
 
 

Int. J. of Applied Mechanics and Engineering, 2014, vol.19, No.4, pp.771-781 
DOI: 10.2478/ijame-2014-0053 

 
 

KINEMATIC AND DYNAMIC ANALYSIS OF NEW POLAR POSITIONING 
SYSTEM DEDICATED TO MECHATRONIC LASER GLASS ENGRAVING 

SYSTEM 
 

R. TROCHIMCZUK 
Department of Automatic Control and Robotics 

Faculty of Mechanical Engineering 
Bialystok University of Technology 

ul. Wiejska 45C, 15-351 Białystok, POLAND 
E-mail: r.trochimczuk@pb.edu.pl 

 
 

Analytical formulas describing the kinematics and dynamics of a multibody system of a new polar 
positioning system dedicated to mechatronic laser glass or other transparent dielectrics engraving system will be 
presented in this work. The analytical results will become in the later stages of the research the basis of numerical 
simulations. They will optimize the proposed solution of the positioning system. 
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1. Introduction 

 
Since a man learned to produce glass from quartz sand many techniques have been developed in 

order to enhance the final form of the finished glass product. At first, in most cases the technical finishing of 
a glass product endured manual processing with the use of mechanical grinding. With the development of 
manufacturing techniques and the emergence of mass products, repetitive in terms of artistic form and the 
quality of execution of the final product, automatic CNC machines were introduced in the glass processing. 
This step greatly accelerated processing of the units. However engravings, cuts in the glass made using this 
type of machine was only made on the surface of the workpiece. 

An important step that brought a new quality to the glass processing was the mechatronic laser 
engraving system which uses a laser as an instrument of machining (usually a pulsed laser). Those systems 
allowed engraving the subsurface of glass products. Typically, such engraving has the form of a three-
dimensional image created under the surface of the glass. This image is made of “point cloud” formed of 
microdefects (the size of one microdefect is approx. 200x200x400-600 micrometers), resulting from an 
exposure of the forming laser beam into the local area of the glass object. 

This technique of decorating glass products as opposed to the classical mechanical treatment has its 
advantages, including: 1) the resulting image may take the form of a three-dimensional object, 2) the image 
is stable and is not damaged, e.g., due to the negative impact of external factors on the glass surface, 
mechanical scratches, dirt, etc., 3) engraved objects can take various spatial forms, 4) the images consist of a 
large number of points which gives the opportunity for a precise reproduction of the pattern created in the 
memory of the computer controlling the engraving process. A more detailed description of the laser 
engraving technology can be found in other works (Trochimczuk, 2009; Dostanko et al., 2002). 

Modern technical implementations of laser engraving systems typically use the classical 
Cartesian positioning system for the positioning of the laser beam. The author of this work in his earlier 
publications (Trochimczuk, 2009; Trochimczuk and Gawrysiak, 2009; Trochimczuk, 2010; 2011) 
proposed a new solution, an alternative to the Cartesian positioning system – a polar positioning system. 
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The design of this positioning system is patterned on the solution used in the structure of hard drives of 
personal computers. 

In this paper the results of the analysis of the kinematics and dynamics of the positioning system are 
presented. Thanks to a simple design, high rigidity, lower price compared to the traditional Cartesian 
solutions of positioning systems and the use of mechatronic control, the polar positioning system can be used 
not only with the laser engraving glass or other transparent dielectrics systems, but also in other systems, 
e.g., using SLM technology (Selective Laser Melting) for the manufacture of dental implants and prosthetic 
or other biomedical applications. An example would be a laser correction of ophthalmic intraocular defects 
related to the human eye. 

 
2. Description of positioning system 

 
The present positioner consists of a rotary working arm and a rotary working table. Thanks to the 

mechatronic control system, coordinates of the point of structures are converted from the Cartesian 
coordinate system to the polar coordinate system, ipso facto this translates into a common rotary motion of 
these components. This allows proper focusing of the laser beam into the space of the glass workpiece. The 
layered engraving (from the lowermost layers toward the top of the object) allows the formation of points on 
a three-dimensional object. A detailed description of the construction of a new positioning system can be 
found in the works (Trochimczuk, 2009; 2010; 2011). Figure 1A contains the kinematic diagram of the 
positioner with the adopted coordinate systems for the analysis. It will be used to describe the system using 
Denavit-Hartenberg notation (D-H notation). 

