
 
 

Int. J. of Applied Mechanics and Engineering, 2015, vol.20, No.4, pp.733-756 
DOI: 10.1515/ijame-2015-0048 

 
 

NUMERICAL STUDY OF THE HEAT TRANSFER PHENOMENON OF A 
RECTANGULAR PLATE INCLUDING VOID, NOTCH USING FINITE 

DIFFERENCE TECHNIQUE 
 

S.K. DEB NATH* 
Computational Materials Research Initiative 

Institute for Materials Research 
Tohoku University, JAPAN 

E-mail: sankar_20005@yahoo.com 
 

N.K. PEYADA 
Department of Aerospace Engineering 

Indian Institute of Technology  
Kharagpur, INDIA 

 
 

In the present study, we have developed a code using Matlab software for solving a rectangular aluminum 
plate having void, notch, at different boundary conditions discretizing a two dimensional (2D) heat conduction 
equation by the finite difference technique. We have solved a 2D mixed boundary heat conduction problem 
analytically using Fourier integrals (Deb Nath et al., 2006; 2007; 2007; Deb Nath and Ahmed, 2008; Deb Nath, 
2008; Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 2009; Deb Nath et al., 2010; Deb Nath, 2013) and 
the same problem is also solved using the present code developed by the finite difference technique (Ahmed et 
al., 2005; Deb Nath, 2002; Deb Nath et al., 2008; Ahmed and Deb Nath, 2009; Deb Nath et al., 2011; Mohiuddin 
et al., 2012). To verify the soundness of the present heat conduction code results using the finite difference 
method, the distribution of temperature at some sections of a 2D heated plate obtained by the analytical method is 
compared with those of the plate obtained by the present finite difference method. Interpolation technique is used 
as an example when the boundary of the plate does not pass through the discretized grid points of the plate. 
Sometimes hot and cold fluids are passed through rectangular channels in industries and many types of technical 
equipment. The distribution of temperature of plates including notches, slots with different temperature boundary 
conditions are studied. Transient heat transfer in several pure metallic plates is also studied to find out the 
required time to reach equilibrium temperature. So, this study will help find design parameters of such structures.  

 
 Key words: transient, steady state, finite-difference method, analytical method, rectangular plate, void, notch 

