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The flow of a viscous incompressible fluid through a vertical channel in the presence of radiation immersed 
in a porous medium has been studied. Approximate solutions have been obtained for the velocity and temperature 
fields, shear stresses and rate of heat transfer using the perturbation technique. It is found that the primary 
velocity decreases with an increase in the radiation parameter as well as the Prandtl number for cooling of the 
plate. It is also found that with an increase in the permeability parameter, the primary velocity increases for 
cooling of the plate. The magnitude of the secondary velocity decreases near the plate y = 0  and increases near 

the plate y = d  with an increase in the permeability parameter. The temperature distribution decreases with an 
increase of the radiation parameter as wall as the Prandtl number for cooling of the plate. The shear stresses and 
the rate of heat transfer, which are of physical interest, are presented in the form of tables. 

 
 Kew words: three-dimensional, injection, periodic suction, permeability, porous medium. 

 
1. Introduction 

 
 Free convective flows with periodic permeability through porous media play an important role in 
chemical engineering for filtration and purification processes, turbo-machinery and in aerospace technology. 
Such flows include several practical applications, for example, geothermal reservoirs, drying of porous 
solids, thermal insulation, cooling of nuclear reactors and underground energy transport. Rapits (1983) 
investigated the problem of an unsteady flow through a porous medium bounded by an infinite porous plate 
subjected to a constant suction and variable temperature. Rapits and Perdikis (1985) also investigated the 
free convective flow through a porous medium bounded by a vertical porous plate with constant suction. 
Varshney (1979) discussed the oscillatory two dimensional flow through a porous medium bounded by a 
porous plate. Singh et al. (1988) studied the three dimensional convective flow through a porous medium 
bounded by an infinite vertical porous plate with periodic suction. Ahmed and Ahmed (2004) analysed the 
effect of a two dimensional MHD oscillatory flow along a uniformly moving infinite vertical porous plate 
bounded by a porous medium. However, these studied are confined to normal temperature of the surrounding 
medium. If the temperature of the surrounding fluid is rather high, radiation effects play an important role and 
this situation does exist in space technology. Nuclear power plants, gas turbines and the various propulsion 
devices for aircraft, missiles, satellites are examples of such engineering areas. In this case one has to take into 
consideration the effects of radiation and free convection. Seddeek (2000) investigated the effect of radiation 
past a moving plate with variable viscosity. The effect of radiation and magnetic field on the flow past a 
vertical plate was discussed by Takhar et al. (1996). Rapits (1998) also studied the effect of radiation and free 
convection on a steady flow past a vertical porous plate through a porous medium. Sharma et al. (2007) studied 
the effect of radiation in a three dimensional Couette flow subjected to a periodic suction velocity distribution. 
Recently, Guria et al. (2010) investigated the effect of radiation on a three dimensional flow in a vertical 
channel subjected to a periodic suction. Guria et al. (2011) also investigated the effect of radiation on three 
dimensional flow past a vertical porous plate in the presence of transverse magnetic field. Pathak et al. (2006) 
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studied the radiation effects on an unsteady free convective flow through a porous medium bounded by an 
oscillating plate with variable wall temperature. The effect of radiation on a three dimensional flow past a 
vertical channel through a porous medium has not been studied. Our aim is to study the effect of radiation and 
permeability of the medium on a three -dimensional flow of fluid through a vertical channel. 

 
2. Basic equations 
 

Consider the steady flow of a viscous, incompressible fluid between vertical parallel porous plates 

separated by a distance d . Here the x - axis is chosen along the direction of the flow, y - axis is 

perpendicular to the wall of the channel and z - axis normal to the  yx - plane [see Fig.1]. The 

temperature at the plates y = 0  and dy =  are wT  and 0T   w 0T >T , respectively.  

 

 
 

Fig.1. Physical model and co-ordinate system. 
 