 
 

A)                                                                   B) 
 

                          
 

Fig.1.  View of the mechanism of the polar positioning system (A) with coordinate system adopted to D-H 
notation, (B) working arm with the adopted coordinate system at the center of gravity. 

 
For the purposes of a broader look at the positioning system from the point of view of the theory of 

machines and mechanisms, it can be assumed that the system of the working arm with the rotary working 
table of the polar positioning system can be treated as a closed kinematic chain of a four-bar linkage. The 
working arm length and the arm (the radius) of the working table are known - they are two arms of the four-
bar linkage. As the third arm closing the kinematic chain, a laser beam can be assumed. The laser beam acts 
with no force in a specific area of the workpiece in the three-dimensional space. 
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3. Forward kinematics task of polar positioning system 

 
To describe the forward kinematics task the D-H notation given by Craig (1995) is used. The general 

form of the matrix is as follow 
 

  

cos sin

sin cos cos cos sin sin

sin sin cos sin cos cos

i i i 1

i i 1 i i 1 i 1 i 1 ii 1
1

i i 1 i i 1 i 1 i 1 i

0 a

l
T

l

0 0 0 1



   

   

   
         
      
 
 

. (3.1) 

 
D-H parameters adopted for the working arm and the rotary table of the polar positioning system are 

shown in Tab.1. 

 
Table 1. D-H parameters of polar positioning system. 
 

Working arm – D-H parameters 
i αi-1 ai-1 Өi li 

0-1 0 0 Ө1 0 
1-2 0 a1 0 l1 
2-3 0 0 0 l2 

Working Table – D-H parameters
i αi-1 ai-1 Өi li 

0-1 0 0 Ө2 0 
1-2 0 avar 0 0 

 
The transformation matrix according to the accepted parameters for the working arm takes the form 
 

 0 0 1 2
p 1 2 3T T T T   . (3.2) 

 
After substitution we obtain 
 

 

cos sin cos

sin cos sin
1 1 1 1

1 1 1 10
p

1 2

0 a

0 a
T

0 0 1 l l

0 0 0 1

    
    
 
 
 

. (3.3) 

 
Similarly, for the rotary table we can write the transformation matrix 
 

 0s 0s 1s
ps 1s 2sT T T  .  (3.4) 

 
After substitution we obtain 
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var

var

cos sin cos

sin cos sin
2 2 2

2 2 20s
ps

0 a

0 a
T

0 0 1 0

0 0 0 1

    
    
 
 
 

. (3.5) 

 
For clarity of further proceedings only formulas for the working arm of the positioning system will 

be derived. Mathematical models for the rotary table can be obtained by analogy. 
 

4. Velocity and acceleration of the polar positioning system 
 

The polar positioning system consists of links. The motion of each link depends on the motions of 
the proceeding links. Therefore, you should determine the speed of individual joints in their frames of 
reference. Therefore the following mathematical formulas are taken 

 

   ˆ ,i 1 i 1 i i 1 i 1 i 1 i i i
i 1 i i i 1 i 1 i 1 i i i i 1R Z R P    
                – for rotational pair;  (4.1) 

 

    ˆ,i 1 i 1 i i 1 i 1 i i i i 1
i 1 i i i 1 i i i i 1 i 1 i 1R R P d Z    
                – for translation pair. (4.2) 

 
We obtain the matrix R  from the equation 

 

   Ti 1 i 1
i iR R   (4.3) 

 
For the working arm we assume that velocities of the rotational pair 1 for i=0 equal 
 

  1
1

1

0

0

 
    
  

,             1
1

0

0

0

 
    
  

. (4.4) 

 
Using formulas (4.1) and (4.2) we calculate the velocity of the rotary joint 2 for i=1 
 

  ˆ ;2 2 1 2
2 1 1 2 2

1 2

0

R Z 0

 
        
    


 

