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The eigen value approach, following the Laplace and Hankel transformation has been employed to find a
general solution of the field equations in a generalized thermo microstretch elastic medium for an axisymmetric
problem. An infinite space with the mechanical source has been applied to illustrate the utility of the approach.
The integral transformations have been inverted by using a numerical inversion technique to obtain normal
displacement, normal force stress, couple stress and microstress in the physical domain. Numerical results are
shown graphically.
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1. Introduction

The classical theory of elasticity successfully explains the behavior of construction materials
(various sorts of steel, aluminum, concrete) provided the stresses do not exceed the elastic limit and no stress
concentration occurs. But it is inadequate to model the modern engineering components which possess
internal structure such as polycrystalline materials and materials with fibrous or coarse grain structure.
Eringen (1966) coined a term micropolar elasticity and used this theory to explain the deformation of elastic
media with such oriented particles. A micropolar continuum is a collection of interconnected particles that
are made up of dipole atoms or dumb-bell molecules and are subjected to surface and body couples which is
capable of translational as well as rotational motion.

The governing equations of thermoelasticity in the usual framework of linear coupled
thermoelasticity consists of the wave type (hyperbolic) equations of motion and the diffusion type
(parabolic) equation of heat conduction. But it was observed that if an isotropic, homogeneous, elastic
material is subjected to thermal or mechanical disturbances, the effects in the temperature and displacement
field are felt immediately at an infinite distance from the source of disturbance. This implies that a part of the
disturbance has an infinite velocity of propagation which is physically impossible. To overcome these
discrepancies two generalizations to the coupled theory were introduced. The first is due to Lord and
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Shulman (1967), who obtained a wave-type heat equation by postulating a new law of heat conduction to
replace the classical Fourier’s law. The second generalization is known as the theory of thermoelasticity with
two relaxation times or the theory of temperature-rate-dependent thermoelasticity. Green and Lindsay
obtained an explicit version of the constitutive equations in 1972.

Nowacki (1966) and Eringen (1970) extended the linear theory of micropolar continua to include the
thermal effect and formulated the micropolar thermoelasticity theory. The linear theory of elastic materials
with stretch is one of the generalizations of the classical theory of elasticity. Eringen (1971) developed the
theory of micropolar elastic solid with stretch which included the effect of axial stretch during the rotation of
molecules. Microstretch solids are capable of stretching and contraction independent of their translation and
rotation. Thus, in these solids, the motion is characterized by seven degrees of freedom, namely three for
translation, three for rotation and one for stretch. Porous media whose pores are filled with gas inviscid
liquid, asphalt and composite fibrous materials are some examples of microstretch elastic solids. Eringen
(1990) also developed a continuum theory of thermo-microstretch elastic solids. Green and Naghdi (1993)
proposed the theory of thermoelasticity without energy dissipation and presented the derivation of a
complete set of governing equations of the linearized version of the theory for homogeneous and isotropic
materials in terms of displacement and temperature fields and proved the uniqueness of the solution of the
corresponding initial mixed boundary value problem. Iesan and Neppa (1995) contributed to this field by
studying a problem on extension and bending of a microstretch elastic circular cylinder. A problem of
bending of microstretch elastic plates was investigated by Ciarletta (1999). Chandrasekharaiah and Srinath
(2000) studied the problem of thermoelastic waves without energy disspation in an unbounded body having a
spherical cavity. Aouadi (2008) studied the linear theory of microstretch thermoelastic bodies with
microtemperature and proved the existence of coupling of microrotation vector field with the
microtemperatures for isotropic bodies. Kumar and Partap (2009) investigated the propagation of
axisymmetric free vibrations in microstretch thermoelastic homogeneous isotropic solids which were
subjected to stress free thermally insulated and isothermal conditions. Othman and Lotfy (2010) applied the
normal mode analysis on the general model of the equations of generalized thermo-microstretch for a
homogeneous isotropic elastic half space of different theories. Othman et al. (2013) analyzed the effect of
gravity on the same model for generalized thermo-microstretch for a homogenous isotropic elastic half-space
solid subjected to a Mode-I crack problem in the context of Green Naghdi theory.