The plate dy =  is subjected to a uniform injection 0V  and the plate y = 0  to a periodic suction 
velocity distribution of the form  

 

 cos0
z

v = V 1
d


   
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 (2.1) 

 
where  1   is the amplitude of the suction velocity. 

The velocity and temperature fields are independent of x  since the channel is infinite long along the 
x -direction. The flow itself will be three dimensional due to cross flow. 

Let u ,v ,w    be the velocity components in the directions of x , y ,z      axes respectively. The 
problem is governed by the following equations  
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, (2.3) 
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, (2.4) 
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, (2.5) 
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 (2.6) 

 

where v is the kinematic coefficient of viscosity,   is the density, p  is the fluid pressure, g is the 

acceleration due to gravity,   is the thermal expansion and pC  is the specific heat at constant pressure. K  

is the permeability of the medium. 
The equation of conservation of radiative heat transfer per unit volume for all wavelength is  
 

     r h0
q = K T 4e T G d

  
       

 
where he  is Plank’s function and the incident radiation G  is defined as  

 

  
=4

1
G = e d  

 
   

 
 rq.  is the radiative flux divergence and   is the solid angle. Now, for an optically thin fluid exchanging 

radiation with an isothermal flat plate at temperature 0T  and according to the above definition for the 

radiative flux divergence and Kirchhoffs law, the incident radiation is given by  h 0G = 4e T   then 

 

       r h h 00
q = 4 K T e T e T d

  
      . 

 

 Expanding  K T 
  and  h 0e T  in a Taylor series around 0T , for small  0T T  , we can rewrite 

the radiative flux divergence as  
 

   h
r 0 00

0

e
q = 4 T T K d

T

  


        

 
where  T0 0

K = K  .  

Hence an optical thin limit for a non-gray gas near equilibrium, the following relation holds  
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  r 0q = 4 T T I    , 

 
and hence  
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 The boundary conditions of the problem are  

 

 , cos , , at0 wu = 0 v = V 1 z w = 0 T = T y = 0
d

              
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  (2.7) 

 , , , , at0 0u = 0 v = V w = 0 T = T p = p y = d.     
  

  
 Introducing the non dimensional variables  
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. (2.8) 

 
Equations (2.2)-(2.6) become  
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, (2.12) 
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 (2.13) 
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where Re 0=V d  , the Reynolds number, Pr = /  , the Prandtl number and  Gr 2
w 0 0= dg T T V  , the 

Grashof number, p 0F = 4Id / C V , the radiation parameter. Using Eqs (2.8), the boundary conditions (2.7) 

become  
 

  , cos , , atu = 0 v = 1 z w= 0 = 1 y = 0       , 

  (2.14) 

 , , , , at
2

p
u = 0 v = 1 w= 0 = 0 p = y = 1.

V
 


  

 
3. Solution of the problem 

 
In order to solve the differential Eqs (2.9)-(2.13), we assume the solution of the following form  
 

        2
0 1 2u y,z = u y u y,z u y,z     , 

 

        2
0 1 2v y,z = v y v y,z v y,z     , 

 

        2
0 1 2w y,z = w y w y,z w y,z     , (3.1) 

 

        2
0 1 2p y,z = p y p y,z p y,z     , 

 

        2
0 1 2y,z = y y,z y,z        . 

 
 On substituting (3.1) in Eqs (2.9)-(2.13) and equating the terms independent of  , we get the 
following system of differential equations  
 

 0v = 0 , (3.2) 
 

 
Re

Re ReGr0
0 0 0 0

u
u v u =

K
     , (3.3) 

 

 RePr RePr0 0 0 0v F = 0       (3.4) 
 

where primes denote differentiation with respect to y  and the corresponding boundary conditions become  
 

 , , at and , , at0 0 0 0 0 0u = 0 v = 1 = 1 y = 0 u = 0 v = 1 = 0 y = 1.     (3.5) 
 

The solutions of Eqs (3.2) to (3.4), subject to the boundary conditions (3.5) are  
 
  0v y = 1 , (3.6) 
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    
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e e
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4

m yi
0 i

i=0

u y = A e  (3.8) 
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2
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2
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
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1
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
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1
A = A e e A e e

e e

  
 

     
. 