           2 2 1 1 1
2 1 1 1 2 1 1

0

R P a

0

 
         
  

 . (4.5) 

 
Similarly, for the translation joint 3 for i=2 we obtain 
 

  3 3 2
3 2 2

1 2

0

R 0

 
      
     

;            ˆ3 3 2 2 2 3
3 2 2 2 3 3 3 1 1

3

0

R P d Z a

d

 
          
  

 


. (4.6) 
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5. Forces and torques of the positioning system 

 
The working arm is loaded with a static force. Thus we calculate the forces and torques, 

respectively, using Eqs (5.1) and (5.2) 
 

  i i i 1
i i 1 i 1f R f

  , (5.1) 
 

  i i i 1 i i
i i 1 i 1 i 1 in R n P f

     . (5.2) 

 
Forces and torques acting on the working arm in their coordinate systems are as follows 
 

  ,
x x

3 3
3 y 3 y

z z

f m

f f n m

f m

   
   

    
   
   

. (5.3) 

 
We obtain, respectively 
 

  
x

2 2 3
2 3 3 y

z

f

f R f f

f

 
 

   
 
 

,         

x 2 y
2 2 3 2 2

2 3 3 3 2 y 2 x

m l f

n R n P f m l f

0

 
 

     
 
 

.  (5.4) 

 

  
x

1 1 2
1 2 2 y

z

f

f R f f

f

 
 

   
 
 

,           .

x 2 y 1 y
1 1 2 1 1

1 2 2 2 1 y 2 x 1 x 1 z

1 y

m l f l f

n R n P f m l f l f a f

a f

  
 

       
 
  

 (5.5) 

 
The forces and the torques of drives i  of the polar positioning system may be calculated 

respectively for the rotary pair (5.6) and the translation pair (5.7) 
 

  ˆi T i
i i in Z   , (5.6) 

 

  ˆi T i
i i if Z   . (5.7) 

 
 After substitution we obtain 
 

  ˆ1 T 1
1 1 1 1 yn Z a f    , (5.8) 

 

  ˆ2 T 2
2 2 2 zf Z f    .  (5.9) 
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6. Jacobians 

 
Velocity of the arm of the polar positioning system can be written as 
 

  
3

3 3 1
3 v 1

3

0 0

J q a 0
d

0 1

 
            


   (6.1) 

 

where 
3

3
vJ  is Jacobian of velocity, whereas the force and torques can be described by the following 

equation 
 

  
x

1
F y

z

f
0 a 0

J f f
0 0 1

f

 
   

       
   

 

 (6.2) 

 
where FJ  is the Jacobian of static forces. 

Considering the relationship between the Jacobian of velocity and Jacobian of static forces you can 

write that  TFJ J . Comparing the results, we can conclude that the calculations were performed 

correctly. 
 

7. Dynamics of the polar positioning system 
 

To describe the dynamics of the working arm Lagrangian formalism will be used, allowing the 
analysis of the system, taking energy conversion into account. The equation of motion in a general form is 

 
  ( ) ( , ) ( )M q q V q q G q      (7.1) 

 
where: ( )M q  – matrix of inertia (mass matrix) of the manipulator; ( , )V q q  – vector of the centrifugal and 

Coriolis terms; ( )G q  – vector of gravity terms. 
The mathematical formula for calculating the inertia matrix of the general form can be written as 
 

  ( )
i i i i i

n n
T T

i v v c
i 1 i 1

M q m J J J I J 
 

    (7.2) 

 
where im  – mass of each joint; 

icI  – tensors of inertia of joints relative to the centers of gravity; 
icp  – 

position of the center of gravity of the joint i  relative to the coordinate system 0  – initial. 
For that case it can be written 
 

  ... ...i i i
i

c c c
v

1 2 i

p p p
J 0 0 0

q q q

   
     

, (7.3) 
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       ˆ ˆ ˆ... ...
i

i 1 i 2 i i
1 1 1 2 2 2 i i iJ R Z R Z R Z 0 0 0

      .  (7.4) 

 

