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The eigen value approach, following the Laplace and Hankel transformation has been employed to find a 
general solution of the field equations in a micropolar elastic medium with voids for an axisymmetric problem. 
An infinite space with the mechanical source has been applied to illustrate the utility of the approach. The integral 
transformations has been inverted by using a numerical inversion technique to get the result in physical domain. 
The results in the form of normal displacement, volume fraction, normal force stress, tangential force stress and 
tangential couple stress components have been obtained numerically and illustrated graphically.   
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1. Introduction 
 

The classical theory of elasticity successfully explains the behavior of construction materials 
(various sorts of steel, aluminum, concrete) provided the stresses do not exceed the elastic limit and no stress 
concentration occurs. The linear theory of elastic materials with voids is one of the generalizations of the 
classical theory of elasticity. This theory has practical utility to investigate various type of geological, 
biological and synthetic porous materials for which the elastic theory is inadequate. It is concerned with 
elastic materials consisting of a distribution of small pores (voids), in which the void’s volume is included 
among the kinematic variables, and in the limiting case when the volume tends to zero this theory reduces to 
the classical theory of elasticity. The process of voids is known to affect the estimations of the physical-
mechanical properties of the composite and also to weaken the bond as these pores (voids) get spread over a 
wide area. 

It is commonly accepted that the mechanical behavior of the granular masses is strongly affected by 
their microstructure, namely the relative arrangement of the voids and particles, i.e., the granular fabric. 
Therefore parameters which characterize the granular mass are of paramount importance in the fundamental 
description of overall macroscopic stresses and deformation measures. The study of deformations in granular 
materials is important in many areas of science and technology such as powder metallurgy and earth quake 
engineering. In recent years, dynamic compaction of powders has been used to manufacture advance 
composites. A granular medium is composed of a large number of distinct particles as well as some 
heterogeneous inclusions. Voids may be filled with gas or liquid at the boundaries of discontinuity and  a 
mismatch on the incident wave will produce both transmission and reflection waves of different modes. 
Wave propagation phenomenon in such media not only depends on the microstructure but on the existence of 
inclusions and voids.    

A non-linear theory of elastic materials with voids was developed by Nunziato ans Cowin (1979). 
Later Cowin and Nunziato (1983) developed a theory of linear elastic materials with voids. Lewis and Isaak 
(1982) discussed the voids of minimum stress concentration. Later Nunziato and Cowin (1983) developed a 
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theory of linear elastic materials with voids, for a mathematical study of mechanical behavior of porous 
solids. Pouget and Maugin (1983) established non-homogeneous elastoacoutic equations for piezoelectric 
powders and discussed the continuum approach to elastoacoutic echoes in piezoelectric powders. Puri and 
Cowin (1985) studied the behavior of plane harmonic waves in linear elastic materials with voids. 
Chandersekharahaiah (1986) studied plane waves in the rotating elastic solids with voids. The problem of 
complete solution in the theory of isotropic elastic materials with voids was discussed by 
Chandersekharahaiah (1989). Scarpetta (1995) proved some theorem of uniqueness for linear elastic 
materials with voids.  

The particles of classical elastic materials have only translational degree of freedom and transmission 
of the load across the differential element of the surface is described by a force vector only, whereas the 
polycrystalline materials do not confirm this. These materials are fibrous and composite in nature, show size 
effect and have additional micro-deformational degree of freedom, i.e., they possess a microstructure whose 
size cannot be neglected in comparisons with the length scale of interest. Various degrees of freedom of a 
microstructure were considered by different authors, e.g., Cosserat and Cosserat (1909), Eringen and Suhubi 
(1964) and Mindlin (1964). The force at any point of surface elements of the body of these materials is 
completely characterized by a stress vector and a couple stress vector at that point. In the classical theory of 
elasticity, the effect of couple stress is neglected. Eringen (1966) modified his earlier theory and renamed it 
as the “Linear Theory of Micropolar Elasticity”.  

