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An unsteady magnetohydrodynamic (MHD) two-layered fluids flow and heat transfer in a horizontal channel 
between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the 
whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform 
pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as 
electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical 
conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are 
maintained at constant and equal temperatures. The governing partial differential equations are then reduced to 
the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary 
velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these 
solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on 
the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, 
heights, electrical and thermal conductivities. 
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1. Introduction 
 
 The problems of fluid motion in parallel plate channels and rectangular channels have been studied 
by several authors due to their importance in engineering and technological fields. Subsequently, 
considerable attention has been also given to the study of magnetohydrodynamic flow of viscous fluids in a 
rotating system in connection with theories of fluid motion of two-phase/two-layered flows, flow of 
immiscible fluids, stratified flows, flows in the presence of heat source/heat flux, flow through channels of 
different geometries with varied constraints and so on. New and emerging ideas have been added to the 
literature to possible applications in geophysics, astrophysics, engineering problems, geothermal energy, 
stem stimulation of oil field, food drying and heat pipes etc. 
 The viscous fluid flow in a rotating frame of reference is of considerable importance due to the 
occurrence of various natural phenomena and for its application in various technological situations, which 
are governed by the actions of Coriolis forces. The broad subjects of oceanography, meteorology, 
atmospheric science and astronomy involve some important and essential features of rotating fluids. The 
rotating flow of an electrically conducting fluid in the presence of a magnetic field is encountered in 
cosmological and geophysical fluid dynamics. Many important observations on the viscous fluid flow 
problems in a rotating system under different conditions and configurations have come out from the 
analytical studies of many investigators, namely, Greenspan and Howard (1963), Holton (1965), Vidyanidhi 
(1969), Walin (1969), Siegman (1971), Jana and Datta (1977), Seth et al. (1982), Mazumder (1991), 
Ganapathy (1994), Hayat et al. (2001), Hayat and Hutter (2004) and Das et al. (2008). The investigation on 
an oscillatory flow in a rotating channel is important from a practical point of view, because fluid oscillations 
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may be expected in many MHD devices and natural phenomena where the fluid flow is generated due to the 
oscillating pressure gradient or due to vibrating plates/walls. In view of these facts, Mukherjee and Debnath 
(1977), Seth and Jana (1980), Singh (2000), Ghosh (1993), Ghosh and Pop (2003), Hayat et al. (2004) and 
Guria and Jena (2007) investigated an oscillatory flow of a viscous incompressible electrically conducting 
fluid in a rotating channel under different conditions to analyze various aspects of the problem. Rahman and 
Sattar (1999) studied an MHD free convection and mass transfer flow with an oscillating plate velocity and 
constant heat source in a rotating frame of reference. 
 All the above investigations have been carried out in a fluid system having single fluid flows. But 
many problems relating to astrophysics, geophysical fluid dynamics, aeronautics, and in petroleum industry, 
also in industrial applications, etc; involve multi layered-fluid flow situations. In the petroleum industry as 
well as in other engineering and technological fields, a stratified two-phase/two-layered fluid flow often 
occurs. For example, in geophysics, it is so important to study the interaction of the geomagnetic field with 
the hot springs/fluids in geothermal regions, in which, once the interaction of the geomagnetic field with the 
flow field is known, then one can easily find the temperature distribution from the well known energy 
equation. Moreover, the temperature distribution plays an important role in MHD generators, plasma 
physics, turbines, etc. Also, it is a known fact that, to generate electricity, the temperature is used to run the 
turbine across a magnetic field. Transportation and extraction of the products of oil are other obvious 
applications using a two-phase system to obtain the increased flow rates in an electromagnetic pump from 