2. Formulation and solution of the problem
We consider a homogeneous, isotropic generalized thermo-microstretch elastic medium of infinite
extent pointing vertically into the medium. Field equations and the constitutive relations without body forces,

body couples, heat sources and stretch force are given by Eringen (1990), Lord and Shulman (1967) and
Green and Lindsay (1972) as
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Since we are considering a two-dimensional axisymmetric problem, so we assume the components
of the displacement vector u and microrotation vector ¢ are of the form

uz(ur,O,uz), (p=(0,(p9,0). (2.8)
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Here due to symmetry about the z-axis all the quantities are independent of 6, so that % =(0. With

these considerations and using Eqs (2.8), the system of Eqgs (2.1) to (2.7) reduces to
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The system of Eqs (2.22)-(2.26) can be written as
dW(E,z,
PE2D_aeprez.p) @27)
where
U o1 o Lk
0 Emy omg o, ]
ns ms
I1+71,p
|- Em, 0 0 1 ms
1 — ml mI ml ’
—m 0 0 0 0
0 € p(] + rOpE) 0 0 0
|0 my; 0 0 0 |
~ . _

(m&”+ p7) , ) E(1+7p) mst

ms ms ms

2, 2
m3&” + p
0 ( ) _ m4<t: 0 0
AZ = m; m;
0 —mg&, (2m6 +&? +m7p2) 0 0
sp(]JrTOpE)EJ 0 0 2’;2+p(1+1:0p) € pmyg
&my, 0 0 —ng (m12P2 +8°+ mzo)

where O is the null matrix, I is the unit matrix of order 4,[]’ is the transpose of matrix [] and D = di

To solve Eq.(2.27), we take
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which leads to the eigen value problem. The characteristic equation corresponding to the matrix 4 is given

by

det(4-gl)=0.

(2.30)
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On expanding Eq.(2.30), we get
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where s (i=1,2,..,5) are functions of &and p.
The eigen values of the matrix 4 are characteristic roots of Eq.(2.31). The eigen vectors X (&, p)

corresponding to the eigen value g, can be determined by solving the system of homogenous equations
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Thus the solution of Eq.(2.27) as given by Sharma and Chand (1992) is
5

W(Ez.q)= [ BX;exp(q;z)+ B 5 X, 5 exp(-¢;z) | (2.34)
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where B/s (i=1,2,...,10) are arbitrary constants. Equation (2.34) represents the solution of the generalized

thermo microstretch elastic medium for the axisymmetric case and gives displacement, microrotation,
temperature distribution and scalar microstretch in the transformed domain.

3. Application

We consider an infinite generalized thermo microstretch elastic space in which a concentrated force
S(r)o(t
o B0
2nr
of the cylindrical polar co-ordinate system as shown in the Fig.1.

where F, is the magnitude of the force, acting in the direction of the z-axis at the origin



Interaction due to mechanical source in generalized ... 355

Generalized thermo

microstretch medium 2< 0

F(rt)

o
Generalized thermo
microstretch medium 20
X
¥
Fig.1. Geometry of the problem.
The boundary conditions for the plane z=0 are given by,
ur(r,0+,t) —ur(r,O_,t) =0, uz(r,0+,t) —u, (r,O_,t) =0, 3.1
(pe(r, 0, t)—(pe(r, 0, t)=0, o' (r 0%, 1)-9"(r, 07, 1) =0 (3.2)
T(r,0+,t)T(r,0_,t) -0, =0, aa—j(r, 0+,t)—%(r, 0‘,t)=0, (3.3)
tzr(r,o*,t) —tzr(r,O*,t) =0, tzz(r,0+,t) —tzz(r,O*,t): —Fow, (3.4)
mze(r, 0, t)—mze(r, 0, t)=0, kz(r, 0", t)—kz(r, 0, t)=0. (3.5

E
For z>0: Making use of Egs (2.8) and (2.14) on Egs (2.5)-(2.7) and F} 2?0, we get the stresses in

the non-dimensional form with primes. After suppressing the primes and applying the Laplace and Hankel
transforms defined by Eqs (2.20) and (2.21) on the resulting equations and using boundary conditions Eqs
(3.1)-(3.5), we get the transformed components of displacement, microrotation, scalar microstretch,
temperature distribution, tangential force stress, normal force stress, tangential couple stress and microstress
for z>0), given by