Iesan (1985) studied shock waves in micropolar elastic materials with voids. Scarpetta (1990) 
worked on the fundamental  solution in micropolar elasticity with voids. Marin (1996) showed the existence 
and uniqueness of solution for boundary value problems in elasticity of micropolar materials with voids. 
Marin (1996) discussed generalized solutions in elasticity of micropolar bodies with voids. Marin (1998) 
derived a temporally evolutionary equation in a micropolar elastic body with voids.  

 
2. Formulation and solution of the problem 

 
We consider a homogeneous, isotropic micropolar elastic solid with voids. We take a cylindrical 

polar co-ordinates system (r, θ, z) where the z-axis is pointing into the medium. Following Eringen(1968) 
and Iesan (1985) field equations and constitutive relations in the micropolar elastic solid with voids in the 
absence of body loads are given by  
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(2.5) 
 

 Since we are considering a two-dimensional axisymmetric problem, so we assume the components 
of the displacement vector u and microrotation vector   are of the form 
 

   , ,r zu 0 uu           , ,0 0  ,    (2.6) 
 

Here due to symmetry about the z-axis all the quantities are independent of θ.  
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Using Eqs (2.6) the set of Eqs (2.1)-(2.3) reduces to  
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Introducing dimensionless quantities 
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 After suppressing the primes for convenience Eqs (2.7)-(2.10) reduce to 
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where                           
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Applying the Laplace and Hankel transforms defined by 
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on Eqs (2.13)-(2.16), we obtain 
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 The system of Eqs (2.20)-(2.23) can be written as 
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where O and I are null and unit matrices of order 4. 
 To solve Eq.(2.24), we take 
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For some parameter q, we obtain  
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The eigen values of the matrix A are characteristic roots of Eq.(2.29).The eigen vectors  ,X p  

corresponding to the eigen value sq  can be determined by solving the homogenous equations 
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 Thus the solution of Eq.(2.24) as given by Sharma and Chand (1992) is 
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where , , , , , ,1 2 3 4 5 6 7E E E E E E E  and 8E  are eight arbitrary constants. Equation (2.42) represents the solution 
of the general problem for the axisymmetric case of a micropolar elastic medium with voids and gives 
displacement, microrotation and volume fraction components in the transformed domain. 
 
3. Application 

 
Case-I Mechanical normal point source 
 
  We consider an infinite micropolar elastic space with voids in which a concentrated force 

( ) ( )
0

r t
F F

2 r

 
 


 where 0F  is the magnitude of the force, acting in the direction of the z-axis at the origin of 

the cylindrical polar co-ordinate system as shown in Fig.1. The boundary condition for present problem on 
the plane z=0 are  
 

             ( , , ) ( , , ) ,r ru r 0 t u r 0 t 0               ( , , ) ( , , ) ,z zu r 0 t u r 0 t 0             (3.1) 
 

  ( , , ) ( , , ) ,r 0 t r 0 t 0 
              * *( , , ) ( , , ) ,q r 0 t q r 0 t 0        (3.2) 

 

     , , , , ,zr zrt r 0 t t r 0 t 0                        
, , , , ,zz zz 0

r t
t r 0 t t r 0 t F

2 r
   

  


 (3.3) 

 

     , , , , ,z zm r 0 t m r 0 t 0 
              

   * *, , , ,
.

q r 0 t q r 0 t
0

z z

  
 

           
(3.4) 

 

Making use of Eqs (2.6) and (2.12) on Eqs (2.4)-(2.5) and 
K

F
F 0

0  , we get the stresses in the non-

dimensional form with primes. After suppressing the primes and applying the Laplace and Hankel transforms 
defined by Eqs (2.18) and (2.19) on the resulting equations and from Eqs (3.1)-(3.4) we get the transformed 
components of displacement, microrotation, volume fraction, tangential force stress, normal force stress and 
tangential couple stress for z>0 which are given by  

 

   ( , , ) 3 41 2 q z q zq z q z
r 1 1 5 2 2 6 3 3 7 4 4 8u z p a q E e a q E e a q E e a q E e       , (3.5) 

 

  ( , , ) 3 41 2 q z q zq z q z
z 1 5 2 6 3 7 4 8u z p b E e b E e b E e b E e       , (3.6) 

