Brief note

FREE VIBRATION ANALYSIS OF ISOTROPIC RECTANGULAR PLATES ON WINKLER FOUNDATION USING DIFFERENTIAL TRANSFORM METHOD

Y. KUMAR

Department of Mathematics M.K. Government Degree College Ninowa Farrukhabad-209 602, Uttar Pradesh, INDIA E-mail: yaju saini@yahoo.com

A differential transform method (DTM) is used to analyze free transverse vibrations of isotropic rectangular plates resting on a Winkler foundation. Two opposite edges of the plates are assumed to be simply supported. This semi-numerical-analytical technique converts the governing differential equation and boundary conditions into algebraic equations. Characteristic equations are obtained for three combinations of clamped, simply supported and free edge conditions on the other two edges, keeping one of them to be simply supported. Numerical results show the robustness and fast convergence of the method. Correctness of the results is shown by comparing with those obtained using other methods.

Key words: differential transform method, isotropic, rectangular, Winkler foundation.

1. Introduction

Rectangular plates are used as structural elements in various technological situations in different engineering fields, e.g., aeronautics, civil, marine, mechanical and optical engineering. Overall performance of a structure is highly influenced by the dynamic behavior of the plates. Vibrations of these plates have been analyzed using different techniques, namely, the finite element method (Venkateswara, 1974), the Superposition-Galerkin method (Gorman, 2000), the meshless method (Chen *et al.*, 2004), the differential quadrature method (Wang *et al.*, 2006), the singular convolution method (Omer *et al.*, 2010) and the Rayleigh-Ritz method (Kumar and Lal, 2011), etc. The differential transform method was introduced by Zhou (1986). This method was used by Arikoglu and Ozcol (2005) to find analytical solutions of differential or integro-differential equations. It has been successfully applied in the analysis of various vibration problems (Malik and Allali, 2000; Yalcin *et al.*, 2000; Attarnejad *et al.*, 2010 and Kacar *et al.*, 2011). Using this method the differential equation governing the free transverse vibrations of the plate and boundary conditions are transformed into algebraic equations which provide the characteristic equations. These characteristic equations are solved numerically to obtain first three natural frequencies. The results indicate that differential transform method is a reliable and fast converging method for the vibration analysis of rectangular plates.

2. Formulation of the problem

Consider an isotropic rectangular plate of uniform thickness h with the domain $0 \le x \le a, 0 \le y \le b$ in the xy – plane, where a and b are the length and the breadth of the plate, respectively. The x – and y – axes are taken along the edges of the plate and the axis of z – is perpendicular to the xy – plane. The

middle surface is z = 0 and the origin is at one of the corners of the plate. The plate is resting on a Winkler foundation having the foundation modulus k_f .

The governing differential equation of motion of an isotropic rectangular plate resting on the Winkler foundation is given as follows

$$\frac{\partial^4 W}{\partial X^4} + 2\lambda^2 \frac{\partial^4 W}{\partial X^2 \partial Y^2} + \lambda^4 \frac{\partial^4 W}{\partial Y^4} + KW = \Omega^2 W, \qquad 0 \le X \le I, \qquad 0 \le Y \le I$$
(2.1)

where $X = x/a, Y = y/b, \ \lambda = a/b, W$ is the transverse displacement at $(X,Y), \ K = \left(k_f a^4/D\right)$ is the

foundation modulus parameter and $\Omega^2 = \frac{I2(I-v^2)\rho a^4\omega^2}{Eh^3}$ is the frequency parameter.

Assuming the two opposite edges Y = 0 and Y = 1 to be simply supported, the deflection function can be expressed as follows

$$W = \overline{W}(X)\sin(m\pi Y) \tag{2.2}$$

where m is an integer.