 
  On substituting (3.1) in Eqs (2.9)-(2.13) and equating the coefficient of  , we get the following 
system of differential equations  
 

 1 1v w
= 0

y z

 


 
, (3.10) 
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Re

2 2
01 1 1 1

0 1 12 2

uu u u u1
v v =

y y Ky z

   
          

, (3.11) 
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2 2
1 1 1 1 1
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v p v v v1
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y y Ky z

    
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2 2
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w p w w w1
v =

y z Ky z
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, (3.13) 

 

 
RePr

2 2
01 1 1

0 1 12 2

1
v v = F .

y y y z

     
         

 (3.14) 

 
  The corresponding boundary conditions become  

 
  , cos , , at1 1 1 1u = 0 v = z w = 0 = 0 y = 0   , 

  (3.15) 
 , , , a1 1 1 1u = 0 v = 0 w = 0 = 0 t y = 1.   

  
 These are the linear partial differential equations describing the three dimensional flow. To solve Eqs 
(3.10)-(3.14), we assume velocity components and pressure in the following form  

 
      cos1 11u y,z = u y z , 

 
      cos1 11v y,z = v y z , 

 

      sin1 11
1

w y,z = v y z 


, (3.16) 

 
      cos1 11p y,z = p y z , 

 
      cos1 11y,z = y z    

  

1v  and 1w  are so chosen that the continuity Eq.(3.10) is satisfied automatically. 
Substituting (3.16) in Eqs (3.10)-(3.14) and comparing the coefficients of harmonic terms, we obtain 

the following set of differential equations  
 

 
Re

Re Re2
11 11 11 11v v v = p

K
       
 

, (3.17) 

 

 
Re

Re Re2 2
11 11 11 11v v v = p

K
        
 

, (3.18) 

 

  RePr RePr RePr2
11 11 11 11 0F = v          , (3.19) 
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Re

Re Re GrRe2
11 11 11 11 0 11u u u = v u

K
         
 

. (3.20) 

 
  When K  Eqs (3.17)-(3.20) coincide with Eqs (3.17)-(3.20) of Guria and Jana (2010). 
The corresponding boundary conditions are  

 

 , , , at11 11 11 11u = 0 v = 1 v = 0 = 0 y = 0  , 
  (3.21) 

 , , , a11 11 11 11u = 0 v = 0 v = 0 = 0 t y = 1.    
 

  Solutions of Eqs (3.17)-(3.20) subject to Eqs (3.21) and on using Eqs (3.6)-(3.8) yield  
 

    cosm y m y y y5 6
1 5 6 7 8v y,z = A e A e A e A e z         , (3.22) 

 

    sinm y m y y y5 6
1 5 5 6 6 7 8

1
w y,z = A m e A m e A e A e z          

, (3.23) 

 

        cosy y
1 7 8

1
p y,z = A 1 / K e A 1 / K e z        

, (3.24) 

 

 

     
      
        cos ,

m m y m m yy y 1 5 1 61 2
1 1 2 1 3 4

m m ym y m y 2 51 1
5 6 2 7

m m y m y m y2 6 2 2
8 9 10

y,z = B e B e K B e B e

B e B e K B e

B e B e B e z

    

   

    

    

   

   

 (5.25) 

  

 

   

       cos

4
m m ym y m y y y i 55 6 1 2

1 i
i=1

4 4 4
m m y m y m yi 6 i i

i i i
i=1 i=1 i=1

u y,z = Ae Be Ce De C e

D e E e F e z

    

    


    




   




  
 (3.26) 

 
where  
 

   Re Re Re2 2
5

1
m = 4 4 K

2
    , 

 

