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The dynamics of orthogonal mechanism in the presence of a shaking table of fixed cargo is studied. The focus 
is on the vibrational motion of the mechanism in slow-speed motor rotation. The analysis of the solutions for 
motion nonlinear equations showed that the angular velocity of the guiding link oscillates according to the 
harmonic law about a mean value. The character of changing its amplitude, depending on the weight of the cargo 
and the length of the guiding link, is determined. Dependence of the mean angular velocity on the motor torque is 
set.  
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1. Introduction  

 
 In recent years, the vibrating equipment in the mechanical engineering industry has begun to be 

constructed on the basis of leverage mechanisms. These mechanisms possess unique abilities to create 
oscillations of the executive element. The development of vibration mechanisms that are based on 
mathematical modelling results in acceptable and practical results.  

 The structural schemes of vibration machines, as a rule, are not complex; however, you need to 
determine their parameters accurately for a successful application. These parameters can only be determined 
based on researching the dynamics of the vibrating machines and the technological processes performed by 
these machines. 

 In the work of Azbel et al. (1981) presents a study of vibration transportation in a material part, and 
in summary, this research presents the vibration transportation through solid substances and the behavior of 
granular materials and continuous medium undergoing vibration. 

 Baksys and Liutkauskiene (2010) examine the horizontal motion of a part in two directions 
perpendicular to the excited plane while controlling the dry friction coefficient between the plane and the 
part. The dependences of the transition of the part from its initial position to the center of the stable motion 
path were defined. Additionally, the dependences of the directional angle of the motion path from the 
moment when friction was reduced relative to the excitation signal and the duration of time of the decreased 
friction were defined. Baksys and Liutkauskiene (2008) cite research that features the vibration transition of 
a body on a swinging plane, which is applicable to the field of automated part collection. Dynamic and 
mathematical models of vibration transition were constructed. The operating conditions of the body were 
defined as being dependent on the excitation frequency and the oscillation of the plane, the rolling angle of 
the plane and the factor of rigidity. 

 Dorinin and Danshin (1993) and Feng et al. (2004) examine the tasks of the optimal and dynamic 
synthesis of a swivel-lever guidance mechanism and counterbalancing, and the solution to these tasks 
helps determine the directional impact of the lever vibrator on a foundation. Numerical interpretation is 
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used to determine the combined target function that contains all conditions that achieve complete dynamic 
balancing. 

 Balancing of the principal moment of inertia forces based on the mean-square approximation was 
used in Arakelian and Daham (2001), where the counterweights were located on links associated with a 
rack. 

 Hong-Sen Yan and Ren-Chung Soong (2001) present a new method of determining the four links, 
which, in turn,  satisfies all kinematic demands and ensure dynamic balance. The predicted characteristics of 
the driving (working) link motion and the conditions of dynamic balance are ensured by means of 
(prescribing) the driven link speed change, the disk counterweights and the sizes of the links.  

 The effectiveness of all the above-mentioned methods is primarily determined by the choice of the 
model and the oscillating conditions for the working body of the corresponding machine, because the most 
diverse and complicated types of oscillations, such as harmonic, polyharmonic, rectilinear, two-component 
and spatial oscillations are used in practice. These modes may be implemented with the help of leverage 
mechanisms which have a wide range of functional abilities. 

 One of the vibrating pieces of equipment, a shaking table with flat leverage mechanisms, can be 
successfully utilized in the construction industry to compact concrete mixtures, in the chemical, 
pharmaceutical and food industries to apply vibrating impact on pulps and suspensions, in the mining 
industry for screening fractions depending on the volume and weight, and for many other purposes. One of 
the problems with the mathematical modelling during the development of vibrating equipment based on 
leverage mechanisms is the variability of the characteristics of such mechanisms. An apparatus of 
generalized functions is used in Drakunov and Tuleshov (2007) and Tuleshov and Tuleshov (2012) to 
determine the solution of equations describing the machine assembly dynamics. 

 Bissembayev and Iskakov (2012) studied an oscillation of the automatic press shaking table that uses 
flat leverage mechanisms. A mathematical model of the automatic press shaking table that uses an 
orthogonal mechanism was also developed.  

 Kononenko (1964) reviews linear and non-linear systems, and it is hypothesized that they are 
influenced and excited by sources of energy that have a limited capacity.  

 Further development and presentation of the characteristics of oscillating systems that interact with 
the energy source were obtained in the work in Alifov and Frolov (1985). This work cites the dynamic 
analysis of a self-oscillating system interacting with the energy sources in the presence of non-linear elastic 
constraints, periodic, parameter impacts and delays. Non-linear forced and parameter oscillations of the 
systems interacting with two energy sources are examined.  