 
1. Introduction 
                         
 Applications involving thermal conduction occur in many areas of science and be design (Siegel and 
Howell, 1972; Özisik, 1989), in power generation (Burmeister, 1993), glass manufacturing (Siegel and 
Howell, 1972) and astrophysics (Jaeger, 1950; Battaner, 1996). Simulations of heat conduction are generally 
classified into direct heat conduction problem (DHCP) and inverse heat conduction problem (IHCP) 
estimation. DHCP analysis is commonly used to assess the temperature distribution within conductive media 
when the existing boundary conditions, thermo-physical properties of the material body, or the intensity of 
the heat source within it is known. IHCPs were first proposed by Stolz (1960), who also provided numerical 
solutions. Unlike the batch methods, sequential methods have been widely used in the prediction of 
parameters for time dependent problems (Beck et al., 1985; Beck, 1970; 1968). Examples are the control-
theory method proposed by Zongrui and Zhongwu (1994) to estimate parameters of inverse transient heat 
conduction problems. Ching-China and Hong-Yung (1998) estimated unknown parameters using 
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experimental data in linear systems relating to heat conduction using the Kalman filter theory and technique. 
The Kalman filter technique was proposed by Kalman (1960). It has been widely used in engineering, 
scientific, and administrative applications including inertial navigation (Grewal, 1986). It was first applied to 
IHPCs by Scarpa and Milano (1995) who took the estimated parameters as new variables and combined 
them with the state variables of original equations to form a new set of state equations. Computer programs 
for transient and steady-state heat conduction in two and three dimensions, and in cylindrical coordinates, 
have been developed. These are called HEAT2 (Blomberg, 1990; 1991), HEAT3 (Blomberg, 1993; 1994) 
and HEAT2R (Blomberg, 1994). 
 A hybrid numerical technique which combines the differential transformation and finite difference 
(FD) approximation (Peng and Chen, 2011) is employed to predict the laser heating problem. Blackwell (1990) 
used the Laplace transformation method to obtain an analytical solution for the temperature profile in a semi-
infinite body with exponentially decaying (with position) heat source and convective boundary condition. 
Jordan (2003) constructed a nonstandard finite difference scheme to solve an initial-boundary value problem 
involving a quartic nonlinearity that arises in heat transfer involving conduction with thermal radiation. Lo 
(2011) presents a numerical approach using the hybrid differential transform finite difference method to study 
heat transfer in a thin film exposed to ultrashort-pulsed lasers based on the hyperbolic two-step model. The 
differential transformation method (Chen and Lin, 1998; Yu and Chen, 1998), a function transformation 
technique based on Taylor’s series is applied mainly to solve the initial value problem by Lo (2011).  
 In the literature survey the finite difference technique is applied to solve the temperature distribution 
in only regular shape bodies without defects. We developed a MATLAB code considering the interpolation 
technique to solve plates with regular and arbitrary boundaries. The interpolation and discretization 
technique of the stressed structures as mentioned in the references (Ahmed et al., 2005; Deb Nath, 2002; Deb 
Nath et al., 2008; Ahmed and Deb Nath, 2009; Deb Nath et al., 2011; Mohiuddin et al., 2012) is used to 
discretize the present 2D heat conduction problem in the present MATLAB code. But all the practical 
problems are not regular in shapes. Besides, we introduce a notch and rectangular slot on the boundary and 
inside the heat conduction plate and obtain temperature distribution throughout the plate. In the present 
paper, the flow charts of our MATLAB code developed for transient heat conduction and steady state heat 
conduction problems are given for a better understanding of the program philosophy. To verify the 
soundness of the present simulation results, we solved a mixed boundary heat conduction problem 
analytically using the Fourier integrals (Deb Nath et al., 2006; 2007; 2007; Deb Nath and Ahmed, 2008; Deb 
Nath, 2008; Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 2009; Deb Nath et al., 2010; Deb Nath, 
2013) and the distribution of the temperature of some sections of the plate obtained by the analytical method 
is compared with those of the present FD method which shows good agreement with the analytical method. 
    
2. Theoretical formulations  
 

2.1a.  Finite difference form of the governing equation for the steady state heat transfer problems 
using the central difference technique 

 
 The governing equation for steady two-dimensional heat conduction with constant properties and 
zero sources is 
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 Using the central difference formula, we obtain  
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 Here h = Δx and (i, j) stands for x and y, respectively in such a way that i+1 = x+h, i-1 = x-h. The 
term O (h) indicates that the error in the omission of the term is of the order of h. 
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 Here k = Δy and (i, j) stands for x and y, respectively in such a way that j+1 = y+k, j-1 = y-k.  
The term O (k) indicates that the error in the omission of the term is of the order of k. 
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 The finite difference form of Eq.(2.1) is  
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Assuming finite difference mesh lengths in x, y direction are same, i.e., h = k. 
 The central-difference approximation of the second derivative in space is 
 

  ( , ) ( , ) ( , ) ( , ) ( , )T i 1 j T i 1 j 4T i j T i j 1 T i j 1 0         . (2.2) 
 

 This equation is applied at each interior grid point of the meshed structure and a set of algebraic 
equations is obtained after applying proper boundary conditions. 
 