In order to determine 
icp  homogeneous operators T

icp
0  should be determined as presented in 

Fig.1B. For the adopted coordinate system we can write 
 

  

cos sin cos

sin cos sin
c c1 1

1

1 1 c 1

1 1 c 10 0 1
p 1 p

c

0 a

0 a
T T T
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    
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1

1
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c

a
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l

 
 

  
 
 

; (7.5) 

 

  

cos sin cos

sin cos sin
c2 c2

2

1 1 1 1

1 1 1 10 0 2
p 2 p

1 c

0 2a

0 2a
T T T

0 0 1 l l

0 0 0 1

    
       
 
  

,       
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2

2
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c 1 1
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p 2a

l l

 
 

  
  

. (7.6) 

 
Having calculated 

icp  we calculate the Jacobian of linear velocity which takes the form of 

 

  

sin

cos1
1

c 1
c

v c 1
1

a 0
p

J 0 a 0

0 0

              

,       

sin

cos2 2
2
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v 1 1
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2a 0
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l

0 1

                

.  (7.7) 

 
Having calculated the Jacobians we calculate the contribution of inertia of joints to the mass matrix 
 

   cos sin
1 1

2
T c 1 1 1

1 v v
a m 0

m J J
0 0

   
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 

,         
2 2

2
T 1 2

2 v v
2

04a m
m J J

m0

 
  
 

.  (7.8) 

 
The Jacobian of angular velocity can be calculated by using Eqs (7.9), assuming that 1 1   – for 

rotation pair, 2 0   – for translation pair 
 

   ˆ
1

1 1
1 1 1

0 0

J R Z 0 0 0

1 0


 
       
  

,            ˆ ˆ
2

2 1 2 2
1 1 1 2 2 2

0 0

J R Z R Z 0 0

1 0


 
        
  

.  (7.9) 

 
For modeling it is assumed that the inertia tensors are diagonal 
 

  
2

2 2

2

xx

c yy

zz

I 0 0

I 0 I 0

0 0 I

 
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  
 
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,           
1 1 1

1 1 1 1

1 1 1

xx xy xz

c yx yy yz

zx zy zz
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I I I I

I I I

 
 

  
 
  

.  (7.10) 

 
Components resulting from the rotation reflecting the contribution of inertia of joints to the inertia 

matrix. 
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  1
1 1 1

zzT
c

I 0
J I J

0 0
 

 
  
 

,              2
2 2 2

zzT
c

I 0
J I J

0 0
 

 
  
 

.  (7.11) 

 
The inertia matrix can be written in a general form 
 

  
 cos sin

1 2

2 2
1 2 c 1 1 1 zz zz

2

4a m a m I I 0
M

0 m

      
  
  

.  (7.12) 

 
The kinetic energy of the system can be written in a general form 
 

  ( )T1
K q M q q

2
     (7.13) 

 
Inserting Eqs (7.13) into (7.1) we obtain 
 

  
...

...

T

1

T

2
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n

M
q q

q

M
q q

qd K K 1
Mq Mq

dt q q 2

M
q q

q
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  
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               
 
 
 

  

 

 
 



 

.  (7.14) 

 
The matrix of the centrifugal and Coriolis forces ),( qqV   for the working arm of the polar 

positioning system can be written as 
 

  ( , )

111 121TT

121 2211 11 12

T 21 22 112 122T

2 122 222

m mM
q qq q

m mq m m1 1
V q q Mq q

m mM2 2 m mq q q q
q m m

   
                              

  
   
    

 (7.15) 

 

where   11
111

1

m
m

q





,         

2

22
222 q

m
m




 ,        11 111 1 112 2m m q m q    . 

 
According to Christoffel’s symbols it can be written 
 

    , ij
ijk ijk ikj jki ijk

k

m1
b m m m m

2 q


   


, (7.16) 
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   

   

 

( , )

.

2111 111 111 122 122 221
1

2
2

211 211 112 222 222 222

112 121 121
1 2

212 221 122

1 1
m m m m m m q2 2V q q

1 1 qm m m m m m
2 2

m m m
q q

m m m

       
   

         
  

    






 

 (7.17) 

 
You can also write for the working arm that 
 

   ( ) ( )
2
1

1 22
2

q
V C q B q q q

q

 
  

  


 


 (7.18) 

 

where ( ) 111 122

211 222

b b
C q

b b

 
  
 

 – Coriolis forces, ( ) 112

212

2b
B q

2b

 
  
 

 – centrifugal force. 