 

   ( , , )  - 3 41 2 q z q zq z q z
5 6 7 8z p E e E e E e E e  

       , (3.7) 

 

   * , ,  3 41 2 q z q zq z q z
1 5 2 6 3 7 4 8q z p c E e c E e c E e c E e       ,       (3.8) 
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         
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(3.9) 
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1 2

3 4

q z q z
zz 13 1 14 1 1 15 1 1 5 13 2 14 2 2 15 2 2 6

q z q z
13 3 14 3 3 15 3 3 7 13 4 14 4 4 15 4 4 8

t z p s c s a q s b q E e s c s a q s b q E e

s c s a q s b q E e s c s a q s b q E e



 

        
        


(3.10) 

 

   ( , , )    ,        3 41 2 q z q zq z q z
z 1 1 2 6 3 7 4 8m z p q E e q E e q E e q E e  
      

                (3.11) 
 
for z<0, the above expression gets modified as 
 

   ( , , ) 3 41 2 q z q zq z q z
r 1 1 1 2 2 2 3 3 3 4 4 4u z p a q E e a q E e a q E e a q E e       . (3.12) 

 
 Making use of the transformed displacement, microrotation, volume fraction and stress components 
given by Eqs (3.5)-(3.12) in the boundary conditions, we obtain eight linear relations between 

, , , , , ,1 2 3 4 5 6 7E E E E E E E  and 8E , which on solving give  
 

  

      0
1 5 2 3 4 3 4 2 4 2 3

1 1

F
E E c a a c a a c a a

4 q
         

, (3.13) 

 

  

      0
2 6 1 4 3 3 1 4 4 3 1

2 1

F
E E c a a c a a c a a

4 q
         

,  (3.14) 

 

  

      0
3 7 1 2 4 2 4 1 4 1 2

3 1

F
E E c a a c a a c a a

4 q
         

, (3.15) 

 

  

      0
4 8 1 3 2 2 1 3 3 2 1

4 1

F
E E c a a c a a c a a

4 q
         

 (3.16) 

 
where 
 

  

      
      
      
       .

1 15 1 2 3 3 2 3 4 4 3 4 2 2 4

2 3 1 1 3 1 4 4 1 4 3 3 4

3 1 2 2 1 4 1 1 4 2 4 4 2

4 2 1 1 2 1 3 3 1 3 2 2 3

s c a b a b a b a b a b a b

c a b a b a b a b a b a b

c a b a b a b a b a b a b

c a b a b a b a b a b a b

       
      

      

                                    

(3.17)

 
 

Thus the functions , , , , ,1 3 2 31 33u u T t t    
 and 32m  have been determined in the transform domain and 

thy enable us to find the displacements, microrotation, temperature field and stresses. 
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Fig.1. Geometry of the problem. 
 

Case-II Mechanical continuous normal point source 
 

When plane boundary is subjected to continuous normal point force, the boundary conditions at the 
interface z=0 are 
 

             ( , , ) ( , , ) ,r ru r 0 t u r 0 t 0               ( , , ) ( , , ) ,z zu r 0 t u r 0 t 0             (3.18) 
 

  ( , , ) ( , , ) ,r 0 t r 0 t 0 
              * *( , , ) ( , , ) ,q r 0 t q r 0 t 0        (3.19) 

 

  ( , , ) ( , , ) ,zr zrt r 0 t t r 0 t 0             
   

( , , ) ( , , ) ,zz zz 0
r H t

t r 0 t t r 0 t F
2 r

  
  


 (3.20) 

 

  ( , , ) ( , , ) ,z zm r 0 t m r 0 t 0 
         

* *( , , ) ( , , )
,

q r 0 t q r 0 t
0

z z

  
 

         
(3.21) 

 
where 0F  is the magnitude of the force applied and H(t) is the Heaviside distribution. 

With the help of these boundary conditions (3.18)-(3.21), the expressions for the components of 
displacement, force stress, couple stress and volume fraction field are given by Eqs (3.5)–(3.12) after 
replacing 1  with 1 p . 