Substitution of Eq.(2.2) into Eq.(2.1) leads to

$$\frac{d^4\overline{W}}{dX^4} - 2m^2\pi^2\lambda^2\frac{d^4\overline{W}}{dX^2} - \left(\Omega^2 - m^4\pi^4\lambda^4 - K\right)\overline{W} = 0.$$
(2.3)

3. Boundary conditions

Three boundary conditions, namely, SC, SS and SF have been considered where the first letter represents the boundary condition at the edge X = 0 and second one at the edge X = 1. Here *C* stands for a clamped edge, *S* for a simply supported and *F* for a free edge. The edges Y = 0 and Y = 1 are assumed to be simply supported. The conditions that should be satisfied at the edges X = 0 and X = 1 are

$$\overline{W} = \frac{d\overline{W}}{dX} = 0,$$
 for clamped edge (3.1)

$$\overline{W} = \frac{d^2 \overline{W}}{dX^2} - \upsilon \left(m^2 \pi^2 \lambda^2 \right) \overline{W} = 0, \quad \text{for simply supported edge}$$
(3.2)

$$\frac{d^2 \overline{W}}{dX^2} - \upsilon \left(m^2 \pi^2 \lambda^2 \right) \overline{W} = 0, \qquad \frac{d^3 \overline{W}}{dX^3} - (2 - \upsilon) \left(m^2 \pi^2 \lambda^2 \right) \frac{d \overline{W}}{dX} = 0. \quad \text{for free edge}$$
(3.3)

4. The solution

The differential transform method (DTM) is based on the Taylor series expansion. The Taylor series expansion of a function f(x) may be written as

$$f(x) = \sum_{r=0}^{\infty} (x - x_0)^r F_r$$

where $F_r = \frac{l}{r!} \left(\frac{d^r f}{dx^r} \right)_{x=x_0}$ is called the r^{th} order differential transform of f(x) about a point $x = x_0$.

Differential transforms of some of the fundamental functions are given in Tab.1.

Table 1						
S. No.	Function	Differential Transform				
1	f(x) + g(x)	$F_r + G_r$				
2	af(x)	aF_r				
3	f(x)g(x)	$\sum_{r=0}^{k} F_r G_{k-r}$				
4	$\frac{d^k f}{dx^k}$	$\frac{(r+k)!}{r!}F_{r+k}$				
5	ax^k	$a\delta_{r-k}, \ \delta_{r-k} = \begin{cases} l, r=k\\ 0, r \neq k. \end{cases}$				
6	$\sin(ax+b)$	$\frac{a^r}{r!}F_r\sin(\pi r/2+b)$				
7	$\cos(ax+b)$	$\frac{a^r}{r!}F_r\cos(\pi r/2+b)$				
8	e^{ax}	$\frac{a^r}{r!}$				
9	$\int_{x_0}^x f(t)dt$	$\frac{F(r-1)}{r}, r \ge 1, F(0) = 0$				

Taking the differential transform of Eq.(2.3) at $X_0 = 0$ using Tab.1, we get

$$\frac{r+4!}{r!}\overline{W}_{r+4} - 2m^2\pi^2\lambda^2\frac{r+2!}{r!}\overline{W}_{r+2} - \left(\Omega^2 - m^4\pi^4\lambda^4 - K\right)\overline{W}_r = 0.$$
(4.1)

The boundary conditions (3.1)-(3.3) may be transformed as follows

$$\sum_{r=0}^{\infty} (X - X_0)^r \overline{W}_r = 0,$$
(4.2)
$$\sum_{r=0}^{\infty} r (X - X_0)^{r-1} \overline{W}_r = 0,$$

$$\sum_{r=0}^{\infty} (X - X_0)^r \overline{W}_r = 0,$$
(4.3)
$$\sum_{r=0}^{\infty} r (r - I) (X - X_0)^{r-2} \overline{W}_r = 0$$

and

$$\sum_{r=0}^{\infty} r(r-I)(X-X_0)^{r-2} \overline{W}_r - \upsilon \left(m^2 \pi^2 \lambda^2\right) \sum_{r=0}^{\infty} (X-X_0)^r \overline{W}_r = 0,$$

$$\sum_{r=0}^{\infty} r(r-I)(r-2)(X-X_0)^{r-3} \overline{W}_r - (2-\upsilon) \left(m^2 \pi^2 \lambda^2\right) \sum_{r=0}^{\infty} r(X-X_0)^{r-1} \overline{W}_r = 0.$$
(4.4)

The general solution (Malik and Allali, 2000) of Eq.(2.3) can be written as

$$\overline{W}_{r} = \frac{\left(d_{1}R_{1}^{r} + d_{2}R_{2}^{r}\right)}{r!}, \qquad r = 0, 1, 2, 3, \dots, \infty,$$
(4.5)

where

$$R_1^2 = m^2 \pi^2 \lambda^2 + \sqrt{\Omega^2 - K}, \qquad R_2^2 = m^2 \pi^2 \lambda^2 - \sqrt{\Omega^2 - K}.$$