2.1b.  Finite difference form of the boundary condition of steady state heat transfer problem 

considering the interpolation technique 
 
 When the finite difference mesh does not match the physical boundary of the problem, then the 
distribution of the temperature is obtained by four point interpolation. The details of the four point 
interpolation technique is given in Ahmed et al. (2005), Deb Nath (2002), Deb Nath et al. (2008), Ahmed 
and Deb Nath (2009), Deb Nath et al. (2011), Mohiuddin et al. (2012). The following equation is used to 
interpolate the temperature on the arbitrary boundary of the heat conduction problem as shown in Fig.12 
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hk
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where T(is,ja) is the temperature after interpolation using four points. 
 Referring to Fig.12 for top-left boundary, some actual boundary points are P, Q, R and S. For the 
boundary point P, the reference natural field grid point is R1. The position of P with respect to R1 is defined 
by a and s where a and s are the small distances in the positive i and j direction, respectively. For point P, the 
surrounding grid points are R1, R2, R3 and R4, whose field references are {i, j+1}; {i, j};{i+1, j} and {i+1, 
j+1}, respectively. The above equation can be used only on the reference boundary when the interpolation 
technique is needed; on the other hand when there is no need of the interpolation technique, the above 
equation is applied on the physical boundary of the problem. 
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3. Theories for transient 2D heat conduction 
 
 Conservation of energy to a nodal region of volume as shown in Fig.5 considering explicit method is 
applied, where 
 

  
stgin EEE



  
(3.1)  

where  
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
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
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 gE


 

rate of heat stored in the region =
 stE


 

                    
 

Using Fig.5 and Eq.(3.1), the transient heat conduction equation can be written as 
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 Using Fig.5, Eq.(3.2) can be expanded in the following form 
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let   x y   . 
 

 Equation (3.3) can be simplified in the following form 
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Using Fig.5 and Eq.(3.5), the final form of the transient heat conduction equation is as follows 
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k is thermal conductivity, ρ is the density of a material, C is the specific heat capacity, Δt is the time step in 
second, Δx is the mesh length in the x direction, Δy is the mesh length in the y direction, Ac is the cross 
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sectional area of the plate. qa is the rate of heat flow in the AE direction, qb is the rate of heat flow in the BE 
direction, qc is the rate of heat flow in the DE direction, qd is the rate of heat flow in the CE direction as 
shown in Fig.5.  
 To solve the transient phenomena in a 2D heat conduction plate, the plate is discretized into grids. At 
the boundary grids, the real boundary temperature of the plate is applied. Inside the plate the above Eq.(3.6) 
is applied at all grids except the boundary grids of the plate. The initial temperature at all internal grid points 
of the plate is are considered to be 300C. Using boundary temperatures, initial temperatures at all internal 
grids and applying the above Eq.(3.6) in all internal grid points of the plate, the temperature at all grids is 
updated with time till the temperature of all grids reaches the equilibrium temperature. 
 
4. Analytic solution of a mixed boundary heat conduction problem 
 
 The governing equation of the 2D conduction heat transfer is 
 

  
2 2

2 2

T T
0

x y

 
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. (4.1) 

 

 To solve the problem shown in Fig.9 satisfying the boundary conditions mentioned in Tab.1 
analytically, we assume 
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 Combining Eqs (4.1), (4.2b) and (4.2d), we obtain the following relationship 
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 Combining Eqs (4.3), (4.4) and (4.4b), we obtain 
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  2.2 my mym e .e 0   , (4.5) 
 

  22m 0   , (4.5a) 
 

  m   . (4.6) 
 

 The general solution of the Eq.(4.3) is 
 

  y y
mY Ae Be   . (4.7) 

 

 Combining Eqs (4.2) and (4.7) we obtain the following relation which express the temperature 
distribution throughout the plate 
 

   siny yT Ae Be x    . (4.8) 

 

 The above Eq.(4.8) can be used to solve the problem as shown in Fig.9 (Deb Nath et al., 2006; 2007; 
2007; Deb Nath and Ahmed, 2008; Deb Nath, 2008; Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 
2009; Deb Nath et al., 2010; Deb Nath, 2013) 
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 After substituting A and B in the above Eq.(4.8), we obtain the distribution of temperature 
throughout the plate. 
 