 
Hence 
 

     sin cos
,

22
1c 1 1 1

1 12
1

1
0a m 0

V q q l2
0l0 0

                            





.  (7.19) 

 
In the following part of the calculation the force of gravity should be taken into account. The energy 

of the working arm of the polar positioning system U  is the sum of the potential energy of its joints. 
 

  
n

i
i 1

U U


   (7.20) 

 
The potential energy of joint i  
 

  0UghmU iii   (7.21) 

 
where: g – acceleration due to gravity, 0U  – the potential energy of the reference. 

The general form can be written 
 

   i

T
i i c 0U m g p U     (7.22) 

 
The value of the attraction vector can be written as 
 

  

0

g 0

g

 
   
  

.  (7.23) 

 
The gravity force is a derivative of the potential energy, hence 
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  i
n

cT
j i

j ji 1

pU
G m g

q q

 
       

 .  (7.24) 

 
Taking into account the previous mathematical formulas, the force of gravity for the working arm of 

the polar positioning system can be written as 
 

   1 2

T T
v 1 v 2

2

0
G J m g J m g

gm

 
     

 
.  (7.25) 

 
In the presented dynamic model of the polar positioning system friction was omitted. However, it 

should be considered in the dynamic equation, assuming at least an additional effect of Coulomb and viscous 
friction. In the assumed dynamic model the stiffness factor of the joints of the positioning system is also 
omitted, i.e., bending effects, which may cause additional resonances of system. 

 
8. Conclusions 
 

The analytical solutions to the forward kinematics task and dynamics equation describing the polar 
positioning system will be used in further stages of research to verify the result obtained from the numerical 
study of solid models created in the environment of SolidWorks program. The research on the polar 
positioning system from the point of view of the simplicity of its implementation, lower prices (compared to 
traditional Cartesian positioners), high stiffness, high velocity and acceleration of displacement and 
possibility the implementation of solution not only in laser engraving system, but also earlier mentioned in 
the introduction biomedical applications are justified. 

 
This research has been done as a part of a project No. S/WM/1/2012, which is funded by Bialystok’s 

Technical University, Poland. 
 

Nomenclature 
 
 ia  – the distance from ˆ

iZ  to ˆ
i 1Z   measured along ˆ

iX  

 ( )B q  – centrifugal force 
 ( )C q  – Coriolis forces 

 id  – the distance from ˆ
i 1X   to ˆ

iX  measured along ˆ
iZ  

 if  – static force exerted on link i  by link i 1  

 G – gravity force 
 ( )G q  – vector of gravity terms 
 

icI  – tensors of inertia of joints relative to the located in the center of gravity 

 FJ  – Jacobian of static forces 

 
i

i
vJ  – Jacobian of velocity 

 K  – kinetic energy of the system 
 ( )M q  – matrix of inertia (mass matrix) 
 im  – mass of each joints 

 ijkm  – the Christoffel’s symbols 

 in  – static torques exerted on link i  by link i 1  

 
icp  – position of the center of gravity of the joint i relative to coordinate system 0  – initial 
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 R – rotation matrix 

 i 1
1T

  – transformation matrix 1 coordinate system relative to i 1  coordinate system 

 U – potential energy 
 ( , )V q q  – vector of the centrifugal and Coriolis terms 

 i  – the angle from ˆ
iZ  to ˆ

i 1Z   measured about ˆ
iX  

 i  – the angle from ˆ
i 1X   to ˆ

iX  measured about ˆ
iZ  

 i 1
i 1


  – the linear velocity of the origin of frame  i 1  is the same as that of the origin of frame  i  plus a new 

component caused by rotational velocity of link i  
   – generalized forces are in individual joints 
 i  – joint torque required to maintain the static equilibrium 

 i 1
i 1


  – description of the angular velocity of link i 1 with respect to frame  i 1  
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