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In the present study, the temperature fluctuations in tissues based on Penne’s bio-heat transfer equation is 
investigated by applying the Laplace and Hankel transforms. To get the solution in a physical form, a numerical 
inversion technique has been applied. The temporal and spatial distribution of temperature is investigated with the 
effect of relaxation time and is presented graphically.  
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1. Introduction 
 
 It is essential to know the heat transfer in biological systems as they are of relevant importance in 
many diagnostic and therapeutic applications that involve changes in the temperature. The tissues are 
exposed to an electromagnetic or ultrasound energy source for a period of time, and the temperature is 
measured at various points away from the applicator by thermal probes such as thermistors or thermocouples.  
 The method for studying temperature distribution so far has been mostly experimental. Different 
mathematical methods may be applied for the computational study of temperature distributions in the 
biomass irradiated by a source of electromagnetic radiation. Carslaw and Jaeger (1959), and Lienhard (1987) 
focused on the heat transport analysis and numerical method. Riu et al. (1997), Bowman et al. (1975) and 
Martin et al. (1992) discussed the temperature rise for constant perfusion by an analytic method and finite 
element method based on the bio-heat transfer equation. 
 Arkin and Holmes (1994) used the bio-heat transfer equation to discuss heat transport in blood 
perfusion tissue. Erdmann et al. (1998) applied the finite element method to optimize the nonlinear bio heat 
transfer equation for optimizing regional hyperthermia, whereas Yreus and Diederich (2002) studied a two 
dimensional bio-thermal model of ultrasound applicators based on the bio heat transfer equation. Diller (1998; 
1999) Jiang et al. (2002), Chan (1992) and Mochnacki and Majchrzak (2003) applied the boundary element and 
finite difference method to solve bio-heat equations. Recently, Othman et al. (2011) applied the normal mode 
analysis for characterizing the temperature fluctuation in tissues based on Penne’s bio-heat transfer equation.  
 In this paper, the Laplace and Hankel transforms are employed to solve the bio-heat transfer equation 
analytically. The soft tissue is considered as a viscoelastic medium and the relaxation time has been used in 
the bio-heat transfer equation. The effect of heat sources and relaxation time on temperature distribution is 
studied. 
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2. Bio-heat transfer equation 
 
 The temperature evaluation in biological tissues can be modeled with Penne’s bio-heat equation, 
which is 
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where   is the temperature,   is the density of tissue, EC  is the heat capacity of tissue, k  is the diffusion 

due to blood flow, b  is the perfusion due to blood flow, bC  is the heat capacity of blood, b  is the density 

of blood, bT  is the arterial blood temperature, Q is the absorbed power density and   is the relaxation time, 
2  is the Laplacian operator.  

 The following dimensionless parameters are introduced as 
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where L  is the tissue length. 
 With the help of dimensionless quantities defined by Eq.(2.2), Eq.(2.1) yields, 
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 Applying the Laplace and Hankel transforms defined by 
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to Eq.(3.3) yields 
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where 
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 The roots of Eq.(2.6) are m  and making use of radiation conditions that 0  as z  , the 
solution of Eq.(2.6) can be written as 
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3. Boundary conditions 
 
 Two types of boundaries are considered: 
 

Case (I): Concentrated heat source 
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where 0Q  is the constant temperature applied on the boundary,    is the Dirac delta function. Applying 

the Laplace and Hankel transforms defined by Eqs (2.4) and (2.5) on the boundary condition Eq.(3.1) and 
with the help of (2.7), we obtain 
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Case (II): Continuous heat source 
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where  H  is the Heaviside unit step function. Applying the Laplace and Hankel transforms defined by Eqs 

(2.4) and (2.5) on the boundary condition Eq.(3.3) and with the help of (2.7), we obtain 
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4. Inversion of the transforms 
 
 To obtain the solution of the problem in the physical domain, we must invert the transforms in Eqs 
(3.2) and (3.4). These expressions are functions of ,z  the parameters of Hankel transforms s  and   

respectively and hence are of the form  , ,z s  . To get the function  , ,r z t  in the physical domain, first 

we invert the Hankel transform using 
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 The last step is to calculate the integral in Eq.(3.5). The method for evaluating this integral as 
described in Press et al. (1992), involves the use of Romberg's integration with adaptive step size. This also 
uses the results from successive refinements of the extended trapezoidal rule followed by extrapolation of the 
results to the limit when the step size tends to zero. 
 
