 2

1 1k 1 f f f
2

' ''� � 6 �                                 (3.12) 

 
where prime denotes differentiation with respect to the boundary conditions which will cause the restriction 
on the wall temperature, that is k 1t �( �  will be 
 
  , ,1 20 f 1 f 16 � / � �                              (3.13a) 
 
  , ,1 2f 0 f 06 � � / � �                               (3.13b) 
 
with the stress-strain relationship 
 

  ; .
1 11 1k k
2 22 2

3 1F t f t f 0
) * ) *� �+ , + ,
- . - .

) *
+ ,'# # �
+ ,
- .

         (3.14) 

 
 The system prime (3.11) – (3.13a,b) suggests that similarity solutions of general Newtonian fluids 
exist for a non-uniformly accelerated vertical plate with variable wall temperature. Clearly, for k = 1 i.e., U 
(t) = t and 1(� , i.e., in the case of a uniformly accelerated plate with constant wall temperature Eqs (3.11) 
and (3.12) with boundary conditions (3.13a), (3.13b) will be reduced to same equations obtained by 
Soundalgekarand Pop (1980) for Newtonian fluids. 

 For 
1K
2

�  the strain-stress relationship (3.14) will be free from independent variable. This will lead 

to an interesting case, i.e., right angle flow geometry. In such a case, similarity solutions for all non-
Newtonian fluids will exist. 
 In this case Eqs (3.11) – (3.12) will be 
 

  G r ,3
1 1 2

d ff f 2 2 f
d

'� 6 � # �
6

                               (3.15) 

 

  ,
P r2 2 2
2f f f 0' ''� 6 � �                                              (3.16) 

 
with the same boundary conditions (3.13a), (3.13b). 
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4. Analysis for different models 
 
4.1. Newtonian case 
 
 In the case of general Newtonian fluids the stress-strain relationship (3.3) will come to 
 

  .y x
u
y' '
'�'
 � 1
'�

                                                (4.1) 

 
 Using non-dimensional quantities (3.6) and transformations (3.10) in Eq.(4.1) and substituting this in 
the right hand side of Eq.(3.11) , the system (3.11) – (3.13a,b) will come to (k=1) 
 

  G r ,1 1 2 2
1f f f f
2

''� 6 � # �                             (4.2) 
 

  ,
Pr2 2

1 1f f 0
2

' ''6 � �                                         (4.3) 

 
with the boundary conditions, 
 
  � � � �, ,1 2f 0 1 f 0 1� �                                   (4.4a) 
 

  � � � �, .1 2f 0 f 0� � � �                                      (4.4b) 
 
4.2. Non-Newtonian power-law case   
 
 Mathematically, a power-law model can be written as 
 

  
n 1

y x
u um
y y

�

' '
' '� �'
 �
' '� �

                                   (4.5) 

 
where m and n are fluid consistency indices. After a non-dimensional process this equation is substituted in 
Eq.(3.15) which yields  
 

  � � Gr ,
n 1

n 12
1 1 1 1 2

1 1f f n f f f
2 2

�
�'' ''� 6 � # �           (4.6) 

 

  ,
Pr2 2 2
2f f f 0' ''� 6 � �                                   (4.7) 

 
with the same boundary conditions (4.4a,b). 
 
4.3. Non-Newtonian Powell-Eyring case 
 
 Mathematically, a Powell-Eyring model can be written as 
 

  sinh 1
y x

u 1 1 u
y B C y

�
' '

' ') *� �'
 � 1 � + ,' '� �- .
                      (4.8) 
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where , ,B C1  are the parameters of fluids. Again, when this model is substituted in Eq.(3.15) we get 
 

  

� �
Gr ,1 1 1 21

2 2
1

1f f f 1 2 f

1 f

� �
� �
� �' ''�6 � # � �
� �

' ' '� �7� �� �

    (4.9) 

 

  ,
Pr2 2 2
2f f f 0' ''� 6 � �                                       (4.10) 

 

with the same boundary conditions (4.4a,b) where ;
3

2
uBC

3C L
#' '� � 1 7 �

1
 are non-dimensional quantities. 

 
5. Numerical solution of the problem 
 
 We present the accurate numerical solutions of the system of Eqs (4.2)-(4.4a,b)-(4.6)-(4.7) and (4.9)-
(4.10) by the method known as the spline collocation based on cubic B-spline functions which are piecewise 
polynomials of degree three. The method of cubic B-spline is successfully used by Timol et al. (1987) for 
some specific flow and heat transfer problems. More information about the spline collocation methods is 
found in the references (Bickley, 1968; Cheng and Minkowycz, 1977; De Boor, 1978; Prenter, 1975; Sun, 
1998; Usmani, 1992). Numerical results are presented in a tabular form for a various values of the associated 
parameters. We believe that these results serve as a reference against which other approximate solutions for 
the present problem can be compared in the future. In addition, this method can be applied to solve variety of 
problems in the field of applied mathematics. 
 Let S(x) be a cubic spline bunching expressed as follows in the interval ,i i 1x x �� �� �   

 

  ( ) i 1 i
i 1

x x x x
S x M i M i

h h
�

�
� �

'' � �                   (5.1) 

 
where h is the length of the sub-interval , ,i i 1x x �� �� �   

 
and  � � ati iM S x x x''� �     etc. 
 