the possibility of reducing the power required to pump oil in a pipe line by a suitable addition of water 
(Shail, 1973). There are several investigations with regards to both experimental and theoretical aspects of 
magnetohydrodynamic two-phase/two-layered fluids flow problems, which are available in the literature 
[viz., Packham and Shail (1971), Lielausis (1975), Michiyoshi et al. (1977), Chan (1979), Chao et al. (1979), 
Dunn (1980), Gherson (1984), Lohrasbi and Sahai (1987; 1989), Alireza and Sahai (1990), Serizawa et al. 
(1990), Malashetty and Leela (1992), Malashetty and Umavathi (1997), Ramadan and Chamkha (1999), 
Chamkha (2000), Raju and Murty (2006), Tsuyoshi Inoue and Shu-Ichiro Inutsuka (2008) etc.]. Also, recent 
studies show that magnetohydrodynamic (MHD) flows can also be a viable option for transporting 
conducting fluids in microscale systems, such as a flow inside the micro-channel networks of a lab-on-a-chip 
device (Haim et al., 2003; Hussameddine et al., 2008). In micro-fluidic devices, multiple fluids can be 
transported through a channel for different reasons. For example, an increase in mobility of a fluid may be 
achieved by stratification of a highly mobile fluid or mixing of two or more fluids in transit may be designed 
for emulsification or heat and mass transfer applications. In this regard, magnetic field-driven micro-pumps 
are an increasing demand due to their long-term reliability in generating flow, low power requirement and 
mixing efficiency (Yi et al., 2002 and Weston et al., 2010 ). 
 Most of the above investigations correspond to the steady flow situations. However, a significant 
number of practical problems dealing with immiscible fluids are unsteady in nature. In many practical 
problems, it is also advantageous to consider both immiscible fluids as electrically conducting, one of which 
is highly electrically conducting compared to the other. The fluid of low electrical conductivity compared to 
the other is helpful to reduce the power required to pump the fluid in MHD pumps and flow meters. In view 
of these facts, Heavy and Young (1970) studied oscillating two-phase channel flows. Debnath and Basu 
(1975) discussed the unsteady slip flow in an electrically conducting two-phase fluid under transvrse 
magnetic fields. Chamkha (2004) studied the unsteady MHD convective heat and mass transfer past a semi-
infinite vertical permeable moving plate with heat absorption. Umavathi et al. (2006) investigated an 
oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel. Linga Raju and Sreedhar 
(2009) discussed an unsteady two-fluid flow and heat transfer of conducting fluids in channels under 
transverse magnetic field. 
 On the other hand, the simultaneous influence of rotation and an external magnetic field on 
electrically conducting two-layered/two-phase fluid systems seem to be dynamically important and 
physically useful etc. So, in view of the wide range applications in geophysics and MHD generators, in this 
paper an unsteady magnetohydrodynamic (MHD) two-layered fluids flow in a horizontal channel between 
two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole 
system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure 
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gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as 
electrically conducting. The two fluids are assumed to be incompressible with variable properties, namely, 
different viscosities, thermal and electrical conductivities. Also, the transport properties of the two fluids are 
taken to be constant and the bounding plates are maintained at constant and equal temperatures. The 
governing partial differential equations are then reduced to the ordinary linear differential equations by using 
two-term series. Exact solutions for primary and secondary velocity distributions, also the temperatures are 
obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on 
the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such 
as the Hartmann number, Taylor number (rotation parameter), ratios of the viscosities, heights, electrical and 
thermal conductivities. Moreover, an observation is made how the velocity and temperature distributions 
vary with hydromagnetic interaction in the case of steady and unsteady motions in the presence of rigid 
rotation. 
 The structure of the paper is as follows. Introduction of the problem is given in § 1. The formulation 
and mathematical analysis of the problem for equations of motion, energy, the boundary and interface 
conditions are given in § 2. Closed form solutions of the problem are given in § 3. While § 4 gives the results 
and discussion based on the velocity and temperature profiles, which are displayed in Figs 2 to 17. 
 