   Re Re Re2 2
5

1
m = 4 4 K

2
    , 

 

   RePr Re Pr RePr2 2 2
3

1
= 4 F

2
     , 
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   RePr Re Pr RePr2 2 2
4

1
= 4 F

2
     , 

 

      5 2 4 1 4 2 3A = r e e r e e 2 r r r r         
, 

 

      6 1 4 1 4 2 3A = r e e r e e 2 r r r r          
, 

  (3.27) 

    7 5 5 6 6
1

A = A m A m
2

         
, 

 

    8 5 5 6 6
1

A = A m A m
2

         
, 

 

    m5
1 5 5

1
r = e e m e m

2
         

, 

 

    m6
2 6 6

1
r = e e m e m

2
         

, 

 

    m5
3 5 5 5

1
r = m e e m e m

2
          , 

 

    m6
4 6 6 6

1
r = m e e m e m

2
         . 

  
 The other constants are not given here to save space. If K   the results are same as Guria and 
Jana (2010). 
 
4. Results and discussion 

 
In order to get a physical insight into the problem the velocity field, temperature field, shear stresses 

and Nusselt number have been discussed for various parameters. We have plotted the non-dimensional 
primary velocity u in Figs 2-5 for different values of the Grashof number, radiation parameter, permeability 
parameter and Prandtl number for Re = 5.0 , = 0.05 , z = 0.0 . It is observed from Fig.2 that greater cooling 
of the surface (an increase in Gr)results in an increase in the velocity. It is due to the fact that the values of 
the thermal Grashof number has the tendency to increase the thermal buoyancy effect. This gives rise to an 
increase in the induced flow. It is seen from Figs 3 and 4 that the primary velocity decreases with an increase 
in the radiation parameter as well as the Prandtl number for cooling of the plate  Gr >0 . The reverse effect 

is observed in case of heating of the plate  Gr <0 . It is found from Fig.5 that the primary velocity increases 

with an increase in the permeability parameter for cooling of the plate. The reverse effect is observed in case 
of heating of the plate. The effect of the permeability parameter K  on secondary velocity is shown in Fig.6 
for Re = 5.0 , = 0.05 , z = 0.5 . It is found that the magnitude of the secondary velocity decreases near the 
plate y = 0  and increases near the plate y = 1  with an increase in the permeability parameter. 
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Fig.2. Primary velocity u for Re=5.0, Pr=0.71, K=0.5, = 0.05 , z=0.0. 
 

 
 

Fig.3. Primary velocity u for Re=5.0, Pr=0.71, K=0.5, = 0.05 , z=0.0. 
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Fig.4. Primary velocity u for Re=5.0, Pr=0.71, F=2.0, = 0.05 , z=0.0. 
 

 
Fig.5. Primary velocity u for Re=5.0, K=0.5, F=2.0, = 0.05 , z=0.0. 
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Fig.6. Secondary velocity 1W  for Re=5.0, = 0.05 , z=0.5. 
 

Knowing the velocity field it is interesting to know the shear stress at the plate. The shear stress at 

the plate y = 0  due to the primary flow is given by  
 

 0
x

y=0y =0

Vu u
= =

d yy







    
         

. (4.1) 

 
 In a non-dimensional form the shear stress at the plate y = 0  can be written as  
 

 x
x

0 y=0

d u
= =

V y

   
    

 

    0 1= u 0 u 0   , 

 

 

       cos .