Rewriting Eq.(4.5) as

$$\overline{W}_{2r} = \frac{\left(d_1 R_1^{2r} + d_2 R_2^{2r}\right)}{2r!},\tag{4.6}$$

$$\overline{W}_{2r+1} = \frac{\left(d_3 R_1^{2r+1} + d_4 R_2^{2r+1}\right)}{(2r+1)!}.$$
(4.7)

Case 1: Simply supported at X=0 and clamped at X=1

Let $X_0 = 0$. At X=0, Eq.(4.3) becomes

$$\overline{W}_0 + 0\overline{W}_1 + 0\overline{W}_2 + 0\overline{W}_3 + 0\overline{W}_4 + 0\overline{W}_5 + \dots = 0,$$

$$0\overline{W}_0 + 0\overline{W}_1 + \overline{W}_2 + 0\overline{W}_3 + 0\overline{W}_4 + 0\overline{W}_5 + \dots = 0,$$
(4.8)

i.e., $\overline{W}_0 = \overline{W}_2 = 0$. Using these values in Eq.(4.5), we get $d_1 = d_2 = 0$. It implies $\overline{W}_{2r} = 0$. For r=0 and *l*, Eq.(4.5) gives

$$\overline{W}_{I} = d_{3}R_{I} + d_{4}R_{2}, \qquad 6\overline{W}_{3} = d_{3}R_{I}^{3} + d_{4}R_{2}^{3},$$
$$d_{3}R_{I} = \left(6\overline{W}_{3} - R_{2}^{2}\overline{W}_{I}\right)\frac{\lambda^{2}}{2\Omega}, \qquad d_{4}R_{2} = \left(R_{I}^{2}\overline{W}_{I} - 6\overline{W}_{3}\right)\frac{\lambda^{2}}{2\Omega}.$$

and

Now, Eq.(4.7) becomes

$$\begin{split} \overline{W}_{2r+I} &= \frac{\lambda^2}{2\Omega} \Biggl[\frac{\left(\left(6\overline{W}_3 - R_2^2 \overline{W}_1 \right) R_1^{2r} + \left(R_1^2 \overline{W}_1 - 6 \overline{W}_3 \right) R_2^{2r} \right)}{(2r+I)!} \Biggr] = \\ &= \frac{\lambda^2}{2\Omega} \Biggl[\frac{\left(R_1^2 R_1^{2r} - R_2^2 R_1^{2r} \right) \overline{W}_1 + 6 \left(R_1^{2r} - R_2^{2r} \right) \overline{W}_3}{(2r+I)!} \Biggr]. \end{split}$$
(4.9)

At X=I, Eqs (4.2) become

$$\begin{split} &\overline{W}_{l} + \overline{W}_{3} + \overline{W}_{5} + \dots = 0, \\ &\overline{W}_{l} + 3\overline{W}_{3} + 5\overline{W}_{5} + \dots = 0, \\ &\sum_{r=0}^{\infty} \left[\frac{\left(R_{l}^{2} R_{2}^{2r} - R_{2}^{2} R_{l}^{2r} \right)}{(2r+1)!} \right] \overline{W}_{l} + 6 \sum_{r=0}^{\infty} \left[\frac{\left(R_{l}^{2r} - R_{2}^{2r} \right)}{(2r+1)!} \right] \overline{W}_{3} = 0, \end{split}$$
(4.10)
$$&\sum_{r=0}^{\infty} \left[\frac{\left(R_{l}^{2} R_{2}^{2r} - R_{2}^{2} R_{l}^{2r} \right)}{(2r)!} \right] \overline{W}_{l} + 6 \sum_{r=0}^{\infty} \left[\frac{\left(R_{l}^{2r} - R_{2}^{2r} \right)}{(2r)!} \right] \overline{W}_{3} = 0.$$
(4.11)

