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A numerical technique is employed to derive a solution to the transient natural convection flow of an 
incompressible viscous fluid past an impulsively started infinite isothermal vertical plate with uniform mass 
diffusion in the presence of a magnetic field and homogeneous chemical reaction of first order. The governing 
equations are solved using implicit finite-difference method. The effects of velocity, temperature and 
concentration for different parameters such as the magnetic field parameter, chemical reaction parameter, Prandtl 
number, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the 
fluid velocity decreases with increasing the chemical reaction parameter and the magnetic field parameter.  
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1. Introduction 
 
 Chemical reactions can be codified as either heterogeneous or homogeneous processes. This depends 
on whether they occur at an interface or as a single phase volume reaction. Many transport processes exist in 
nature and in industrial applications in which the simultaneous heat and mass transfer are a result of 
combined buoyancy effects of thermal diffusion and diffusion of chemical species. However, in nature, along 
with free-convection currents caused by temperature differences, the flow is also affected by the differences 
in concentration. Such a study is found useful in chemical processing industries such as fibre drawing, 
crystal pulling from the melt and polymer production.  
 Magnetoconvection plays an important role in various industrial applications. Examples include 
magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors and 
magnetic suppression of molten semi-conducting materials. It is of importance in connection with many 
engineering problems, such as sustained plasma confinement for controlled thermonuclear fusion and 
electromagnetic casting of metals. MHD finds applications in electromagnetic pumps, controlled fusion 
research, crystal growing, MHD couples and bearings, plasma jets and chemical synthesis. 
 Chambre and Young (1958) analyzed a first order chemical reaction in the neighborhood of a 
horizontal plate. The effect of a transversely applied magnetic field on the flow of an electrically conducting 
fluid past an impulsively started infinite isothermal vertical plate was studied by Soundalgekar et al. (1979). 
The dimensionless governing equations were solved using the Laplace transform technique.  
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 Kumari and Nath (1999) studied the development of the asymmetric flow of a viscous electrically 
conducting fluid in the forward stagnation point region of a two-dimensional body and over a stretching 
surface with an applied magnetic field, when the external stream or the stretching surface was set into 
impulsive motion from the rest. The governing equations were tackled using the implicit finite difference 
scheme. Das et al. (1999) studied an exact solution to the flow of a viscous incompressible fluid past an 
impulsively started infinite isothermal vertical plate in the presence of mass diffusion and first order 
chemical reaction. In all above studies, the dimensionless governing equations are solved using the Laplace 
transform technique.  
 The problem of an unsteady natural convection flow past an impulsively started infinite isothermal 
vertical plate with mass diffusion in the presence of chemical reaction and magnetic field has not received 
attention of any researcher. Hence, the present study is to investigate the MHD flow past an impulsively 
started infinite isothermal vertical plate with a homogeneous first order chemical reaction by an implicit 
finite-difference scheme of Crank-Nicolson type. 
 
2. Formulation of the problem 
 
 A transient, laminar, unsteady natural convection MHD flow of a viscous incompressible fluid past 
an impulsively started infinite isothermal vertical plate with uniform mass diffusion is considered. It is 
assumed that there is a first order chemical reaction between the diffusing species and the fluid. Here, the x-
axis is taken along the plate in the vertically upward direction and the y-axis is taken normal to the plate. 
Initially, it is assumed that the plate and the fluid are of the same temperature and concentration. The plate 
starts moving impulsively in the vertical direction with constant velocity u0 against the gravitational field. 
The temperature of the plate is raised uniformly and the concentration level near the plate is also raised at a 
uniform rate. They are maintained at the same level for all time at time t > 0. A transverse magnetic field of 
uniform strength B  is assumed to be applied  normal to the plate. The induced magnetic field and viscous 
dissipation are assumed to be negligible. Then under the above assumptions, the governing boundary layer 
equations of mass, momentum and concentration for the free convective flow with usual Boussinesq’s 
approximation are as follows 
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 The initial and boundary conditions are 
 
  t  0:             u = 0,                   T T  ,                C C  , 
 
  t > 0:            u = u0,                  wT T  ,           wC C            at        y = 0,          
   (2.4) 
  u = 0,           T T  ,                 C C             at       x = 0,    
 
  u 0,           T T  ,                C C            as       y      
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 On introducing the following non-dimensional quantities  
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 Equations (2.1) to (2.3) are reduced to the following non-dimensional form 
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 The corresponding initial and boundary conditions in non-dimensional quantities are 
 
  t  0:              U = 0,               T = 0,            C=0,              
              

  t > 0:               U = 1,                  T =1,               C 1             at           Y = 0,     
   (2.9) 
  U = 0,           T = 0,                C=0                at           X = 0, 
 
  U  0,         T  0,               C 0              as           Y  . 
 