4 4

i i 5 6 1 2 i i 5
i=1 i=1

4 4 4

i i 6 i i i i
i=1 i=1 i=1

= A m Am Bm C D C m m

D m m E m E m z


           




        


 

  
 (4.2) 

 
 The shear stress due to the primary flow in terms of x  is shown in Tab.1 for different values of the 

Reynolds number and radiation parameter for cooling of the plate. It is seen that x  increases with an increase 
in the Reynolds number but it decreases with an increase in the radiation parameter for cooling of the plate.  
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Table 1. Shear stress component due to the primary flow for K = 2 , Gr = 10.0 , Pr = 0.71 , = 0.05 , z = 0.0 . 
  

   x  
Re    F = 2.0  F = 3.0 F = 4.0 F = 5.0
 2  5.320  5.003  4.737 4.510

 4  8.147  7.522  7.030 6.630

 6  9.545  8.813  8.244 7.785

 8  10.796  9.576  9.000 8.531
  

The effect of the permeability parameter on x  is shown in Tab.2 for cooling of the plate. It is found 

that x  increases with an increase in the permeability parameter. 
 

Table 2. Shear stress component due to primary flow for Gr = 10.0 , Pr = 0.71 , = 0.05 , z = 0.0 . 
  

   x    
 Re  K = 1 / 10  K = 1 / 2  K = 1 K = 2
 2  3.155  4.661 5.070 5.320

 4  4.517  6.909 7.655 8.147

 6  5.432  8.157 8.993 9.545

 8  6.130  8.962 9.782 10.311
  

The shear stress due to the secondary flow can be expressed as  
 

 0
z

y=0y =0

Vw w
= =

d yy







    
         

. (4.3) 

 

       In a non-dimensional form the shear stress due to the secondary flow at the plate y = 0  can be written as  
 

 x
z

0 y=0

d w
= =

V y

   
    

 

 

    0 1= w 0 w 0    
 

  sin2 2 2 2
5 5 6 6 7 8= A m A m A A z .

         
 (4.4) 

 

           The shear stress due to the secondary flow in terms of z  is given in Tab.3 for several values of the Reynolds 

number and permeability parameter for = 0.05 , z = 0.5 . It is observed that the magnitude of z  increases with an 
increase in the Reynolds number whereas it decreases with an increase in the permeability parameter. 

 
Table 3. Shear stress component due to the secondary flow for = 0.05 , z = 0.5 . 

  
 Re       z      

   K = 1 / 10  K = 1 / 2  K = 1 K = 2  
 2  .341 .265 .254 .248   
 4  .478 .356 .337 .327  
 6  .605 .452 .428 .416  
 8  .726 .550 .524 .510  
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The temperature   is plotted for different values of the radiation parameter and Prandtl number in 
Figs 7 and 8 for Re = 5.0 , Gr=5.0 , = 0.05 , z = 0.0  for cooling of the plate. It is found that the 
temperature   decreases with an increase in the radiation parameter as well as the Prandtl number. This is 
due to fact that thermal conductivity of the fluid decreases with increasing Pr, resulting in a decrease of 
thermal boundary layer thickness. 
 

 
 

Fig.7. Temperature profile   for Gr = 5.0 , Re=5.0, Pr=0.71, K=0.5, = 0.05 , z=0.0. 
 

 
 

Fig.8. Temperature profile   for Gr = 5.0 , Re=5.0, K=0.5, F=2, Pr=0.71, = 0.05 , z=0.0. 



Radiation effect on three dimensional vertical channel … 831 

 
The Nusselt number is the great measure of heat transfer from the plate to the fluid flowing up 

between the plates due to its practical importance. The Nusselt number depends on the rate of heat transfer 
from the plate to the fluid. The heat transfer coefficient from the plate to the fluid may be calculated as  

 

 
 w 0

y=0y =0

k T TT
q = k = .

d yy






     
         

 (4.5) 

  
 In a non-dimensional form the heat transfer coefficient at the plate y = 0  is given by  
 

 
     Nu 0 1

w 0 y=0

qd
= = = 0 0

k T T y

         
, 

 

      

         cos

m m1 2
2 1

1 1 2 2 1 4 1 6 1 5 1m2
1

1 6 1 2 7 2 5 2 8 2 6 2 10 2

m e m e
= B B K B m m K B m

e e m

K B m K B m m K B m m K B m z .