5. Results and discussion 
 
 The distribution of temperature of a plate having mixed boundary conditions can be solved using 
analytical and numerical methods. Although the analytical method gives accurate result, only few simple 
problems can be solved analytically, whereas complex practical problems cannot be solved analytically. So 
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an alternative approach to solve complex practical heat conduction problems is numerical. Among the 
numerical approaches, finite element and finite difference methods are most popular. The finite element 
method is widely used to solve the heat conduction problem because the finite difference method is 
sometimes unable to deal with the problems with complex boundary conditions. If the boundary conditions 
of the heat conduction problem are satisfied accurately by the finite difference method, it gives accurate 
results like the analytical approach. Here we study different types of practical and complex heat conduction 
problems by the finite difference method using our MATLAB code applying the algorithm mentioned in 
flowcharts 1 and 2. Before analyzing some heat conduction problems, we have solved a simple mixed 
boundary heat conduction problem analytically as well as by the finite difference method and we compare 
the distribution of temperature at some sections of the plate obtained by the analytical approach to that of 
some sections of the plate obtained by the finite difference method. In the present analysis, we show the 
temperature distribution in different practical problems. Figure 1 shows a simple 2D heat conduction plate 
problem in which the temperature of top side of the plate is 1000C and on the bottom side, it is 00C. The 
temperature of the left and right side of the plate is 300C. The length and width of the plate are 10 unit. To 
solve the problem using the finite difference technique, the plate is discretized in different mesh sizes. The 
four different mesh sizes are taken into account in the present study (h = 0.5, k = 0.5; h = 0.25, k = 0.25; h = 
0.2, k= 0.2 and h = 0.125, k = 0.125) and in every case mesh lengths in x and y directions are assumed same. 
Effects of mesh length on the temperature distribution at sections x = 8 and y = 8 of the plate as shown in 
Fig.1 are illustrated in Figs 2 and 3. From Figs 2 and 3 it is clearly observed that there is a negligible effect 
of mesh length on the temperature distribution of the plate. For this reason, we choose the mesh length h = 
0.5 and k = 0.5 for the discretization of all other problems which are studied here. Figure 4 illustrates the 
contour plot of the temperature distribution throughout the plate as observed in Fig.1 and from the contour 
plot, we can understand the temperature distribution at any section of the plate roughly which shows the 
same temperature. From Fig.4, it is observed that two different temperature profiles generate inside the plate 
as shown in Fig.1. Figure 6 shows a mixed boundary heat conduction plate problem in which the temperature 
of the top boundary is 10000C and the temperature of the bottom boundary is 300C and the temperature of the 
left and right boundary is 300C. Using this problem as shown in Fig.6, the transient heat conduction 
phenomenon is solved using Eq.(3.6) and flow chart 1. Figures 7 and 8 show the distribution of temperature 
at the sections y= 10 and x = 10 of the plate as a function of x and y respectively with time. With the increase 
of time temperature increases and after a certain time, temperature does not increase, i.e., the system reaches 
equilibrium temperature. The shape of the distribution of temperature at each interval of time is similar. To 
verify the soundness of the present analysis of the temperature distribution of 2D heat conduction problems, 
we have solved the problem as shown in Fig.9 with the boundary conditions mentioned in Tab.1 analytically 
using Fourier integrals (Deb Nath et al., 2006; 2007; 2007; Deb Nath and Ahmed, 2008; Deb Nath, 2008; 
Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 2009; Deb Nath et al., 2010; Deb Nath, 2013). The 
same problem is also solved using the finite difference technique by our code using the flowchart 2. Figure 
10 shows a comparative study of the distribution of temperature at some sections of the plate obtained by the 
analytical method to that obtained by the finite difference method. The present temperature distribution at 
some sections such as y/a = 0, 0.25 and 0.5 of the plate obtained by the finite difference method totally 
coincides with the temperature of those sections of the plate obtained by the analytical method. From the 
comparative study it is clear that the present solution of different problems using the finite difference 
technique is as accurate as the analytical approach. The rectangular plate with its aspect ratio 2 (the ratio of 
the dimension of the plate in x and y directions) as shown in Fig.11 is solved considering steady state heat 
transfer using the finite difference technique and the flowchart 2. Using the interpolation technique based on 
Eq.(2.3) as shown in Fig.12, the same problem is solved when one of the boundaries of the plate does not 
pass through the grids of the domain as shown in Fig.11. Figure 13 shows the contour plot of the distribution 
of temperature of the plate as shown in Fig.11 by the finite difference technique using the steady state heat 
conduction concept. From Fig.13, it is observed that the temperature distribution of the boundary is equal to 
the applied boundary conditions which ensures the reliability of the solutions. The same problem as shown in 
Fig.1 is extended introducing a notch on the top side of the plate and hot fluid with temperature 1000C is 
passed through this notch as shown in Fig.14. Except the notch the temperature of the top boundary of the 
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plate is 00C and the temperature of the left and right side boundary of the plate is 00C. The temperature of the 
bottom boundary of the plate is 200C. Figure 15 shows the distribution of temperature of the plate as shown 
in Fig.14 which satisfies the physical temperature boundary conditions of the plate and inside the plate two 
different temperature profiles are observed. At left and right portions of the plate two symmetric temperature 
distributions are observed. Along the middle portion of the plate, another type of temperature profile is 
observed. From the top side of the plate the temperature decreases towards the bottom side of the plate.  
 

