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This part of the work presents the design and static analysis of an impeller for a single-stage pump. The 
impeller is directly connected with a balancing device. The impeller needs to have a properly designed 
system of longitudinal and lateral clearances on both sides. With the simplifying assumptions concerning 
the flow and distribution of pressure in the longitudinal and lateral clearances, the static analysis involved 
deriving relationships between the impeller geometry and the basic performance parameters of the pump. A 
numerical example was used to show the calculation procedure of static characteristics for the 
predetermined parameters. 
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1. Introduction  
 

 One of the major tasks during the design of impeller pumps, especially multi-stage pumps, is to 
properly select and correctly design the balancing device or system responsible for balancing and reducing 
the longitudinal forces that act along the axis of the shaft. In multi-stage pumps the balancing systems 
comprise properly designed balancing drums and discs, or hydrostatic thrust bearings. In single-stage pumps, 
where longitudinal forces are relatively small, balancing vanes or balancing holes in the impeller are 
generally used. Another solution is to apply external systems of rolling-element bearings, as discussed in 
(e.g. Jędral, 2001; Korczak, 2005). 

 Balancing systems of impeller pumps have been studied both theoretically and experimentally, for 
example, in Korczak (2005), Korczak et al. (2005), Pavlenko (2008). Different design solutions have been 
considered for single-stage and multi-stage pumps. Some of them were patented, for example, 
(Martsinkovsky et al., 1995; Kubota, 1999) and (Chiba et al., 2007), respectively. 

 It can be assumed that hydrostatic and hydrodynamic forces occurring in the longitudinal and lateral 
clearances of the balancing system ensure the right position of the impeller relative to the pump casing and 
stable operation of the pump. The objective of this study was to analyze an impeller of a single-stage pump 
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(Martsinkovsky et al., 1995) directly connected with the balancing device with specially designed balancing 
rings. The balancing device acts as both the longitudinal and lateral bearings of the single-stage centrifugal 
pump. The paper focuses on the static analysis of the system. 

 
2. Impeller design  

 
 Impellers directly connected with a balancing device were first patented in the 1990s, for instance 

(Korczak et al., 2005; Pavlenko, 2008). The distinctive feature of the design of the single-stage pump 
impeller described in the patent (Martsinkovsky et al., 1995) is the lack of a classic drive shaft linked to the 
rolling element bearings. Instead of a bearing node, there are longitudinal and lateral seal clearances of the 
impeller and the balancing device. The hydrodynamic forces and moments generated in these clearances 
position the impeller relative to the pump casing. The impeller is driven by a flexible shaft with a relatively 
small diameter. The small diameter of the shaft results from the torque passed from the motor via a ball joint 
to the impeller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.  Pump impeller with a balance device: 1- pump casing, 2- impeller, 3- shaft; 4 – ball joint; 5, 6 – 

longitudinal seals of the impeller; 7 – annular chamber; 8- face seal; 9- radial vanes; 10 – lateral 
clearance of the impeller shroud. 

 
 Figure 1 shows a diagram of a single-stage centrifugal pump with the impeller, 2, driven by a 

flexible shaft, 3, via a ball joint, 4. The longitudinal clearances 5 and 6, sealing wear-ring clearances, and the 
lateral clearance, 8, with the annular chamber, 7, play the role of lateral and longitudinal self-adjusting 
hydrostatic bearings of the impeller. In the pump casing, 1, behind the rear shroud of the impeller, there are 
radial vanes, 9, which suppress the rotation of the fluid (generated by the impeller) and prevent a loss of 
pressure in the centripetal direction. 