 Krivtsov (2000) examines stationary motions of a non-symmetrical spin (unbalanced rotor), which 
has a fixed point and is impacted by the moment of elasticity and the torque. The impact of the dissipation 
created by the engine with restricted power on the stability of the conservative system is studied. 

 The purpose of this work is to study the dynamics of the orthogonal mechanism of a shaking 
table with a low-speed engine source in the presence of a fixed load (account of load) on the operating 
link. 

 
2. Kinematic relations 
  

The calculation model for the orthogonal mechanism is shown in Fig.1. The start of the OXY  
coordinate system is placed at the crank rotation axis. Here we designate the coordinates of the articulated 
link C (Fig.1) through X  and Y , and the ranges of the horizontal and the vertical oscillations of the 
orthogonal mechanism are designated as 1a  and 2a , respectively. The following kinematic relations 
(Tuleshov and Tuleshov, 2012) can be recorded from the equations of the closeness of the vector contours as 
projections onto the coordinate axes. 
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Fig.1. A schematic diagram of the orthogonal mechanism of the shaking table. 
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where , ,1 2l l l  and l3  are the lengths of links 1, 2, 3 and 4 respectively and   is the - angle of the crank 

rotation axis (Fig.1). 
The extreme values of the coordinates x  and y  are  
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Average values of the coordinates X and Y are  
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 The ranges of the horizontal and the vertical oscillations of the articulated link С of the orthogonal 

mechanism relative to the average values of the coordinates are determined by the following formulas 
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From these formulas, it is shown that the ranges of the horizontal and the vertical oscillations 

coincide.  
We transfer the start of the OXY  coordinate system to the point  ,me meX Y , i.e., transform the 

OXY  coordinate system into the O  coordinate system 
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from which  
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3. Dynamics of mechanism movement  
 
3.1. The equation of the mechanism motion 
 

The equation of the orthogonal mechanism motion with the presence of a fixed counterweight on the 
horizontal link (link 4) is obtained in Bisembayev and Iskakov (2012). It has the following form 
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where M  - counterweight mass , , ,1 2m m m  and 3m  - mass of the links 1, 2, 3 and 4; J  - link moment of 

inertia 1; f  - coefficient of sliding friction; k - coefficient of friction, rotation; DM - moment of the driving 
forces. 

We consider the case where there is no friction, i.e., the case when f 0  and k 0 . By substituting 

0d dt    and using some trigonometric relations, we transform the equation of motion (3.1) to 
immeasurable form 
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The impact of non-ideal energy source on the oscillating system has to be expressed as a function 

 , ,М   where   - coordinate of movement of the energy source. The torque on the shaft of a motor (e.g., 

a DC motor with shunt excitation) is determined according to the formula 
 

 
,DМ a b    (3.3) 

 
where a  and b  – constant coefficients depending on the parameters of the engine. 

Now we assume that the limited power engine is slow-motion, i.e., the velocity of rotational motion 
of the motor shaft is equal to several units, thus we impose conditions 0 0b А . Let us substitute (3.3) and 
(3.2) and obtain the motion equation as 
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Equation (3.4) is essentially nonlinear, as a nonlinear term is included to the equation without a small 

parameter. 
 
3.2. Solution of the motion equation by the asymptotic method 
 

We now turn to the solution of the motion Eq.(3.2) by the asymptotic method (Gulyayev et al., 
1989). The static equilibrium of the mechanism is defined by the equation 
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 ,z z x      (3.7) 
 

We bring Eq.(3.4) to the form 
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For the system (3.9) we agree to consider the following Cauchy problem 
 

at  , , , .s 0 z 0 z 0 x x      (3.10) 
 

Following Bogolyubov and Mitropolskiy (1974), Moyseyev (1969), we suppose 
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where functions х and z  satisfy the following equations 
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Taking into account Eq.(3.12), we expand the functions cos , sinz 2z and cos3z  on small parameters 

  to the Taylor series 
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Equations for determining the function , ,Ai i iu 

 and iВ  are as follows 
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Let us consider the third Eq.(3.14). From condition (3.13) we find 
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Substituting 1u x 
 we bring Eq.(3.14)3 to the form 
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Consequently, the solution of Eq.(3.14)3 takes the form 
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By integrating the third and fourth of Eqs (3.23) and taking into account the initial conditions (3.10), 

we obtain 
 

 ,
s

s

1 Ae
х D B

1 Ae
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  


 

  (3.24) 

 

   ln ln( A),2 sz s k 1 Ae k 1        
    

   
where 
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Going back to the variables 