 
 
Flowchart 1. Flow chart of different steps to determine the temperature profile of 2-D transient heat 
conduction problem in our developed MATLAB code 1.  
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Flow chart 2. Flow chart of different steps to determine the temperature profile of 2-D steady state heat 
conduction problem in our developed MATLAB code 2. 
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Fig.1.  Application of the governing equation of 2D heat conduction of a rectangular plate at different 
temperatures.   

 

 
 

Fig.2.  Effects of mesh size on the temperature distribution as a function of y coordinate of a rectangular 
plate at the section, x = 8 unit as shown in Fig.1. 
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Fig.3.  Effects of mesh size on the temperature distribution as a function of x coordinate of a rectangular 
plate at the section, y = 8 unit as shown in Fig.1. 

 

 
 

Fig.4.  Contour plot of the distribution of temperature throughout the plate according to the problem 
mentioned in Fig.1.  
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Fig.5.  Explicit method to solve the transient heat transfer phenomenon using the mentioned meshes. 
 

 
 

Fig.6.  Application of the transient heat conduction phenomenon of a rectangular plate with its boundaries at 
different temperatures.   
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Fig.7.  Distribution of temperature at the section y = 10 unit considering the transient heat conduction 
phenomenon as shown in the problem given in Fig.6. 

 

 
 

Fig.8.  Distribution of temperature at the section x = 10 unit considering the transient heat conduction 
phenomenon as shown in the problem given in Fig.6. 
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Fig.9.  A square thin aluminum plate with different thermal boundary conditions. 
 

 
 

Fig.10. Comparative study of the distribution of temperature at different sections of the plate as shown in 
Fig.9 by FD and analytical approach. 
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Fig.11. Application of the governing equation of 2D heat conduction and boundary conditions using the 
interpolation technique of a rectangular plate at different temperatures.   

 

 
 

Fig.12.  Locators a, b, s and t of the boundary point P with respect to its reference point R1, R2, R3, and R4. 
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Fig.13. Contour plot of the distribution of temperature throughout the plate according to the problem 
mentioned in Fig.11 using the interpolation technique on the top boundary.  

 

 
 

Fig.14.  Application of the governing equation of 2D heat conduction and boundary conditions with different 
temperatures of a rectangular plate having a notch.   

0.0001 0.0001 0.0001

50
50

50

50
50

50
50

10
0

100

100

100

10
0

10
0

15
0

150

150
150

15
0

15
020

0

20
0

200 200

20
0

20
0

25
0

250

250 250

25
0

30
0

300

300

30
0

30
035

0

350

350

35
0

35
0

400

400

400

400

40
0

450

450

450

45
0

500

500

500

50
0

550

550

550

55
0600

600

600

60
0

650

650

650

650

700

700 700

70
0750

750 750

750
800

800 800

800

850

850 850

850
900

900 900

950
950

950

1000 1000 1000

X Axis

Y
 A

xi
s

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 
T=0OC

T=200C

T=0OC 

T=0OC

T=1000C

x, i 

T=00C 

T=00C 

i 

 j 

2D heat conduction governing 

Eq.(2.2) 