2. Formulation and mathematical analysis of the governing equations of motion, energy, 

boundary and interface conditions 
 

 
 

Fig.1. Physical model and co-ordinate system. 
 
 We consider an unsteady magnetohydrodynamics (MHD) two layered-fluid flow in a horizontal 
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conductivities ,1 2K K  and electrical conductivities ,1 2  . A constant magnetic field of strength B0 is 
applied transverse to the flow direction, that is, along the y-direction. There is also applied a constant electric 
field E0 in the z- direction. The induced magnetic field is being neglected by assuming that, it is small when 
compared with the applied field. The two bounding plates are maintained at constant temperature Tw. With 
these assumptions, the governing equations of motion, current and energy and the corresponding boundary 
and interface conditions (as in Lohrasbi and Shahai, 1989; Raju and Murty, 2005) for both fluid regions in a 
rotating frame of reference are obtained.  
 Also, we introduce the following non-dimensional variables 
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 And for simplicity neglecting the asterisks, the non-dimensional forms of equations for both the fluid 
regions are simplified as 

 
Region-I 
 

   M T
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du d u
R u 1 2 w

dt dy
      ,    (2.1)  
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Region-II 
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   M
Pr
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d d du dw1
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.        (2.6) 

 
 Here subscripts Eqs (2.10) and (2.2) represent the values for Region-I and Region-II respectively, 
where u1, u2 and w1, w2 are the x- and z-components of fluid velocities; which are known as the primary and 

secondary velocity distributions in the two regions, respectively.   is the angular velocity, where =( , ,0 
0); T1, T2 are the fluid temperatures in the two regions respectively and ‘t’ is the time. The boundary 
conditions on velocity are the no-slip boundary condition at the lower plate and an oscillatory one at the 
upper plate. The boundary conditions on temperature are isothermal conditions. We also assume the 
continuity of velocity, shear stress, temperature and heat flux at the interface between the two fluid layers at 
y = 0.  
 The non-dimensional forms of the velocity, temperature and interface boundary conditions become 
 
   1u 1            and        1w 1 0       for       ,t 0  

              (2.7) 

  = Re  i te  ,     for         ,t 0    

 
   2u 1 0  ,                          ,2w 1 0                                                                  (2.8) 

 
     1 2u 0 u 0 ,                        ,1 2w 0 w 0                                                        (2.9) 
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    ,1 1 0     (2.11) 

 
    ,2 1 0                                             (2.12) 

 
      ,1 20 0                              (2.13) 
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d
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
      (2.14) 

 
 Equations (2.8) represent the no-slip conditions at the lower plate and the conditions Eq.(2.7) are due 
to oscillation of the upper plate for any time t. Conditions Eqs (2.9) and (2.10) represent the continuity of 
velocities and shear stress at the interface y = 0. The conditions Eqs (2.11) and (2.12) represent the 
isothermal conditions, while the conditions Eqs (2.13) and (2.14) denote the continuity of temperatures and 
heat flux at the interface y =0. 

 
3. Solutions of the problem 

 
 The governing momentum Eqs (2.1), (2.2) and (2.4), (2.5) along with the energy Eqs (2.3) and (2.6) 
are to be solved subject to the boundary and interface conditions Eqs (2.7) - (2.14) for the velocity and 
temperature distributions in both regions. These equations are coupled partial differential equations, which 
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cannot be solved in a closed form. But they can be solved analytically by reducing to the ordinary linear 
differential equations with the assumption of the following two term series 
 
       , cos ,1 01 11u y t u y t u y            (3.1) 
 

       , cos ,1 01 11w y t w y t w y       (3.2) 
 

       , cos ,2 02 12u y t u y t u y                                                    (3.3) 
 

       , cos ,2 02 12w y t w y t w y                                                  (3.4) 
 

       , cos ,1 01 11y t y t y                                                       (3.5) 
 

       , cos2 02 12y t y t y                                                            (3.6) 

 
where,        , and ,01 02 01 02u y u y y y   are velocity and temperature distributions in the basic steady 

state case in the two regions, while,        , and ,11 12 11 12u y u y y y   are the corresponding time 

dependent components of the solutions, which are the factors of real  i te   to be determined with the help 

of Eqs (2.1) to (2.6). 
 Using the expressions given in Eqs (3.1) - (3.6) into Eqs (2.1) - (2.6) and separating the steady state 
and transient time varying components, the following ordinary linear differential equations for 

   ,01 02u y u y  and    ,01 02y y  ; also,  11u y ,  12u y    and ,11 12y y   in terms of the complex 

notations , , ,01 01 01 11 11 11 02 02 02 12 12 12q u iw q u iw q u iw q u iw         are obtained in both 

fluid regions as: 
 

Region-I 
 
For the steady-state part 
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For the transient time dependent part 
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Region – II 
 
For the steady-state part 
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For the transient time dependent part 
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          (3.14) 

 
 The corresponding boundary and interface conditions on velocity and temperature become: 

 
For the steady-state part 

 
   01q 1 0  ,  (3.15) 

 
   02q 1 0  ,   (3.16) 

 
     01 02q 0 q 0 ,     (3.17) 

 

  01 02dq dq1

dy h dy



                 at             y = 0.    (3.18) 

 
For the transient time dependent part 

 
  ( )11q 1 1  ,   (3.19) 
 
   12q 1 0  ,   (3.20) 

 
     11 12q 0 q 0 ,   (3.21) 

 