3. Numerical technique 
 
 In order to solve these unsteady, non-linear coupled Eqs (2.6) to (2.8) under the conditions (2.9), an 
implicit finite difference scheme of Crank-Nicolson type has been employed. The finite difference equations 
corresponding to Eqs (2.6) to (2.8) are as follows 
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 Here the region of integration is considered as a rectangle with sides Xmax (=1) and Ymax(=14), where 
Ymax corresponds to Y =  which lies very well outside both the momentum and energy boundary layers. The 
maximum of Y was chosen as 14 after some preliminary investigations so that the last two of the boundary 

conditions (2.9) are satisfied within the tolerance limit 510 . 
 After experimenting with a few set of mesh sizes, the mesh sizes have been fixed at the level X = 
0.05, Y = 0.25 with time step t = 0.01. In this case, the spatial  mesh sizes are reduced by 50% in one 
direction, and later in both directions, and the results are compared. It is observed that when the mesh size is 
reduced by 50% in the Y-direction, the results differ in the fifth decimal place while the mesh sizes are 
reduced by 50% in the X-direction or in both directions, the results are comparable to three decimal places. 
 Hence, the above mesh sizes have been considered as appropriate for calculation. The coefficients 

,
n
i jU  appearing in the finite-difference equations are treated as constants in any one time step. Here i-

designates the grid point along the X-direction, j along the Y-direction and the superscript n along the t-
direction. The values of U, V and T are known at all grid points at t = 0 from the initial conditions. 
 The computations of U, T and C at time level (n+1) using the values at previous time level (n) are 
carried out as follows: The finite-difference Eq.(3.3) at every internal nodal point on a particular i-level 
constitutes a tridiagonal system of equations. Such a system of equations is solved by using Thomas 
algorithm as discusses in Carnahan et al. (1969).Thus, the values of C are found at every nodal point for a 
particular i at (n+1)th time level. Similarly, the values of T and U are calculated from Eqs (3.2) and (3.1) 
respectively. This process is repeated for various i-levels. Thus the values of C, T, and U are known, at all 
grid points in the rectangle region at (n+1)th time level. 
 
4. Results and discussion 
 
 The velocity profiles for different values of the magnetic parameter are shown in Fig.1. The velocity 
profiles presented are those at X = 1.0. It is observed that for (M = 0, 2, 5, 10), K = 2, Gr =2, Gc =5, Pr = 
0.71, and Sc = 0.6, the velocity decreases in  the presence of magnetic field. This shows that the increase in 
the magnetic field parameter leads to a fall in the velocity. This agrees with the expectations, since the 
magnetic field exerts a retarding force on the free convective flow. 
 The effect of velocity for different values of the chemical reaction parameter (K = 2, 5, 10), M = 2, 
Gr = 2, Gc = 5, Pr = 0.71 and Sc = 0.6 are shown in Fig.2. It is observed that the velocity increases with 
decreasing values of the chemical reaction parameter.  
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Fig.1. Velocity profiles for different M 
 

 
 

Fig.2. Velocity profiles for different K. 
 

 The temperature profiles for different values of the Prandtl number and chemical reaction parameter 
are shown in Fig.3. The temperature increases with increasing chemical reaction parameter and decreases 
with increasing the Prandtl number. This shows that the buoyancy effect on the temperature distribution is 
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very significant in air (Pr = 0.7) compared to water (Pr = 7.0). It is known that the Prandtl number plays an 
important role in flow phenomena, because it is a measure of the relative magnitude of viscous boundary 
layer thickness to the thermal boundary layer thickness. 
 

 
 

Fig.3. Temperature profiles for different K and Pr. 
 

 
 

Fig.4. Concentration profiles for different K and Sc. 
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 The effect of the chemical reaction parameter and the Schmidt number is very important for 
concentration profiles. The steady-state concentration profiles for different values of the chemical reaction 
parameter and the Schmidt number are shown in Fig.4. There is a fall in concentration due to increasing the 
values of the chemical reaction parameter or the Schmidt number.  
 
5. Conclusions 
 
 A detailed numerical study of the incompressible viscous fluid MHD flow past an  impulsively 
started  infinite isothermal vertical plate with uniform mass diffusion in the presence of  homogeneous 
chemical reaction of first order is presented in the paper. Dimensionless governing equations are solved 
using the implicit finite-difference scheme of the Crank-Nicolson type. The fluids considered in this study 
are air and water. The study performed allows the following conclusions. 
 
1.  The velocity and concentration increases with decreasing values of the chemical reaction parameter. 
2.  The temperature increases with increasing values of the chemical reaction parameter and decreases with 

increasing values of the Prandtl number. 
 
Nomenclature 
 
 a*  – absorption coefficient 
 B0  – magnetic field strength 
 C – dimensionless concentration 
 C  – concentration  
 D  – mass diffusion coefficient 
 Gc – mass Grashof number 
 Gr – thermal Grashof number 
 g  – acceleration due to gravity 
 i  – grid point along the X-direction 
 j  – grid point along the Y-direction 
 K – chemical reaction  parameter 
 Kl  – dimensionless chemical reaction parameter 
 M  – magnetic field parameter 
 Nu  – dimensionless average Nusselt number 
 Nux – dimensionless local Nusselt number 
 Pr – Prandtl number 
 T – dimensionless temperature 
 T   – temperature 
  t – dimensionless time 
 t  – time 
 U, V – dimensionless velocity components in X, Y-directions respectively 
 u, v  – velocity components in x, y-directions respectively 
 u0 – velocity of the plate 
 w – conditions at the wall 
 X – spatial coordinate along the plate 
 X – dimensionless spatial coordinate along the plate 
 Y  – spatial coordinate normal to the plate 
 Y – dimensionless spatial coordinate normal to the plate 
  – thermal diffusivity 
   – coefficient of volume expansion 
  – volumetric coefficient of expansion with concentration 
   – coefficient of viscosity 
   – kinematic viscosity     
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   – Stefan-Boltzmann constant 

    – dimensionless average skin-friction 
 x  – dimensionless local skin-friction 

   – conditions in the free stream 
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