The characteristic equation is obtained from the non-trivial condition

$$\begin{vmatrix} \sum_{r=0}^{\infty} \frac{\left(R_{1}^{2}R_{2}^{2r} - R_{2}^{2}R_{1}^{2r}\right)}{(2r+1)!} & 6\sum_{r=0}^{\infty} \frac{\left(R_{1}^{2r} - R_{2}^{2r}\right)}{(2r+1)!} \\ \sum_{r=0}^{\infty} \frac{\left(R_{1}^{2}R_{2}^{2r} - R_{2}^{2}R_{1}^{2r}\right)}{(2r)!} & 6\sum_{r=0}^{\infty} \frac{\left(R_{1}^{2r} - R_{2}^{2r}\right)}{(2r)!} \end{vmatrix} = 0.$$

$$(4.12)$$

Case 2: Simply supported at X=0 and simply supported at X=1

After taking the differential transform, Eqs (4.3) at X=1 can be written as follows

$$\overline{W}_1 + \overline{W}_3 + \overline{W}_5 + \dots = 0,$$

$$0\overline{W}_1 + 6\overline{W}_3 + 20\overline{W}_5 + \dots = 0.$$

The characteristic equation becomes

Case 3: Simply supported at X=0 and free at X=1

The differential transform of Eqs (4.4) at X=1 leads to

 $q_1 = \upsilon \left(m^2 \pi^2 \lambda^2 \right), \qquad q_2 = (2 - \upsilon) \left(m^2 \pi^2 \lambda^2 \right)$

$$(-q_1)\overline{W}_1 + (6-q_1)\overline{W}_3 + (20-q_1)\overline{W}_5 + \dots = 0,$$

$$(-q_2)\overline{W}_1 + 3(2-q_2)\overline{W}_3 + 5(12-q_2)\overline{W}_5 + \dots = 0,$$

where

and the characteristic equation is given as follows

$$\begin{vmatrix} \sum_{r=0}^{\infty} \frac{\left((2*r+l)(2*r)-q_{I}\right)\left(R_{I}^{2}R_{2}^{2r}-R_{2}^{2}R_{I}^{2r}\right)}{(2r+l)!} & \sum_{r=0}^{\infty} \frac{\left((2*r+l)(2*r)-q_{I}\right)\left(R_{I}^{2r}-R_{2}^{2r}\right)}{(2r+l)!} \\ \sum_{r=0}^{\infty} \frac{\left((2*r)(2*r-l)-q_{2}\right)\left(R_{I}^{2}R_{2}^{2r}-R_{2}^{2}R_{I}^{2r}\right)}{(2r)!} & \sum_{r=0}^{\infty} \frac{\left((2*r)(2*r-l)-q_{2}\right)\left(R_{I}^{2r}-R_{2}^{2r}\right)}{(2r)!} \end{vmatrix} = 0. \quad (4.14)$$

The displacement function for SC plate

The displacement function for SS plate

$$\begin{split} \bar{W}(X) &= \frac{\lambda^2}{2\Omega} \sum_{r=0}^{N} X^{2r+I} \frac{(R_l^2 R_2^{2r} - R_2^2 R_l^{2r})}{(2r+I)!} \bar{W}_l + 6 \frac{\lambda^2}{2\Omega} \sum_{r=0}^{N} X^{2r+I} \frac{(R_l^{2r} - R_2^{2r})}{(2r+I)!} \bar{W}_3, \end{split}$$
(4.16)
$$&= \frac{\lambda^2}{2\Omega} \sum_{r=0}^{N} X^{2r+I} \frac{\left(R_l^2 R_2^{2r} - R_2^2 R_l^{2r}\right)}{(2r+I)!} \bar{W}_l - 6 \frac{\lambda^2}{2\Omega} \left(\sum_{r=0}^{N} X^{2r+I} \frac{(R_l^{2r} - R_2^{2r})}{(2r+I)!} \right) \left(\frac{\sum_{r=0}^{N} \frac{\left(R_l^2 R_2^{2r} - R_2^2 R_l^{2r}\right)}{(2r-I)!}}{6\sum_{r=0}^{N} \frac{\left(R_l^{2r} - R_2^{2r}\right)}{(2r-I)!}}{(2r-I)!} \right) \bar{W}_l. \end{split}$$