  11 12dq dq1

dy h dy



                 at               y = 0.    (3.22)  
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 The differential equations given in Eqs (3.7) - (3.14) along with the boundary and interface 
conditions from Eqs (3.15) to (3.22) represent a system of ordinary linear differential equations and 
conditions. These equations are solved in a closed form separately in two parts for both the steady state and 
transient time dependent components of the solutions. Hence, the final solutions for velocity and temperature 
distributions of the unsteady flow problem become: 
 
Region-I 

 

   ,1q y t   01q y + Real  i te    ,11q y  
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 (3.24) 

 
Region-II 
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4e

 (3.26) 

 
 In the above expressions, the solutions of the non-periodic terms represent the steady-state fluid flow 
solutions for both regions, and without going into details, the steady-state velocity and temperature profiles 
are shown in Figs 2 to 17. The solution of the periodic terms gives the transient velocity and temperature 
distribution in both regions of the channel. The solutions of the unsteady problem given in Eqs (3.23) to 
(3.26) are evaluated numerically for different non-dimensional governing flow parameters involved in the 
study. Also, these results are plotted and are shown in Figs 2 to 17. Here the value for   is fixed at 0.5 and 
Pr =1 for all graphs. The constants appearing in the above solutions are given in Appendix. 
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Fig.2.  Primary velocity profiles ,1 2u u  (unsteady flow), ,1 2u u   (steady flow) for different M and T=1, 

. , . , . , . , , . , , .e1 5 0 333 0 1 h 0 75 R 1 0 5 1 t                 
 

 
 

Fig.3.  Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different M and T=1, 

. , . , . , . , , . , , .e1 5 0 333 0 1 h 0 75 R 1 0 5 1 t                 
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Fig.4.  Primary velocity profiles ,1 2u u  (unsteady flow), ,1 2u u   (steady flow) for different T and 

. , M , . , . , , . , . , , .e1 5 2 0 333 0 1 R 1 h 0 75 0 5 1 t                  
 

 
 

Fig.5.  Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different T and 

. , M , . , . , , . , . , , .e1 5 2 0 333 0 1 R 1 h 0 75 0 5 1 t                  
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Fig.6.  Primary velocity profiles ,1 2u u  (unsteady flow), ,1 2u u   (steady flow) for different   and 

. , T , M , . , , . , . , , .e1 5 1 2 0 333 R 1 h 0 75 0 5 1 t                 
 

 
 

Fig.7.  Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different   and 

. , T , M , . , , . , . , , .e1 5 1 2 0 333 R 1 h 0 75 0 5 1 t                 
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Fig.8.  Primary velocity profiles ,1 2u u  (unsteady flow), ,1 2u u   (steady flow) for different   and 

. , T , M , . , , . , . , , .e1 5 1 2 0 1 R 1 h 0 75 0 5 1 t                 
 

 
 

Fig.9.  Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different   and 

. , T , M , . , , . , . , , .e1 5 1 2 0 1 R 1 h 0 75 0 5 1 t                 
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Fig.10.   Primary velocity profiles ,1 2u u  (unsteady flow), ,1 2u u   (steady flow) for different h and 

. , T , M , . , , . , . , , .e1 5 1 2 0 333 R 1 0 1 0 5 1 t                  
 

 
 

Fig.11.   Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different h and 

. , T , M , . , , . , . , , .e1 5 1 2 0 333 R 1 0 1 0 5 1 t                  
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Fig.12.   Temperature profiles ,1 2   (unsteady flow), ,1 2   (steady flow) for different M and T=0.75,

. , . , . , . , , . , . , , .e0 5 1 5 0 333 0 1 R 1 h 0 1 0 5 1 t                   
 

 
 

Fig.13.   Temperature profiles ,1 2   (unsteady flow), ,1 2   (steady flow) for different T and M=4,

. , . , . , . , , . , . , , .e0 5 1 5 0 333 0 1 R 1 h 0 1 0 5 1 t                   
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Fig.14.   Temperature profiles ,1 2   (unsteady flow), ,1 2   (steady flow) for different   and M=4,

. ,T . , . , . , , . , . , , .e0 5 0 75 1 5 0 333 R 1 h 0 1 0 5 1 t                  
 

 
 
Fig.15.   Temperature profiles ,1 2   (unsteady flow), ,1 2   (steady flow) for different   and M=4,
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Fig.16.   Temperature profiles ,1 2   (unsteady flow), ,1 2   (steady flow) for different h and M=4,

. , T . , . , . , , . , . , , .e0 5 0 75 1 5 0 333 R 1 0 1 0 5 1 t                   
 
 

 
 