 The flexible shaft allows radial, angular and axial misalignments of the impeller. Exposed to 
hydrodynamic forces and moments and a gyroscopic moment during the pump operation, the impeller aligns 
itself and assumes optimal (static) positions. These external excitations cause a decrease in the amplitude of 
the impeller vibrations. The system of clearances sealing the impeller shrouds, shown in Fig.1, operates in a 
similar way as the balancing device in a multi-stage centrifugal pump. 
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3. Static analysis of the system 

 
 The static characteristics of the design node show the relationship between the width (height) of the 

lateral clearance, 8, the rate of the fluid flow through this clearance, and external excitations. The 
characteristics are determined on the basis of  the equation of equilibrium of axial forces acting on the shroud 
and from the condition of continuity (balance) of flow through the seal clearances 6 and 8 (Fig.2). For 
simplicity, Fig.2 shows the quantities describing the impeller geometry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Geometry of the impeller with a balancing device. 
 
 The equation of axial forces generated by the pressure acting on the surfaces of the impeller shrouds 
is written as 
 

     .1 e 3 e 2 2 2 c 2 eT A A p T A p 0 5A p p 0          (3.1) 

 
where 

 

       , , ,2 2 2 2 2 2 2
e 1 5 c 4 5 2 3 4 3 6A R R A R R A R R A R               (3.2) 

 
, ,e c 3A A A  - surface areas of the impeller (Fig.2). 

 Forces ,1 2T T , acting on the outer surfaces of the impeller shrouds, AA  and BA , are calculated by 

integrating the radial distribution of pressure (Jędral, 2001; Antoszewski et al., 2008) 
 

     * *;1 A 1 2 B 1A B
T A p p T A p p     (3.3) 

 

where      * *;
2 2

2 2
A 1 A B 2 Bp A p A

2 2

 
   

 
 

 

* *,
A B

p p - pressures at the inlet to the longitudinal clearances 5 and 6 (along radii R1 and R3) (Fig.2); 

 - coefficient taking into account the geometry of the impeller and the pump casing.  . .0 7 0 9   . 
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 After substituting and arranging the components, we obtain the following condition of 

equilibrium 
 

  *1 1 e e 2 2A p A p T A p 0               (3.4) 
 

where 
 

  

 * * *

, . , . ,

.

1 A B e e 3 c 2 2 c

2
2 2 2 2

A A B B A 1 B 2

A A A A A A 0 5A A A 0 5A

T p A p A A A
2

       


     



       (3.5) 

 
 The last term of Eq.(3.4) (on the left) comprises pressure in the annular chamber 7 (Fig.2), which is 
partly dependent on the width of the face clearance 11.  
 The inlet pressure  ep  and the outlet pressure  1p  of the impeller and its angular velocity   

represent the external forces (excitations). To make the interpretation of results easier, the analysis will be 
conducted using dimensionless quantities. After dividing the components in Eq.(3.4) by the product A nA p , 
we obtain the following dimensionless quantities 
 

  

, , ,

, , ,

, , , .

e1 2
1 2 e

A A A

e1 2
1 2 e

n n n

2 2
2 2 2 2n n

1 A 1 2 B 2
A n A n n 3

AA A
A A A

A A A

pp p

p p p

z
K A K A u

2 A p 2 A p H

  

     

  
      

  

  (3.6) 

 
 Thus, Eq.(3.4) takes the following form 
 

    2
1 1 e e 1 2 2 2A A K K A          .  (3.7) 

 
 The controlled dimensionless quantity 2  is the response to the external excitations , ,1 e   . 

 To obtain a static characteristic in a dimensionless form, it is necessary to make the quantity 2  

dependent on the dimensionless width of the lateral (face) clearance: 3u z H . For a steady state, we 

assume the continuity of fluid flow  2 3Q Q  through the longitudinal (6) and lateral (face) (8) clearances, 

closing the annular chamber 10, where the pressure is 2p   2 . For a turbulent flow, the flow rates can be 

determined as follows 
 

  *2 2 1 B 2Q g p p p   ,            eppgQ  233 .  (3.8) 
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 If the local hydraulic losses are omitted, the capacities of the longitudinal clearance with eccentricity 
  and the lateral clearance are defined by the following relationship (Kubota, 1999) 
 

   
. .