Displacement function for SF plate

$$\overline{W}(X) = \frac{\lambda^2}{2\Omega} \sum_{r=0}^{N} X^{2r+l} \frac{\left(R_l^2 R_2^{2r} - R_2^2 R_l^{2r}\right)}{(2r+l)!} \overline{W}_l + 6 \frac{\lambda^2}{2\Omega} \sum_{r=0}^{N} X^{2r+l} \frac{\left(R_l^{2r} - R_2^{2r}\right)}{(2r+l)!} \overline{W}_3,$$

$$= \frac{\lambda^2}{2\Omega} \sum_{r=0}^{N} X^{2r+l} \frac{\left(R_l^2 R_2^{2r} - R_2^2 R_l^{2r}\right)}{(2r+l)!} \overline{W}_l - \frac{\lambda^2}{2\Omega} \left(\sum_{r=0}^{N} X^{2r+l} \frac{\left(R_l^{2r} - R_2^{2r}\right)}{(2r+l)!}\right)^* temp^* \overline{W}_l,$$

$$temp = \frac{\sum_{r=0}^{N} \frac{\left((2^*r)(2^*r-l) - q_2\right) \left(R_l^2 R_2^{2r} - R_2^2 R_l^{2r}\right)}{(2r)!}}{\sum_{r=0}^{N} \frac{\left((2^*r)(2^*r-l) - q_2\right) \left(R_l^{2r} - R_2^{2r}\right)}{(2r)!}}{(2r)!}.$$

$$(4.17)$$

To obtain the values of the frequency parameter Ω , the characteristic Eqs (4.12)-(4.14) have been solved with the help of a computer program developed in C++ using the bisection method for different values of the aspect ratio λ (=*a/b*) and foundation modulus parameter *K*. This program was run for different values of *N* until we get the first three values of the frequency parameter Ω correct to four decimal places and the value of *N* has been taken as 21. In this study, *m* = *1* and υ = 0.3 have been fixed. The values of the frequency parameter Ω for different combinations of the aspect ratio and foundation modulus parameter are presented in Tab.2. It is concluded that the value of the frequency parameter decreases in the order SC>SS>SF. Further, it increases with the increasing values of the foundation modulus parameter *K* and aspect ratio *a/b*. A comparison of results for plates without foundation is given in Tab.3 which shows fast convergence of the method. Moreover, the results are better than those obtained by Bhat *et al.* (1990) and Bambill *et al.* (2000). Further, mode shapes may be drawn using Eqs (4.15)-(4.17).

Table 2										
		SC			SS			SF		
		$\lambda = a / b$								
K	Mode	0.5	1.0	2.0	0.5	1.0	2.0	1.0	2.0	
100	Ι	20.0097	25.6739	52.6330	15.8809	22.1277	50.3510	15.3795	42.3930	
	II	53.0490	59.4928	86.7130	43.1213	50.3510	79.5876	29.5028	59.9061	
	III	106.9470	113.6690	141.2000	91.8399	99.2014	128.6940	62.6637	95.0114	
200	Ι	22.3694	27.5526	53.5746	18.7671	24.2824	51.3344	18.3447	43.5564	
	Π	53.9833	60.3274	87.2877	44.2657	51.3345	80.2134	31.1515	60.7349	
	III	107.4140	114.1080	141.5540	92.3827	99.7041	129.0820	63.4566	95.5362	
300	Ι	24.5028	29.3112	54.4998	21.2650	26.2610	52.2994	20.8933	44.6897	
	Π	54.9017	61.1506	87.8586	45.3812	52.2994	80.8343	32.7172	61.5527	
	III	107.8780	114.5450	141.9070	92.9223	100.2040	129.4690	64.2397	96.0581	
400	Ι	26.4649	30.9701	55.4096	23.4990	28.1005	53.2469	23.1631	45.7948	
	II	55.8050	61.9628	88.4259	46.4699	53.2468	81.4505	34.2113	62.3597	
	III	108.3410	114.9810	142.2580	93.4589	100.7020	129.8540	65.0133	96.5773	
500	Ι	28.2912	32.5446	56.3048	25.5382	29.8268	54.1778	25.2295	46.8739	
	Π	56.6938	62.7646	88.9896	47.5337	54.1777	82.0621	35.6429	63.1564	
	III	108.8010	115.4150	142.6100	93.9923	101.1970	130.2390	65.7779	97.0936	