 




         

 

          

 (4.6) 

 
Table 4. Nusselt number for Gr = 10.0 , Pr=0.71 , = 0.05 , z = 0.0 . 

  
   Nu  

Re   F=2 F = 3  F = 4 F = 5
 2  2.663  2.978 3.261 3.520

 4  4.288  4.749 5.156 5.524

 6  5.873  6.418 6.901 7.338

 8  7.431 8.032 8.568 9.057

  
Table 5. Nusselt number for Gr = 10.0 , Pr=0.71 , = 0.05 , z = 0.0 . 
  

   Nu  
Re   K = 1 / 10  K = 1 / 2  K = 1 K = 2
 2  2.662  2.663 2.663 2.663

 4  4.286  4.287 4.288 4.288

 6  5.870  5.873 5.873 5.873

 8  7.427  7.430 7.431 7.431

  
The rate of heat transfer in terms of the Nusselt number for different values of the radiation 

parameter, permeability parameter and Reynolds number and for Gr = 5.0 , = 0.05 , z = 0.0  are given in 
Tabs 4 and 5 for cooling of the plate. The Nusseltl number increases with an increase in the Reynolds 
number as well as the radiation parameter. Also it increases with an increase in the permeability parameter 
but the effect is very small. 

 
5. Conclusion 

 
The steady flow of a viscous incompressible fluid passing through a vertical channel through a 

porous medium has been studied in the presence of radiation. It is found that the primary velocity decreases 
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with an increase in the radiation parameter as well as the Prandtl number for cooling of the plate. It is also 
found that with an increase in the permeability parameter the primary velocity increases for cooling of the 
plate. On the other hand, the magnitude of the secondary velocity decreases near the left plate and increases 
near the right plate with an increase in the permeability parameter. The shear stress due to the primary flow 
increases either in the Reynolds number or permeability parameter but it decreases with increase in radiation 
parameter. The magnitude of the shear stress due to the secondary flow increases with an increase in the 
Reynolds number but it decreases with an increase in the Reynolds number but it decreases with an increase 
in the permeability parameter. It is observed that the temperature profile decreases with an increase in either 
the radiation parameter or the Prandtl number for cooling of the plate. The rate of heat transfer in terms of 
the Prandtl number, increases with an increase in either the Reynolds number or the radiation parameter. 
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Nomenclature 

 
 A,B,C,D   –constants 
  iA ,i = 1, 8   – constants 

 iB ,i = 1, 10   – constants 

 iC ,i = 1, 4   – constants 

 pC   – specific heat at constant pressure 

 iD ,i = 1, 4   – constants 

 d   – channel width 
 iE ,i = 1, 4   – constants 

 F  – radiation parameter 
 iF ,i = 1, 4   – constants 

 Gr  – Grashof number 
 g  – gravitational acceleration 
 K  – permeability parameter 
 1K , 2K   – constants 

 im ,i = 1, 6   – constants 

 Nu  – Nusselt number at the left plate 
 Pr  – Prandtl number 
 p  – dimensionless pressure 

 p  – pressure 
 q  – local heat transfer at the plate 
 Re  – Reynolds number 
 ir ,i = 1, 4   – constants 

 T   – temperature of the fluid 

 wT   – plate temperature  y = 0  

 0T   – plate temperature  y = d  

 u,v,w   – dimensionless velocity components in x, y, z axis, respectively 

 u , v , w   – velocity components in x, y, z axes, respectively 
 0V ,   – constant suction velocity 

 x,y,z   – dimensionless Cartesian coordinate system 
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 x , y , z   – Cartesian coordinate system 
    – coefficient of thermal expansion 
    – amplitude of the suction velocity 
    – non-dimensional temperature 
 i ,i = 1 4    – constants 

    – viscosity 
    – kinematic viscosity 
    – density 
 x   – shear stress due to primary flow 

 z   – shear stress due to secondary flow 
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