.. , ; ,
1 5 1 5

2 1 53 2 4 3
2 2n 2n 3 3n 3n

2 2 3 3

4 R H 4 R H
g g 1 0 19 g g g u g

l l

 
     

   
.   (3.9) 

 
where . , .2 30 04 0 06     - coefficients of the continuous hydraulic loss for self-similar turbulent flows in 

longitudinal and lateral clearances. If the squares of the flow rates are equal 2 2
2 3Q Q , we have 

 

  
   

 
*.

.

22 3
23 1 B e

2 22 3
23

1 0 19 u

1 0 19 u

      
 

   
            (3.10) 

 
where 

 

  
2
2n

23 2
3n

g

g
  =

2 3
3 3 2
2 3
4 2 3

3R l H

2R l H
 ,                 

2
2

23 2
3n

g

g
  =  .

22
23 1 0 19   .    (3.11) 

 
 The derivative of the dimensionless pressure (quantity 2 ) relative to the dimensionless width of the 
lateral clearance defines the “hydrostatic rigidity” of the node considered (the design node) of the impeller–
clearance seals system 
 

  
 

 
 *

.

.

22 2
232

1 B e222 3
23

3u 1 0 19

u
1 0 19 u

  
    

       

. 

 
 The negative value of this quantity indicates the stability of the impeller.  
 By equating relationship (3.7) to (3.10), we find a static characteristic of the node considered 
 

   
   

   
*

1
2 3

2 1 1 e e 1 2 2 B
23 2

1 1 2 e e 1 2

A A A K K A
u

A A A K K

            
        

.    (3.12) 

 
 The drop in pressure *B  along the radius of the load-bearing shroud can be expressed by a 
dimensionless angular velocity of the impeller 
 

  *
2A

B 2
B

A
K

A
   . 

 
 After substituting the relationship into formula (3.12), we obtain the final form of the dimensionless 
static characteristic 
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       
   

.

1
2 3

2 2 1 1 e e 1 2 2 2 A B2
23 2

1 1 2 e e 1 2

A A A K K A K A A
u 1 0 19

A A A K K

             
        

. (3.13) 

 
 The relationship can be used to determine the width of the lateral clearance depending on external 

forces  , ,1 e    and the geometry of the design node. It should be noted that the axial displacement of 

the impeller is due to its eccentricity. 
 The range of the operational parameters is limited by the pumping pressure at which the width of the 
lateral clearance does not exceed the admissible values: min maxu u u  . The clearance opens completely 

when u  ; thus, the denominator in formula (3.13) decreases to zero, which occurs at the following 
pressure 
 

     *
2

1 2 e e 1 2
1

1
A A K K

A
         .          (3.14) 

 
 The other boundary condition is the closure of the clearance: u 0 . This condition occurs when 
the value of the numerator in relationship (3.13) decreases to zero, which determines the pumping 
pressure 

 

  **
2A

1 e e 1 2 2 2
2 1 B

A1
A K K A K

A A A

  
            

.  (3.15) 

 
 The range of the pumping pressure at which the width of the lateral clearance is equal to or greater 
than zero is: * **1 1 1     . 
 The design features of the pump analyzed here need to be selected in such a way that, with the 
nominal operational parameters, i.e., ,1n n1 1    , the width of the lateral clearance has a nominal 

value, i.e., ,nz z u 1  . Equating expression (3.13) to unity for the nominal operational parameters (for 

the condition that u 1 ), we obtain an equation that can be used to find the clearance capacities *
23  

(3.11) 
 

  
   * 1 2 e e 1 2

23
2 1 e e 1 2 2 2 A B

A A A K K

A A A K K A K A A

    
 

     
.  (3.16) 

 
 Assuming initially that the radii , ,3 4 5R R R  and the clearance lengths ,1 2l l  result from the design 
of the flow system of the pump and that the shaft diameter dw =2R6 results from the condition of 
torsional strength, we can use formula (3.11) to find the ratio of the widths of the longitudinal 
clearances 3 2H H  

 

  *

1 32
3 2 4

23 2
2 3 3

H l R2

H 3 l R


 

   
 

.            (3.17)  
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 In centrifugal pumps, the pumping pressure is proportional to the square of the angular velocity of 

the impeller: 2
1p B  , where B – generalized parameter characterizing the geometry of the basic flow 

system of the pump and maintaining a constant value at different rotational velocities 
 