Table 3 $(a / b = l, K = 0)$									
Boundary	Reference	Mode							
conditions		Ι	II	III					
50	Bhat <i>et al.</i> (1990)	23.6463	58.6465	113.5220					
50	Present	23.6463	58.6464	113.2280					
55	Bhat <i>et al.</i> (1990)	19.7392	49.3481	<i>99.3042</i>					
55	Present	19.7392	49.3480	98.6960					
SE	Bambill <i>et al.</i> (2000)	11.7195	-	-					
бг	Present	11.6845	27.7563	61.8606					

5. Conclusions

The applicability of the differential transform method to analyze free transverse vibrations of isotropic rectangular plates of uniform thickness resting on a Winkler foundation is shown. The two opposite edges of the plate are assumed to be simply supported. Three combinations of boundary conditions, namely, simply supported, clamped and free have been taken on other two edges, keeping one of them simply supported. Characteristic equations have been obtained in the form of infinite series and have been solved numerically using a computer program developed in C++ to obtain natural frequencies. The results obtained show reliability and fast convergence of the method for rectangular plates.

Nomenclature

- a length of the plate
- *b* breadth of the plate
- C clamped edge
- D flexural rigidity
- *E* Young's modulus
- F- free edge
- h- thickness
- K foundation parameter
- k_f foundation modulus
- m- an integer
- S simply supported edge
- W- displacement
- X, Y non-dimensional variables
- x, y, z Cartesian coordinates
 - λ aspect ratio
 - υ- Poisson ratio
 - Ω frequency parameter
 - ω radial frequency

References

Arikoglu A. and Ozcol I. (2005): Solution of boundary value problems for integro-differential equation by using differential transform method. – Appl. Math. Comp., vol.168, pp.1145-1158.

Attarnejad R., Shabha A. and Semnani S.J. (2010): Application of differential transform in free vibration analysis of Timoshenko beams resting on two- parameter elastic foundation. – The Arabian J. Sci. Eng., vol.35(2B), pp.125-132.

- Bambill D.V., Rossit C.A., Laurra P.A.A. and Rossit R.E. (2000): *Transverse vibrations of an orthotropic rectangular* plate of linearly varying thickness and with a free edge. J. Sound Vib., vol.235(3), pp.530-538.
- Bhat R.B., Laura P.A.A., Gutierrez R.G., Cortinez V.H. and Sanzi V.H. (1990): Numerical experiment on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness. – J. Sound Vib., vol.138, pp.205-219.
- Chen J.T., Chen I.L., Lee Y.T. and Yeh Y.T. (2004): A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function. Eng. Analysis with Boundary Elements, vol.28, No.5, pp.535-545.
- Gorman D.J. (2000): Free vibration analysis of completely free rectangular plates by the Superposition-Galerkin method. J. Sound Vib., vol.237(5), pp.901-914.
- Kacar A., Tan H.T. and Kaya M.O. (2011): Free vibration analysis of beams on variable elastic foundation by using the differential transform method. – Mathematical Compu. Applications, vol.16(3), pp.773-783.
- Malik M. and Allali M. (2000): *Characteristic equations of rectangular plates by differential transform method.* J. Sound Vib., vol.233(2), pp.359-366.
- Omer C., Armagan K. and Cigdem D. (2010): Discrete singular convolution approach for buckling analysis of rectangular Kirchoff plates subjected to compressive loads on two opposite edges. – Adv. Eng. Software, vol.41, pp.557-560.
- Venkateswara R.G., Prakash R.B. and Raju I.S. (1974): Vibrations of inhomogeneous thin plates using a high precision triangular element. – J. Sound Vib., vol.34(3), pp.444-445.
- Wang X., Gan L. and Wang Y. (2006): A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stress. – J. Sound Vib., vol.298, pp.420-431.
- Yajuvindra Kumar and Lal R. (2011): Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation. Meccanica, DOI:10.1007/s11012-011-9459-4.
- Yalcin H.S., Arikoglu A. and Ozcol I. (2000): Free vibration analysis of circular plates by differential transform method. – Appl. Math. Comp., vol.212, pp.377-386.
- Zhou J.K. (1986): *Differential transformation and its application for electrical circuits* (in Chinese). Wuhan, P.R. China: Huazhong University Press.

Received: December 21, 2011 Revised: November 24, 2012