Particular Case I: Neglecting the influence of the voids i.e.,  * * * * *K 0        ; the expressions 

for the displacement components, force stresses and couple stress, are obtained in a micropolar elastic 
medium. 
 Particular Case II: If the effect of micropolarity is ignored i.e.,  K j 0         expressions for the 

displacement components, force stresses and volume fraction field are obtained in an elastic medium with 
voids. 
Particular Case III: If the effect of micropolarity and voids is neglected i.e.,  K j 0         and

 * * * * *K 0        ; we obtain expression for the displacement components and force stresses in an 
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elastic medium. Again the resulting expressions matches with those obtained by Achenbach (1973) with the 
change of notations to be the same as used by the author. 
 
4. Method for the inversion of transforms 

 
        The transformed solutions are functions of the form ( , , )f z p  and to get the function ( , , ),f r z p  
first we invert the Hankel transform by using 
 

  

( , , ) ( , , ) ( )n

0

f z p f z p J r d


       .         (4.1) 

 
The expression (4.1) gives us the Laplace transform ( , , )f z p  of the function ( , , )f z p . Now for 

the fixed values of r and z the function ( , , )f z p  can be considered as the Laplace transform ( )g p  of some 

function ( )g t . Following Honig and Hirdes (1984), the Laplace transformed function ( )g p  can be inverted 
numerically as given below. 
 The function ( )g t  can be obtained from ( )g p  by using the inversion formula 
 

  ( ) ( )
c

pt

c

1
g t e g p d

2





 
        (4.2)                  

 
where C is an arbitrary real number greater than all the real parts of the singularities of ( )g p . The actual 

procedure to invert the Laplace transform consists of Eq.(4.2) together with the  -algorithm. The values of 
C and L are chosen according to the criteria outlined by Honig and Hirdes (1984). 
 The last step is to calculate the integral in Eq.(4.1). The method for evaluating this integral is 
described by Press et al. (1986). The method involves the use of Romberg’s integration with an adaptive step 
size. It also uses the results from successive refinements of the extended trapezoidal rule followed by 
extrapolation of the results to the limit when the step size tends to zero. 
 
Numerical results and discussion 
 
 Following Eringen (1984), we take the following values of relevant parameters for the case of 
Magnesium crystal for physical constants as 
 

  . /10 29 4 10 N m   ,         /10 24 10 N m   ,          /10 2K 1 10 N m  ,   
 

  . / ,3 31 74 10 kg m           
. 90 779 10 N   ,         . 19 2j 0 2 10 m  ,                           

 

   # . 93 688 10 N   ,         # . /10 21 138494 10 N m   ,         
# . /10 21 1475 10 N m   ,     

 

  
# . sec/1 20 0787 10 N m    ,      

# . 19 2K 1 1753 10 m  . 
 

The computations were carried out for non-dimensional time t=0.1 at z=1 in the range 0 r 8  . 
The variations in non-dimensional normal displacement  /z z 0U 4 u F  , non-dimensional volume fraction
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 * / 0Q 4 q F  , non-dimensional normal stress  /zz zz 0T 4 t F   and non-dimensional tangential couple 

stress  /z z 0M 4 m F    with non-dimensional distance ‘r’ are shown in Figs 1-9. The solid line gives the 

variation in component for a micropolar elastic solid with voids (MESV) whereas the very small dashe are 
for a micropolar elastic solid (MES), the line corresponds to the variations in micropolar elastic solid with 
void (ESV) and large dashed lines are for an elastic solid (ES).  

 
5.1. Mechanical normal point source 
 

The variations in normal displacement, volume fraction field, normal force stress and tangential 
couple stress with distance r for MESV, MES, EVS and ES when a mechanical normal point source is 
applied are shown in Figs 2, 3, 4,5, respectively.  

Figure 2. The variations of normal displacement UZ with r for all four theories (MESV, MES, ESV, 
ES) are shown in Fig.2 and it is observed that the behavior of UZ for MES is opposite to MESV, ESV and 
ES. The values of UZ decrease sharply as r lies between 0 r 3   whereas for MES the values of UZ increase 
in the same range. The magnitude of UZ  is largest for MESV and smallest for MES close to the point of 
action of source, as the source is very near to the point of action.  
 