  B const; ,2 2 2n
1 n n 12

n

p
p p      


            (3.18) 

 
where ,n n 1np p   - nominal angular velocity of the impeller and the corresponding nominal pumping 
pressure.  
 In many a case, especially in pumps used in the power industry, the inlet pressure, because of the 
susceptibility to cavitation, is increased by the intake axial impeller mounted on the common shaft. As a 
result, the inlet and outlet pressures of the centrifugal impeller are proportional to the square of the angular 
velocity of the shaft 
 

  , , ,2 2 2 2
e en n e en e enp C C p p p          .  (3.19) 

 
 Substituting quantities (3.18) and (3.19) into the relationship describing the static characteristic 

(3.13) and dividing it by 2 , we obtain a relationship from which it follows that the width of the lateral 
clearance is not dependent on the external forces and remains constant 
 

  
 

   
const

1
3

2 1 e en 1 2 2 2 A B
23

1 2 e en 1 2

A A A K K A K A A
u

A A A K K

          
      

.  (3.20) 

 
 When the inlet pressure does not depend on the angular velocity of the impeller, relationship (3.13) 
assumes the form 
 

  
 

   

1
2 3

2 1 1 2 2 2 A B e e
23 2

1 1 2 2 e e

A A K K A K A A A
u

A K K A A

          
         

.    (3.21) 

 
These relationships for static characteristics are simplified, for the condition that e 1p p . 
 The next characteristic determined at static equilibrium is the rate of flow through the rear 
clearances: longitudinal and lateral, which is calculated using one of the formulas (3.8). For instance 
 

     ;2 2 3 2 3
3 3n 2 e 3n n 2 eQ g u p p g p u      

  (3.22) 

   ;2 2 2 3 2 2
3 n 2 e n 3n nQ Q Q u Q g p     . 

 
 After substituting expressions (3.8) and (3.10), we obtain 

  

   
,0 5

223 A
2 1 1 e e 1 2 2 2

2 B

A
Q A A A K K A K

A A

               
     

.   (3.23) 

 



616  C.Kundera and V.A.Martsinkovsky 

 

 
 With the nominal value of the lateral clearance height, relationship (3.23) is simplified to 
 

    223 A
1 e 2

23 B

A
Q u 1 K

1 A

 
         

.  (3.24) 

 
 The final relationship can be used for initial evaluation of the rate of flow through (volumetric loss 
in) the rear clearances: longitudinal and lateral. 
 
4. Numerical example 
 

 The calculations of the static and dynamic characteristics were performed for an impeller of a 
modernized high-speed single-stage centrifugal pump. The pump modernization involved applying an 
impeller with a system of seal clearances, shown in Fig.1. 

 
1.Input parameters. 
 
 Let us assume the following geometrical dimensions of the pump impeller 
 

  R1=56mm,         R2=75mm,        R3=65mm,        R4=58mm,    
 
  R5=51mm,        R6=15mm,        l1=l2=15mm,  
 
  H1=H2=0.2mm (with symbols being the same as those in Fig.2). 
 

  The assumptions concerning the pump performance parameters are:  
 

  . ; . ; 1
n e np 3 5 MPa p 1 25 MPa 1500s    ;    

 

  / ; . ; .3 3
1 210 kg m 0 8 0 6      . 

 
2.  Calculation of the surface areas of the impeller, based on Eqs (3.2), (3.5) and (3.6), and the moments of 

inertia. 
 

    .2 2 3 2
A 2 1A R R 7 58 10 m     ,           .2 2 3 2

B 2 3A R R 4 08 10 m     , 

 

    .2 2 3 2
2 3 4A R R 2 76 10 m      ,           .2 2 3 2

c 4 5A R R 2 40 10 m     , 

 

  . . ,3 2
2 2 cA A 0 5 A 3 96 10 m                .2 2 3 2

e 1 5A R R 1 68 10 m      , 

 

  . , . .2 4 2 3 2
3 6 e e 3 cA R 7 07 10 m A A A 0 5A 1 19 10 m          ; 

 
    . ; . ; .1 A B A 2 2 A e e AA A A A 0 437 A A A 0 45 A A A 0 152       . 
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Coefficients (3.6): . ; .1 2K 0 312 K 0 056  . 
 
