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Position and displacement analysis of a spherical model of a human knee joint using the vector method was 

presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm 
method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the 
prepared software. The method itself can be useful when solving problems concerning the displacement and loads 
analysis in the knee joint. 
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1. Introduction 

 
 A simplified model of the human knee joint (Sancisi and Parenti-Castelli, 2010) can be sufficient to 

study positions of bones (the femur and the tibia) and their relative displacements. However, it can be further 
completed by adding the patellofemoral joint of the knee that contains: a patella, a patellar tendon and a 
muscle system. 

 The models of the patellofemoral joint with two, flexible point contact pairs have been introduced 
(Caruntu and Hefzy, 2004). However, a set of twelve differential equations has to be solved in order to 
analyze the model. A different approach for the modeling of the knee joint has been shown in Sancisi and 
Parenti-Castelli (2008), where the knee model is considered as a parallel platform mechanism. This method 
will be further explored in this paper. 

 In comparison with parallel platform mechanisms known from robotics, the considered model of the 
knee joint is characterized by two nonsymmetrical platforms (the femur and the tibia), connected by one 
spherical joint (S) and three legs: two passive legs S-S type (the cruciate ligaments) and one active leg S-S-R 
type (the patellar tendon and the patella with R – revolute joint). The mechanism operates in a limited 
workspace of one configuration, relatively distant from singular positions. A problem of an inverse position 
analysis (IPA) for the considered 1-DOF platform mechanism is formulated.   

 A simplified model (Sancisi and Parenti-Castelli, 2008) of the patellofemoral joint is assumed with 
the patella connected to the femur by a cylindrical joint (Fig.1a) where angular displacement is analyzed but 
the linear position is assumed to be constant. An admissible angular displacement of the patella with respect 
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to the femur, corresponding to given positions and displacements of the femur with respect to the tibia, is 
determined by the muscle, simplified and substituted with a single linear actuator. The substitute linear 
actuator represents the quadriceps muscle of the knee. Therefore, only the extension of the knee can be 
studied. It is also assumed that that the bones are rigid and the ligaments have fixed-length. The knee joint is 
analyzed in the normal range of flexion (deep flexion is not taken into account). 
 

  
  
Fig.1. a) The spherical model of the knee joint with the patellofemoral joint and the muscle, where: A1B1, 

A2B2 – the cruciate ligaments, A3 – the center of the spherical joint that connects two platforms,       
A4 (E4) – the patellar tendon attachment to the tibia (the patella), s – the length of the substitute 
muscle, E3 (B3) – the substitute muscle attachment to the patella (the femur), B5, B6 – points on the 
axis of symmetry of the cylindrical joint that connects the patella and the femur with the direction 
oriented by n; {xt yt zt} – the tibia reference frame, {xf yf zf} – the femur reference frame, {xp yp zp} – 
the patella reference frame; b) the simplified model of the patella with the revolute joint (B5). 

 
2. Position analysis of the patellofemoral joint 
 
2.1. Research problem 

 
 The problem of inverse position analysis (IPA) is formulated as follows. Given a set of successive 

positions of the femur with respect to the tibia compute corresponding positions and displacements of the 
patella using the vector method. 

 The position and displacement analysis of the patellofemoral joint (Fig.1a) using a method of 
constraint equations leads to a system of nonlinear equations numerically solved in Sancisi and Parenti-
Castelli (2010). On the other hand, the vector method yields a closed-form solution. The substitute 
mechanism for the patella part of the knee joint (Fig.1b) can be described with one tetrahedron presented in 
Fig.2a. In order to obtain the position of the patella reference frame with respect to the tibia reference frame 
a unit vector o

54e  describing the patella orientation can be determined using the formula for finding one of 
three unit vectors, when two unit vectors and two dot products of each these vectors with the unknown unit 

b) a) 
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vector are known (Ciszkiewicz and Knapczyk, 2014). The unknown unit vector o
54e  is determined using two 

known unit vectors o
56b , o

54d  and three known dot products  , ,o o o o o o
1 56 54 2 56 354 5454c c c     b d b e d e  

 

          ,o o o o o 2
54 2 1 3 56 1 1 3 54 56 54 1c c c c c c D 1 c       e b d b d   (2.1) 

 
where   .2 2 2

1 2 3 1 2 3D 1 c c c 2c c c      
 

 The position vectors , ,4 5 6e b b  of points E4, B5 and B6 in the patella reference frame are given and 

the distances ,54 4 5 64 4 6e e   e b e b  can be computed. 