5. Numerical discussion 
 
 In order to illustrate theoretical results obtained in the proceeding section, we now present some 
numerical results as follows  
 

  . / 3
bw 0 5 Kg m s ,     / o

bC 4200 J Kg C ,     . / ok 0 5W m C      and    .0 02  . 
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CASE I: Concentrated heat source 
 

 It is observed from Fig.1, which is a plot for temperature distribution at different relaxation times that 
tissue temperature decreases in the initial range, the magnitude of values is greater in the case of .0 07  . As 
the distance x  increases, the values of temperature distribution show small variations about zero value.  
 Figure 2 shows the influence of the thermal conductivity on the tissue temperature. It is observed that 
initially the tissue temperature decreases with greater magnitude as thermal conductivity decreases. Further, 
it is noticed that if x increases, the tissue temperature approaches a zero value. 
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Fig.1. Temperature distribution as a function of         Fig.2. Temperature distribution as a function of 
different relaxation times (wb=0.5, Cb=4200, k=0.5).    different thermal conductivity (wb=0.5, Cb=4200, τ=0.02). 
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      Fig.3. Temperature distribution as a function of         Fig.4. Temperature distribution as a function of time            
                 blood perfusion (k=0.5, Cb=4200, τ=0.02).                (wb=0.5, k=0.5, Cb=4200, τ=0.02).             

 

Concentrated heat source 
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 Every person has a varied blood perfusion at various health conditions and hence from Fig.3, which 
is a plot of the tissue temperature for different blood perfusion values it can be noticed that the greater the 
blood perfusion, the more the biological body tends to prevent burn injuries. 
 Figure 4 depicts the tissue temperature at different time, it is noticed that at the early stage of heating 
the values of temperature distribution decrease with a greater magnitude and as x incresease the tissue 
temperature approaches a zero value. 
 
CASE II: Continuous heat source 
 
 Figure 5 shows the influence of relaxation time on the tissue temperature, it is noticed that as   
increases the tissue temperature decreases with a greater magnitude in the intial range and as x increases the 
impact of different relaxation time is almost similar. 
 Figure 6 depicts the impact of different thermal conducitvity, it is noticed that trends are similar as 
observed for Fig.2 with a significant difference in the magnitude of their values. 
 It is observed from Fig.7 that the values of tissue temperature decrease with a greater magnitude 
as blood perfusion increases and with a further increase in x the impact of various blood perfusions is 
much smaller. 
 It is noticed from Fig.8 that near the loading surface, the values of tissue temperature decrease with a 
greater magnitude for small values of time and as x increases the values of tissue temperature approach to a 
zero value with an oscillatory pattern.  
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  Fig.5. Temperature distribution as a function of       Fig.6. Temperature distribution as a function different of  
      relaxation times (wb=0.5, Cb=4200, k=0.5).             different thermal conductivity (wb=0.5, Cb=4200, τ=0.02). 
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      Fig.7. Temperature distribution as a function of                 Fig.8. Temperature distribution as a function 
                blood perfusion (k=0.5, Cb=4200, τ=0.02).                      of time (wb=0.5, k=0.5, Cb=4200, τ=0.02). 
 

Continuous heat source 
 
Nomenclature 
 
 bC  – heat capacity of blood 

 EC  – heat capacity of tissue 

 k – diffusion due to blood flow 
 Q – absorbed power density 
 bT  – arterial blood temperature 

   – temperature 
  – density of tissue 
 b  – density of blood 

   – relaxation time 
 b  – perfusion due to blood flow 

 2  – Laplacian operator 
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