 Two successive integrations lead to the derivation of S(x) as follows 
 

  
� �

� � � � � �

� �
; , , ..... .

2i i 1 i 1 i
i 1 i i 1 i 1

2 i 1
i

x x x x x xhS x M M y M
6h 6h 6 h

x xhy i 1 2 3 N
6 h

� �
� � �

�

� � �) *
� � � � �+ ,+ ,

- .

�) *
� � �+ ,+ ,
- .

       (5.2) 

 
 A similar expression of S(x) in the interval ,i 1 ix x�� �� �  is given by  
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� �

� � � � � �

� �
; , ..... .

2i 1 i i 1
i i 1 i i

2 i
i 1 i 1

x x x x x xhS x M M y M
6 h 6 h 6 h

x xhy M i 2 3 N 1
6 h

� �
�

� �

� � �) *
� � � � �+ ,+ ,

- .

�) *
� � � �+ ,+ ,
- .

          (5.3) 

 
 The continuity of S(x) at x = x yields a recurrence relation 
 

  � � , ....... .
2

i 1 i i 1 i 1 i i 1
hy 2 y y M 4M M i 2 3 N
6� � � �� � � � � �            (5.4) 

 
 This constitutes the system of (N+1) equations with (N+1) unknowns y, i = 1,2…(N+1). The 
coefficient matrix of this system is a non-singular matrix and hence a unique solution of the system is 
guaranteed. 
 Now in order to obtain a spline solution of the boundary value problem 
 
  � �, , ,y f x y y 0 x 1'' '� � �                                   (5.5) 
 
subject to the boundary conditions 
 
  � � � �, ,1G y 0 y 0 0'� � �� �                                           (5.6) 
 
  � � � �, ,2G y 1 y 1 0'� � �� �                                            (5.7) 
 
we required to solve the system of Eq.(5.4) where the quantities M, I = 1,2……N+1 can be obtained by 
evaluations ( ) at iy x x x'' �  from Eq.(5.5). Here maintaining compact computations let us assume that 
the boundary conditions of the problem are 
 
  a t ,1 2f f 1 0� � 6 �                          (5.8) 
 
  at .1 2f f 0 1� � 6 �                             
 
 Here we have taken different values of the Prandtl number and Grashof number and observed their 
effects. Also in the case of the power-law fluid the effects of non-Newtonian behavior index on the flow of 
the fluid are studied. 
 
6. Discussion of results 
 
 Dimensionless velocity distributions for different fluids model are shown in Figs 1, 2 and 3a,b. It is 
evident from the curves representing velocity profiles that the role of the Prandtl number as well as the 
Grashof number is quite significant. An increment in the Prandtl number is responsible for the reduction in 
velocity whereas a reduction in the Grashof number causes a decrees in velocity. Here it will be worthwhile 
noting that the case Gr >0 corresponds to the cooling of the plate while Gr < 0 to the heating of the plate by 
free convection currents. 
 For the  power-law fluids dimensionless velocity profiles are presented in Fig.2 for Pr = 7, Gr = 10 
or several flow indices n. The velocity profile will be very regular with the parameter n. 
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 Figures 3a and 3b show the velocity of the Powell-Eyring fluids flow as a function of n and different 
values of the Prandtl number and Grashof number as well as . and .40 1 10' '� � 7 �  In this case velocity 
profiles bear similarity to the Newtonian behavior as shown in Fig.1. 
 

 
 

Fig.1. Velocity profiles for Newtonian case. 
 

 
 

Fig.2. Velocity profiles for power-law case. 
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Fig.3a. Velocity profiles for Powell-Eyring case (Gr=10). 
 

 
 

Fig.3b. Velocity profile for Powell-Eyring case (Gr=5). 
 
7. Conclusion 
 
 The important conclusion drawn from this analysis is that in comparison to other similarity 
techniques, the new group theoretic generalized dimensional analysis relaxes the restriction on the main 
stream velocity which finally leads to the class of similarity solutions of the problem.  
 The application of the spline collocation method to the set of non-linear differential equations leads 
to the solution of linear algebraic equations. Very compact solutions are involved here. The convergence of 
the method is found to be very fast as the results presented in all the tables are obtained by successive four 
approximations. This type of simplicity in application justifies a wide use of the method. Another significant 
feature of this method is that there is no restriction on the domain, which affects the convergence of the 
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method. It is observed that the value of the function can be obtained at any knots of the domain of boundary 
value problems, which is the advantage of the method. Thus the cubic spline collocation method with 
quasilinearization is quite versatile and effective to deal with nonlinear boundary value problems in different 
fields of applied mathematics. 
 
Nomenclature 
 
 Cp  – specific heat at constant pressure 
 eij  – strain rate component 
 F  – arbitrary function  
 Gr  – Grashof number 
 K  – thermal conductivity 
 Pr  – Prandtl number 
 U, W  – main stream velocities in X and Z directions 
 U0  – constant with the dimension of velocity 
 U (t)  – dimensionless free stream velocity 
 u, v, w  – velocity components in X, Y, Z directions respectively 
 6   – similarity variable 
 (   – dimensionless temperature 
 1   – viscosity  
 #   – density of the fluid 
 ij
   – stress component  
 yx
   – stress tensor in the direction of X-axis perpendicular to Y-axis 
 yz
   – stress tensor in the direction of Z-axis perpendicular to Y-axis 
 8   – stream function 
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