 

 
    

Fig.2. a) The vector tetrahedron (at the patella), b) the patellofemoral joint model. 
 

 The unknown components of Eq.(2.1) are computed in the following steps. The procedure starts with 
the calculation of the vectors ,56 54b d in the tibia reference frame 

 
  ; ;56 6 5 54 4 5  b b b d a b    (2.2) 

 
where: b5 and b6 – the position vectors of the points B5 and B6 assumed on the femur and described in the 
tibia reference frame, a4 – position vector of the known point A4 on the tibia and described in the tibia 
reference frame. In the next step, the unit vectors ,o o

56 54b d , the distances ,56 54b d and the dot product o o
56 54b d  

are calculated. The dot products ,o o o
54

o
2 56 4543 5c c e d e== b  can be obtained using a cosine formula 

 

  ; .54 54
56 54 54 54

2 2 2 2 2 2
o o o o56 54 64 54 54 44
56 54

b e e d e d

2b e 2d e

   
   b e d e   (2.3) 

 
 Equation (2.1) can now be used to obtain the unit vector o

54e . The position vector of the point E4 can 
be obtained as follows 
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  4 5 4 5

o
5 4e e b e .  (2.4) 

 
 It is worth noting that 54

oe  can assume two different directions depending on the sign before  
the square root in Eq.(2.1). The proper direction of this unit vector can be chosen after a comparison of  
the results obtained from the model and the experimental data.  

 The position analysis of the patella part model for the knee joint using the vector method provides 
the solution in the form of position vectors of the three points located on the patella and described in  
the tibia reference frame {xt yt zt}. For the known coordinates of these vectors in the femur reference frame  

a rotation matrix  , ,p p p
pf   R

 
and a translation vector  Tf p p p

pf x y zp p p  p  of the patella reference 

frame with respect to the femur reference frame can be solved using Horn’s method (Horn, 1987). A 
sequence of rotations for the rotation matrix is assumed as per Sancisi and Parenti-Castelli (2008). In a 

medical terminology the following description is used: p – flexion(+) and extension(–), p – abduction(–) 

and adduction(+), p – external(–) and internal(+) rotation. This form of the results will be used in the 
parameters estimation. However, the results are also presented by parameters of the screw displacements 
(Fenton and Shi, 1990).  

 
2.2. Data preparation 

 

 The input data set for the position analysis contains:    5 5 6 6,f p f pb b b b  – the position vectors of the 

points B5 and B6 on the cylindrical joint axis in the femur (the patella) reference frame, a4 – the position 
vector of the point A4 – the center of the patellar tendon attachment to the tibia in the tibia reference frame,  
e4 – the position vector of the point E4 – the center of the patellar tendon attachment to the patella in the 
patella reference frame, d44 – the length of the patellar tendon. The assumed 19 parameters are listed below 
(the coordinates of position vectors and d44 are expressed in [mm]) 
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 The parameter set and the experimental data required for the parameters estimation are assumed as 

per Sancisi and Parenti-Castelli (2008). The input data set also contains a set of the rotation matrices 

, , )(ft   R , the translation vectors 
T

ft x y zp p p  p  from the femur reference frame {xf yf zf} to the tibia 

reference frame {xt yt zt} obtained from the spherical model (Ciszkiewicz and Knapczyk, 2014). The position 
vectors of the points B5 and B6 in the tibia reference frame can be computed as follows 

 
  ; .f

ft ft
f

5 5 ft 6ft6   b p R b b p R b   (2.5) 
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2.3. Parameters estimation 
 
 The parameters estimation is performed so that displacements of the simplified patellofemoral joint 
can reproduce the displacements of the actual joint more accurately. In this case 19 parameters are estimated. 
 In order to compare the results obtained from the patellofemoral joint model with the experimental 
data six relative indicators are calculated as follows (over the full flexion range of the knee) 

 

     
n

s i r i
x i 1

1
x x α x α

n z 

  
 

 (2.6) 