5 _
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Making use of the transformed displacement, microrotation, temperature

distribution, scalar

microstretch and stress components given by Eqs (3.6)-(3.14) in region z>0 and equations for the region z<0
in the boundary conditions, we obtain ten linear relations between B/s (i=1,2,..,10) which on solving give

£
= 4nq1Aj [(a3 —a]){(c4 —cz)(dj —dz)—(d4 —dz)(c5 —02)}+
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By
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where

Ay =my[(c;—cs){a;(dsb, —dyby)+as(dby —d;by)+a,(d;bs —dsb;))
+(c; —¢5){a; (d,bs —dsby ) +a, (dsh; —dbs ) +as (d )b, —d by )} +
+(cg —e5){a; (dybs —dsby ) +ay (dsby —dbs) +az (diby —d,by )} +
+(c; —¢;){a (dsb; —dsbs)+a; (d;bs —dshy) +as (dsb, —d;bs )| +
+(cy —c3){a;(dsby —dybs )+ ay (d;bs —dshy ) +as (dyb; —d by )} +
+(cs —c3){a; (dyby —d by )+ a,(diby —dyby )+ ay (d by —d by )} +
+(c; —¢;){ay (dsbs —dsby) +ay(dsb, —dybs ) +as (dyb, —d by )} +
+(cs —c;){ay (dsby —dbs )+ az(d by —dyby )+ ay (dybs —dsby )| +
+(cs —c;){ay (dsbs —dsbs )+ as (dybs —dsby )+ as (dshy —dybs )} +
+(c; —¢;){a; (dsb, —d bs) +a,(dsbs —dshy )+ as (d,bs —dsb, )}

Thus functions i, i,

,§g>Ts7., 7. .ig,@ and A, have been determined in the transform domain

and these enable us to find the displacements, microrotation, temperature distribution field, stresses, scalar

microstretch and microstress.
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4. Method for the inversion of transforms

The transformed solutions are functions of the form f (& z,p) and to get the function f(r,z,p),
first we invert the Hankel transform by using

7(&2p) = [E] 2. p), (E)dE, (4.1)
0

The expression Eq.(4.1) gives us the Laplace transform f(&,z, p) of the function f(&,z, p). Now
for the fixed values of  and z the function f(&,z, p) can be considered as the Laplace transform g(p) of
some function g(¢). Following Honig and Hirdes (1984), the Laplace transformed function g(p)can be

inverted numerically as given below.
The function g(¢) can be obtained from g(p) by using the inversion formula

Cc+100

0= | gt (42)

Cc+10

where C is an arbitrary real number greater than all the real parts of the singularities of g(p). The actual

procedure to invert the Laplace transform consists of Eq.(4.2) together with the ¢ -algorithm. The values of
C and L are chosen according to the criteria outlined by Honig and Hirdes (1984).

The last step is to calculate the integral in Eq.(4.1). The method for evaluating this integral is
described by Press et al. (1986), which involves the use of Romberg’s integration with an adaptive step size.
It also uses the results from successive refinements of the extended trapezoidal rule followed by
extrapolation of the results to the limit when the step size tends to zero.

5. Numerical results and discussion

Following Eringen (1984), we take the following values of relevant parameters for a magnesium crystal as

A=9.4x10""N/m’ w=4x10""N/m? K=1x10""N/m?,
p=1.74x10° kg/m’, v=0.779x10°N | j=02%x10"m? |

K =1.1753x107"m?, o =0.0787x 107 Nsec/m? , 1,=6.131 x 10",
1,=8.765 x 10°%s, £=0.073, T,=296K, Ay =0.5x10" N/m?
A, =05%x10"" N/m®, 0y =0.779x10° N, C"=3.525] Kg 'Kk~

The variations of the non-dimensional normal displacement UZ(:4 T, /F})), non-dimensional

normal stress 7. (=4Tctzz /Fo), non-dimensional tangential couple stress Mze(:475mze /FO), non-
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dimensional microstress X: (= 4mn, / Fo) and non-dimensional temperature distribution T " (=4nT/F,) with

the non-dimensional radial distance ‘* at the plane z=1, /=10’ m and the coupling coefficient &=0.073
have been shown in Figs 2-6 for (a) generalized thermo microstretch elastic (GTMSE) medium (b)
generalized thermo micropolar elastic (GTME) medium; (c) generalized thermoelastic (GTE) for time t=0.1,
0.125 and 0.5.