Fig.17.   Temperature profiles ,1 2   (unsteady flow), ,1 2   (steady flow) for different   and M=4,

. , . ,T . , . , . , , . , . , , .e0 5 h 0 1 0 75 1 5 0 333 R 1 0 1 0 5 1 t                    
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4. Results and discussion 
 
 The closed-form solutions for the velocity distributions, such as primary and secondary velocity 
distributions, ,1 2u u  and ,1 2w w ; also temperature distributions, ,1 2   in the two fluid regions are reported 

for small  �, the coefficient of exponent of the periodic frequency parameter. These solutions are evaluated 
for various parametric conditions to plot their profiles. The results are depicted graphically in Figs 2– 17 for 
primary and secondary velocity distributions, also the temperature distributions in both fluid regions to 
elucidate the interesting features of the magnetohydrodynamic and thermal state of the flow. The solid lines 
show the profiles for an unsteady and the dash-dot lines for the steady flow motions respectively. We note 
that when the motion is in a steady state and T = 0 (without rigid rotation), these results coincide with those 
of Malashetty and Leela (1992). Also, when T = 0 (i.e., for without rigid rotation) the analysis is in 
agreement with the solutions of Linga Raju and Sreedhar (2009). 
 The effect of varying the Hartmann number M on both primary and secondary velocity distributions 
in the two regions is shown in Figs 2 and 3 respectively. In Fig.2, it is seen that the effect of increasing M is 
to increase the primary velocity distributions: u1, u2 in the two-fluid regions. From Fig.3, it is observed that 
the secondary velocity distribution increases as M increases and thereafter it decreases in both the regions. 
Also, the maximum primary velocity in the channel tends to move above the channel centre line towards 
Region-I (i.e., in the upper fluid region) as M increases, when all the remaining governing parameters are 
fixed. But, the maximum secondary velocity in the channel tends to move above the channel centre line 
towards Region-I (i.e., in the upper fluid region) up to M = 3, thereafter it tends to move below the channel 
centre line towards Region-II (i.e., in the lower fluid region) as M increases.  
 The effect of the Taylor number (rotation parameter) T on both primary and secondary velocity 
distributions is shown in Figs 4 and 5, respectively. From Fig.4, it is noticed that an increase in T decreases 
the primary velocity distribution in the two regions. From Fig.5, it is observed that an increase in T increases 
the secondary velocity distribution in both the regions and falls the same when T > 2. The maximum primary 
and secondary velocity distributions in the channel tend to move above the channel center line towards 
Region-I as T increases.  
 The effect of varying the electrical conductivity ratio  on both primary and secondary velocity 
distributions is shown in Figs 6 and 7. It is noticed that both primary and secondary velocity distributions 
increase as  increases. The maximum primary and secondary velocity distributions in the channel tend to 
move above the channel centre line towards Region-I as   increases. 
 The effect of the viscosity ratio  on both primary and secondary velocity distributions of the two 
fluids is shown in Figs 8 and 9. It is observed that an increase in  is to increase both the primary and 
secondary velocity distributions in the two regions. The maximum primary and secondary velocity 
distributions in the channel tend to move above the channel centre line towards Region-I as   increases. 
 The effect of varying the height ratio h on both primary and secondary velocity distributions is 
shown in Figs 10 and 11 respectively. It is found that an increase in h increases both the primary and 
secondary velocity distributions in the two regions. The maximum velocity in the channel tends to move 
above the channel centre line towards Region-I, when h increases.  
 The graphs for temperature distributions are shown in Figs 12 to 17. The effect of varying the 
Hartmann number M on temperature distribution is exhibited in Fig.12. It is found that an increase in M 
enhances the temperature distribution in the two regions up to the value of M = 4 and thereafter it decreases 
in both regions. The maximum temperature in the channel tends to move above the channel centre line 
towards Region – I, as M increases. 
 Figure 13 exhibits the effect of the Taylor number (rotation parameter) T on temperature distribution 
in the two-fluid regions. It is found that an increase in T diminishes the temperature distribution in both the 
regions. Also, the maximum temperature in the channel tends to move above the channel centre line towards 
Region–I as Taylor number T increases. 
 The effect of varying the electrical conductivity ratio  on temperature distributions is shown in 
Fig.14. It is seen that an increase in  decreases the temperature distribution in the two regions. The 
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maximum velocity distribution in the channel tends to move above the channel centre line towards Region-I 
as  increases. 
 The effect of the viscosity ratio  on the temperature distribution is shown in Fig.15. It is observed 
that an increase in  decreases the temperature distribution in the two regions. And the temperature 
distribution in the channel tends to move above the channel centre line towards Region-I. 
 The effect of varying the height ratio h on temperature distribution is shown in Fig.16. It is seen that 
an increase in h decreases the temperature distribution in the two regions. Also, the maximum temperature in 
the channel tends to move above the channel centre line towards Region-I as h increases. 
 The effect of the thermal conductivity ratio  on the temperature distribution is shown in Fig.17. It is 
observed that an increasing  is to increase the temperature distribution in the two fluids. Also, the maximum 
temperature in the channel tends to move slightly above the channel centre line towards Region-I as   increases. 