3. Range of admissible values of the pumping pressure. 
 
 From Eqs (3.14) and (3.15), we obtain: * **. ; .1 10 615 3 38    . The range of these values is much 
larger than that resulting from the characteristics of the pump prior to its modernization 
 
4. Determination of the nominal value of the lateral clearance.  
 

 From relationships (3.16) and (3.17) we have * .23 0 67   and .3H 0 28 mm. 
 
5. Calculation and graphical representation of the static and flow characteristics. 
 

a)                                                                 b) 

 
 
Fig.3.  Dimensionless static characteristics: a) lateral clearance width u, b) volumetric flow rate Q versus the 

pumping pressure 1 and the impeller angular velocity, Ω . 
 
 Figure 3a shows dimensionless characteristics of the lateral clearance width versus the pumping 
pressure, based on relationship (3.13), for three values of rotational velocity. The corresponding flow 
characteristics, based on relationship (3.23), are shown in Fig.3b.  

 From the static characteristics it is evident that the width of the lateral clearance decreases with an 
increase in the pumping pressure, and increases with an increase in the angular velocity. When the pumping 
parameters are nominal  1 1    , the width of the lateral clearance assumes the predetermined value, 

3z H . The rate of the flow through the longitudinal and then lateral clearances is slightly dependent on the 
pumping pressure; it increases with an increase in the pump angular velocity. 
 
Conclusions 
 

 The static analysis, which was performed for simplified assumptions of flow and distribution of 
pressure in the longitudinal and lateral clearances, required deriving relationships between the geometry of 
the impeller and the basic parameters of the pump performance. The equation of flow continuity was used to 
determine the coefficient of hydrostatic rigidity, the negative value of which constitute the condition of static 
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balance of the impeller. The static characteristics derived in this study can be used for designing impellers 
with a balancing device.  
 
Nomenclature  
 
 , ,e c 3A A A  – surface areas of the impeller of Eq.(3.2) [m2] 

 AA , BA  – outer surfaces area of the impeller shrouds [m2] 

 , ,1 2 eA A A  – dimensionless surface areas of Eq.(3.6) 

 B, C – parameters of Eqs (3.18) and (3.19) 

 g2, g3 – capacities of the longitudinal and lateral clearances of Eq.(3.9) 

 g2n, g3n – coefficients in Eq.(3.9) 

 H1, H2 – width of the longitudinal clearances [m] 

 H3 – width of the lateral clearance [m] 

 K1, K2 – dimensionless coefficients of Eq.(3.6) 

 pe,  p1 – inlet pressure and outlet pressure of the impeller [N/m2] 

 2p  – pressure in the annular chamber of a balance device [N/m2] 

 np  – nominal pumping pressure [N/m2] 

 R1, R2 – radii of the impeller [m] 

 R3, R4, R5 – radii of a balance device [m] 

 ,1 2T T  – axial forces acting on the impeller shrouds [N] 

 Q2, Q3 – fluid flow through the longitudinal and lateral clearances of Eq.(3.8) [m3/s] 

 Q  – dimensionless fluid flow of Eq.(3.23) 

 3u z H  – dimensionless width of the lateral (face) clearance 

 z – axial displacement of the impeller [m] 

 ,23 23   – coefficients of Eq.(3.11) 

   – relative eccentricity of the longitudinal clearance 

 ,2 3   – coefficients of the hydraulic losses 

   – fluid density [kg/m3] 

 ,1 2   – coefficients of the geometry of the impeller in Eq.(3.5) 

 , ,1 e 2    – dimensionless pressures of Eq.(3.6) 

   – dimensionless angular velocity of Eq.(3.6) 

   – angular velocity of the impeller [1/s] 

 n  – nominal angular velocity[1/s] 
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