Numerical study of the heat transfer phenomenon of a rectangular … 749 

 

 
 

Fig.15.  Contour plot of the distribution of temperature throughout the plate according to the problem 
mentioned in Fig.14.  
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boundary. A rectangular plate having three slots is meshed in which a hot fluid having temperature 10000C is 
passed through the middle slot and cold fluid having temperature 00C is passed through the rest of other two 
slots as shown in Fig.18. The distribution of temperature of the problem defined in Fig.18 is shown in Fig.19. 
Three different symmetric temperature distributions are observed in the plate. Between the hot and cold 
zones, the temperature changes abruptly. A rectangular plate having three slots is meshed in which a cold 
fluid having temperature 00C is passed through the middle slot and a hot fluid having temperature 10000C is 
passed through the rest of other two slots as shown in Fig.20. The distribution of temperature of the problem 
defined in Fig.20 is shown in Fig.21. Two different symmetric temperature distributions are observed in the 
plate. Between the hot and cold zone, the temperature changes abruptly. Using the transient phenomenon, the 
time required to reach the steady state temperature is obtained for the present problem as shown in Fig.6 
considering different materials which are shown in Table 2. From Table 2, it is observed that the plates made 
of silver and stainless steel take the lowest time and the longest time, respectively, to reach the steady state 
temperature. 
 

 
 

Fig.16.  Boundary conditions of the aluminum plate having a notch on the top surface and a rectangular slot 
inside the plate. 
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Fig.17.  Contour plot of the distribution of temperature throughout the plate according to the problem 
mentioned in Fig.16.  

 

 
 

Fig.18.  Boundary conditions of the aluminum plate having three slots inside the plate (Case 1). 
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Fig.19.  Contour plot of the distribution of temperature of the plate as shown in Fig.18. 
 

 
 

Fig.20.  Boundary conditions of the aluminum plate having three slots inside the plate (Case 2). 
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Fig.21. Contour plot of the distribution of temperature of the plate as shown in Fig.20. 
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methods agree well. So, the temperature distributions of some practical 2D heat conduction problems 
obtained by the present finite difference method are reliable. Firstly, a 2D aluminum plate with mixed 
boundary conditions is solved using the transient heat conduction approach to understand the time dependent 
temperature distribution at different sections of the plate. The transient heat conduction phenomenon in a 
plate is studied considering different materials. Secondly, an optimum mesh size is determined by varying 
the mesh density of a 2D rectangular heat conduction plate to solve the present problems. Thirdly, the same 
rectangular heat conduction plate is solved considering without the interpolation technique when the 
boundary of the plate passes through the meshing of the plate. Then this problem is solved considering 
interpolation technique when the boundary of the plate does not match the discretized grids of the plate. The 
temperature distribution on the boundary of an aluminum plate does not change if the interpolation technique 
is used to solve it when the boundary does not match with the regular grid network. Then a notch is 
introduced on the top of the plate and hot fluid is passed through it and effects of hot fluid on the temperature 
distribution near the notch are discussed. Then this problem is extended to introduce a rectangular slot inside 
it. Effects of slots and notches on the temperature distribution of the plate are clearly observed. Besides, 
three rectangular slots are introduced inside the rectangular plate. Effects of the hot and cold fluid passing 
through it on the temperature distribution of the plate are also analyzed. 
 
Nomenclature  
 
 A – constant 
 B – constant 
 b – length of the plate 
 E0 – constant 
 Em – constant 
 FD – finite difference 
 h – finite difference mesh length in the x direction 
 k – finite difference mesh length in the y direction 
 m – 1, 3, 5…..  
 T – temperature distribution as a function of x and y directions 
 mY  – function of y 

 mY   – first derivative with respect to y 

 mY   – second derivative with respect to y 

   – 
m

b


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