 
 

Fig.2. Variations of normal distance Uz  (=4πuz/F0) due to normal point source with distance r. 
 

Figure 3 depicts the variations of the volume fraction Q  with ‘r’ for MESV and ESV. The values of 

Q decrease sharply in the range .0 r 2 5   The value for MESV are greater than those for ESV in the initial 
range .0 r 2 5   and then in the range 7 r 8  . 
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Fig.3. Variations of volume fraction field Q (=4πq/F0) due to normal point source with distance r. 
 

The variations of normal force stress TZZ with r are shown in Fig.4. The value of TZZ start with a 
sharp decrease for the cases MESV, MES and ES whereas for the case of ESV it starts with a small increase. 
The magnitude of values of TZZ is largest for ES and smallest for MES.  
 

 
 

Fig.4. Variations of normal force stress Tzz  (=4πtzz/F0) due to normal point source with distance r. 
 

Figure 4 depicts the variations of MZθ with r. Beginning with a small decrease in the range 
.0 r 1 5  , the value of the couple stress for MESV and MES starts to grow with a small variation. The 

behavior of MZθ for both the cases is same whereas their corresponding values are different. 
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Fig.5. Variations of tangential couple stress Mzθ  (=4πmzθ/F0) due to normal point intance source with distance r. 

 

5.2. Mechanical continuous normal point source 
 

The variations in normal displacement, volume fraction field, normal force stress and tangential 
couple stress with distance r for MESV, MES ESV and ES when a continuous normal point source is applied 
are shown in Figs 6, 7, 8, 9, respectively. 
 

 
 

Fig.6. Variations of normal distance Uz  (=4πuz/F0) due to continuous source with distance r. 
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 Figure 6 depicts the variations of normal displacement UZ with r. The behavior of UZ for all four cases 
is same. The value of normal displacement start with sharp decrease and the approaches to zero as r increases. 
The values of UZ are greatest for the case of MESV and smallest for the case of MES in the range 0 r 3  . 

The variations of volume fraction Q  with r for MESV and ESV are shown in Fig.7. Q decreases 

sharply in the range 0 r 3  . The values for ESV are greater for MESV in the range 0 r 3  .  
Figure 8 depicts the variations in normal force stress TZZ with r. Initially, with a sharp increase in the 

values of the force stress its value approaches to zero. In the range 0 r 1   the values are greatest for MES 
and smallest for MESV.  

The variations in MZθ with r are shown in Fig.9. It is observed that the behavior of couple stress is 
just opposite to each other in the whole range 0 r 8  . MZθ starts with a rapid decrease in the case of 
MESV whereas it starts with a sharp increase in the case of MES. 
 

 
 

Fig.7. Variations of volume fraction field Q  (=4πq/F0) due to continuous source with distance r. 
 

 
 

Fig.8. Variations of normal force stress Tzz  (=4πtzz/F0) due to continuous source with distance r. 
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Fig.9. Variations tangential couple stress Mzθ  (=4πmzθ/F0) due to continuous source with distance r. 
 

Conclusion 
 

A significant effect of void and micropolarity has been observed from the above numerical 
discussion. The magnitude of variations of normal displacement, normal force stress and tangential couple 
stress is observed for mechanical normal point source and continuous normal sources. The void effect is 
appreciable in the sources. It is observed that the components of displacement, force stress, volume fraction 
field have large values which become smaller and smaller with the increase in the value of the distance ‘r’.   

 

Nomenclature 
 
 j – micro-inertia 
 mij – couple stress tensor 

 
q  – volume fraction 

 tij – force stress tensor 

 u  – displacement vector 
 , , , K – micropolar material constants 
   – gradient operator 

 ij  – Kronecker delta 

 ijr – alternating tensor 
 ,  – Lame’s constants 

 
* * * * *, , , ,K     – void constants 

   – density 

   – microrotation vector 
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