2

0

t s



  and z 

 and on the basis of formulas (3.23) and (3.24) we 
plot the graphs of the angular velocity on the rotation angle of the motor shaft (guiding link) with various 
parameters of the shaking table orthogonal mechanism. Calculations have been performed at the following 
parameters  

 

 а 600N m  ,      b 300N m s   ,      М 70kg ,      m 2kg ,      .1m 2 5kg ,  
 

 2m 3kg ,          .3m 3 5kg ,            .l 0 1m ,        1l 1m ,        .2l 2m  
 
In Fig.2 line 1 is built on the results of the numerical solution of Eqs (3.8), and line 2 - on the result 

of analytical solutions. Similar curves give an indication of closeness of the analytical and numerical 

solutions’ results. Graphs of the angular velocity of the motor shaft (guiding link)   on the angle of rotation 
  for different values of the load mass М  are shown in Fig.3; for different values of the guiding link length 
– Fig.4; for different values of the engine torque – Fig.5. The graphs show that the shaft angular velocity 
values (guiding link) oscillate around its mean value. 
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The amplitude of oscillograms depends on the values of the counterweight mass and guiding link 

length. The mean value of the angular velocity depends only on the value of the motor torque (Fig.5). 
Figure 6 shows the excitation region boundaries for rotational motion of the engine, built by formula 
(3.6). 

Figure 7 shows the oscillograms of the horizontal (line 1) and vertical (line 2) oscillations of the 
orthogonal mechanism relative to the average values of the coordinates х  and у . 

 
 

             
 
 

Fig.2. The dependence of the angular velocity on the shaft rotational angle (guiding link). 
 
 

                   
 
 
Fig.3. The dependence of the angular velocity on the shaft rotational angle (guiding link) at different values 

of the load mass. 
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Fig.4.  The dependence of the angular velocity on the shaft rotational angle (guiding link) at different values 

of the guiding link length. 
 
 

 
 
 

Fig.5.  The dependence of the angular velocity on the shaft rotational angle (guiding link)  at different 
values of the engine torque. 
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Fig.6. Excitation region boundaries for rotational motion of the motor shaft (guiding link). 
 

 
 

Fig.7. Graphs of horizontal and vertical oscillations of the orthogonal mechanism. 
 
3.3. Stability of motion 
 

Let us consider the stationary regimes of rotational motion of the orthogonal mechanism, which are 
given in Eq.(3.24). To do this, we form the variational equations for the system (3.23).  

Set 
 

 

* ,

* ,

х х q

z z p

 

 

  (3.25) 

 
where *х  and *z  - stationary solutions of Eqs (3.23), that under the initial conditions: s 0 , z 0 , z 0   
have the form 
 

 * D ,
s

s

1 Ae
х B

1 Ae






 
  

 



500  K.Bissembayev and Z.Iskakov 

 

 
   * ln ln( A).2 sz s k 1 Ae k 1         

 
 

Substituting (3.25) to (3.23) linearizing with respect to variations q  and p , we get 
 

 

 * ,

.2

q 1 8 х q

p q

         

  

  (3.26) 

 
Integrals of the equations system (3.26) will take the form 
 

 

 

 

,

.

s

2s

s

Ce
q

1 Ae

C 1
p

A 1 Ae











 

 

  (3.27) 

 
Stability condition has the form of the inequality 
 

 
  .1 16 0      (3.28) 

 
4. Conclusion 
 

The dynamics of the orthogonal mechanism with a nonideal energy source in the presence of a 
shaking table fixed counterweight is studied. It is found that the angular velocity value of the slow-speed 
motor shaft (guiding link) oscillates around its average value according to the harmonic law. The amplitude 
of deviation of the angular velocity from its mean value depends on the counterweight mass and the guiding 
link length. In turn, the mean value of the angular velocity depends on the motor torque. A criterion for the 
stability of slow-motion guiding link of the shaking table orthogonal mechanism is established. Results, 
obtained in the theoretical studies, can be successfully used for the design of vibration vehicles with 
orthogonal mechanisms.  
 
Nomenclature 
 
  a  and b  – constant coefficients depending on the parameters of the engine  

 f  – coefficient of sliding friction 

 J  – link moment of inertia 1 

 k  – coefficient of friction, rotation 
 , ,1 2l l l  – lengths of links 1, 2, 3, respectively 

 M  – counterweight mass 

 DM  – moment of the driving forces (the torque on the shaft of a motor) 

 , ,1 2m m m  and 3m  – mass of the links 1, 2, 3 and 4 

 ,X Y  – coordinates of the articulated link C 
 ,   – deviations coordinates of the articulated link C from their average value 

   – shaft rotational angle (guiding link) 
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   – angular velocity of the shaft rotational (guiding link) 
   – dimensionless time 
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