 
5. Conclusion 
 
 The heat transfer aspects of an electrically conducting two–layered fluids flow through a horizontal 
channel bounded by two parallel infinite plates (one being stationary and the other oscillating ) in a rotating 
system with an applied transverse magnetic field are studied analytically. The governing equations of motion 
and energy are derived, assuming that the two fluids are of different viscosities, electrical and thermal 
conductivities, which in turn are non-dimensionalised. The resulting partial differential equations are 
transformed into a set of ordinary linear differential equations using two-term series as a combination of both 
steady state and transient time dependent parts and solved in closed form. The closed form solutions are 
evaluated numerically to plot their graphs for the velocity and temperature distributions of both the regions, 
and are also discussed to demonstrate the combined effect of the magnetic field and Coriolis force on the 
physical parameters involved in the study. Comparisons with previously published theoretical works are 
made. It is found that the effect of increasing the Hartmann number M is to rise the primary velocity 
distributions in the two fluid regions, whereas the secondary velocity distribution increases and then falls the 
same when M > 2. It is found that an increase in M rises the temperature in the two regions and falls down 
when M > 4. Also, as M increases the maximum temperature in the channel tends to move above the channel 
centre line towards Region – I. It is observed that the temperature decreases in both the regions as T 
increases. The maximum temperature in the channel tends to move above the channel centre line towards 
Region–I as the Taylor number T increases. It is seen that an increase in T decreases the primary velocity 
distribution in the two regions, while an increase in the Taylor number T causes a rise in the secondary 
velocity distribution of the fluids in both regions and falls when T > 2. Also it is noticed that the velocity and 
temperature in the two regions can be enhanced with the suitable values of the ratios of viscosity, heights, 
electrical and thermal conductivities. Hopefully the results reported herein will serve as a stimulus for 
experimental work on this type of problems and will be useful in verifying numerical schemes used to solve 
more complex/realistic problems of this type. Further, it is concluded that, as expected, these distributions 
are pronounced more in the unsteady when compared to the steady state problem. 
 
Nomenclature 

 
 B0  – applied uniform transverse magnetic field 
 E0  – constant electric field in the z-direction 
 , , , .1 2 1 2f f g g etc.  – functions / real constants represented in the equations and solutions 

 h  – ratio of the heights of the two regions 
 h1  – height of the channel in the upper region 
 h2  – height of the channel in the lower region 
 ,1 2K K   – thermal conductivities of the two fluids 

 M  – Hartmann number 
 Pr  – Prandtl number 
 p  – pressure 
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 Re  – electric load parameter 
 T1, T2   – temperatures of the fluids in the two regions, respectively 
 ,

1 2w wT T   – constant temperatures at both the walls  

 t  – time 

 pu =
2
1

1

p h

x

    
  – the characteristic velocity  

 1u , 2u   – x-component of velocity distributions in the two fluid regions, known as primary velocity 

distribution 
 1w , 2w   – z-component of velocity distributions in the two fluid regions, called secondary velocity 

distributions  
    ,01 02u y u y   – primary velocity distributions in the basic steady state case in two regions 

    ,11 12u y u y   – time dependent primary velocity components 

    ,01 02w y w y   – secondary velocity distributions in the basic steady state case in two regions 

    ,11 12w y w y   – time dependent secondary velocity components 

 (x, y, z)  – space co-ordinates 
    – ratio of the viscosities 
    – ratio of thermal conductivities  
 ,1 2    – viscosities of the two fluids 

 ,1 2    – densities of the two fluids 

    – ratio of electrical conductivities  
 ,1 2    – electrical conductivities of the two fluids 

    – angular velocity, where   = ( , ,0  0)  
 

Subscripts 
 

 1, 2  – refers to the quantities in the upper and lower fluid regions, respectively 
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