The behaviour of displacement for both theories (L-S and G-L) in all three media (GTMSE, GTMS,
GTE) is similar, whereas due to the stretch effect, the value of normal displacement in the GTMSE medium
is slightly different as compared to those in the GTME medium for L-S and G-L theories as shown in Fig.2.

0.3

}r, - —— LS (GTMSE)
=3 - - - G-L{GTMSE)
% e
0,25 3 —x— -5 (GTME)
- %= G-L (GTME)
0,2 - —o— -5 {GTE)

- <o- L-S(GTE)
0,15

01

Mormal Displacement U

Fig.2. Variations of normal displacement U, (= 41, | F, )

The value of normal stress in the GTMSE medium is smaller as compared to those in GTME in the
ranges 0<r<l.8 and 2.8<r<4.6 but it is larger in the ranges 1.8§<r<2.8 and 4.6<r<6. The value of normal
stress in the GTE is very small as compared to those in the GTMSE and GTME medium in the ranges
0<r<l1.5 and 3.6<r<4.8, whereas the reverse happens in other ranges. The distribution of normal stress for
both the theories in all the three media has been shown in Fig.3.

The stretch effect on tangential couple stress can be observed in Fig.4, where the value of the
tangential couple stress in the GTMSE medium is large in the ranges 0<r</.5 and 4<r<J5.5; small in the
ranges /.5<r<4 and 5.5<r<6 as compared to those in the GTME medium for both the theories.

The behaviour of microstress in the GTMSE medium is similar for both theories, as shown in Fig.5,
whereas the value for the G-L theory is large in comparison with those of the L-S theory in the ranges
0<r<l1.75 and 3<r<3, but is small in the range /.75<r<3, while the values are same for both the theories for
r>)5.

The value of the temperature field is large in the GTMSE medium as compared to those in the
GTME and GTE media for both theories as depicted in Fig.6, where the value of the temperature field in the
GTME medium are multiplied by 70° and /0’ for L-S and G-L theories, respectively and in the GTE medium
by 1 (7 for both the theories, to show the behavior simultaneously.
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10
5 - _o
x_. - - :; ——— ) , - -. N
0
C 9 10
HH -3 — L5 {GTMSE)
» - allc
2 10 3-L {GTMSE)
E ——L-S (GTME)
o
g 1 - %= G-L(GTME)
= 20 —o—L-5 {GTE)
- 0= G-L{GTE)
-25
-30
35
Fig.3. Variations of normal stress 7, =4nt_, [ F.
0.5
04 - — LS (GTMSE)
- — - G-L{GTMSE)

=
w
1

—x—L-§ (GTME)
- 2= G-L (GTME)

=
]
1

Tangential couple stress v
=
o
1

Fig.4. Variations of tangential couple stress M ,q ( =4nm,y/F, )
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4nT/F)).

Fig.6. Variations of temperature distribution 7' *(
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6. Conclusion

Hence we conclude that the effect of microstretch on displacement, normal stress, tangential couple
stress, microstress and temperature distribution depends upon the radial distance ». Also, for a mechanical
source this effect is inversely proportional to the radial distance. Using these results, it is possible to
investigate the disturbance caused by a more general source for practical applications.

Nomenclature

C"  —specific heat at constant strain

j —micro-inertia
K" - coefficient of thermal conductivity
my; — couple stress tensor

T —temperature change
; — force stress tensor

u —displacement vector

v, v; —mechanical and thermal constant

~

a,B,y,K —micropolar material constants
o, o, —coefficient of linear expansion

A — gradient operator

Sij — Kronecker delta

g — alternating tensor
A, u —Lame’s constants

A, — microstress component
p —density
1) —thermal relaxation time

1; —thermal relaxation time
¢ — microrotation vector

* .
¢  —scalar microstretch
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