 

where: x  – indicator of  , , , , ,p p p p p p
x y zx p p p    ;  s ix   – the value of x obtained using  

the spherical model at i  (  is the flexion angle of the spherical model of the knee or the knee when the 

experimental data is considered); here: ; ,i 6 108    i 6   );  r ix  – the measured value of x at i , 

zx – the range of x obtained from the experimental data, n – the number of the flexion angle set elements 
(here: n = 18).  
 The objective function can be written as follows 
 

   p p p p p p
1 2 3 4 5 y z6xh w w w w p w p w p r             (2.7) 

 
where: wi – the weight factor of the respective indicator (here: wi = 1 [i = 1..6]), r – the penalty function 
(assumes a large value if for a dataset there is no real solution or the range of the flexion angle is 
unsatisfactory).  
 The estimation was implemented using the evolutionary algorithm (Fig.3). Note that a group of 
specimens is called a population and an individual specimen is a solution (a set of geometrical parameters). 
 

 

 

Fig.3. Flow chart – parameters estimation procedure. 
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3. Results 
 

 Summarized results of the parameters estimation of the patella part model with 19 parameters are 
presented below (the coordinates of the position vectors and d44 are expressed in [mm]) 
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 Figure 4a illustrates successive positions of the patellofemoral joint mechanism when added to the 
spherical model of the knee joint (Caruntu and Hefzy 2004). Table 1 presents a comparison of the results 
obtained using the vector method and the experimental data (Sancisi and Parenti-Castelli, 2008). The 
considered mechanism cannot fully reproduce complex displacements of the patellofemoral joint. However, 
the results obtained can be improved by estimating two sets of parameters (for ;6 54    and 

;60 108   . 

 

 
 

Fig.4.a)  The spherical model of the knee with the patella model in three positions, where: A1B1, A2B2 –  
the cruciate ligaments, A3 – the center of the spherical joint that connects two platforms, B5 –  
the revolute joint, A4 (E4) – the patellar tendon attachment to the tibia (the patella), {xt yt zt} – tibia 
reference frame, Op – the origin of the patella reference frame, b) the patellofemoral joint model in 
successive positions with the set of instantaneous screw vectors of the patella with respect to the 
tibia (length of the screw vector is proportional to the angular displacement along the axis), where: 
 is the flexion angle of the spherical model of the knee joint. 
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Table 1.  Simulation results: MaxDiff – maximum; MeanDiff – mean difference between the results obtained 

from the model (a – for ;6 108   ; b – for ; , ;6 54 60 108      ) and the 

experimental data presented in Sancisi and Parenti-Castelli (2010). 
 

 

  p [deg] p  [deg]  p [deg] 
p
xp [mm] p

yp [mm] p
zp [mm] 

a MaxDiff 4.00 3.71 4.94 1.81 6.20 1.28

 MeanDiff 1.24 1.84 1.70 0.92 1.03 0.39

 Range 84.42 5.61 28.57 50.19 30.35 2.00

b MaxDiff 2.95 4.71 4.28 1.60 5.17 0.79

 MeanDiff 1.11 1.50 1.59 0.59 1.07 0.25

 Range 81.37 8.36 22.96 48.34 29.73 3.20

 
4. Conclusion 
 
 Numerical simulations proved effectiveness of the prepared software and the parameters estimation 
using the vector method. Estimation of two parameters sets for ;6 54    and ;60 108    instead of 

one parameter set for ;6 108    can improve the results obtained from the model. It seems expedient to 

consider the linear displacement along the axis of the patellofemoral cylindrical joint as it is allowed in the 
actual joint. 
 The vector method can be advantageous in research concerning the patellofemoral joint – allowed 
ranges of the displacements and possible collisions between ligaments and bones can be investigated. It is 
also worth mentioning that the vector method provides a closed-form solution for the position of the 
patellofemoral joint. The method can be used to solve direct position analysis (DPA) of the considered 
mechanism, using numerical methods. 
 It is possible to use the results to solve static and elasto-static problems for the knee joint model. The 
model with assumed coordinates of muscle attachments could be used to study the relation between the 
muscle force and the resulting screw displacement. Then, medical conditions such as patellofemoral 
dislocation could be analyzed. 

 
Nomenclature 
 
 pfp  – translation vector of the origin Op of the patella reference frame with respect to the femur reference frame, 

Tp p p
pf x y zp p p   p  

   – flexion(+)/extension(–) angle of the femur with respect to the tibia 

 p  – flexion(+) and extension(–) angle of the patella with respect to the femur 

 p  – abduction(–)/adduction(+)angle of the patella with respect to the femur 

 p  – external(–)/internal(+) angle of the patella with respect to the femur 
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