
 
 

Int. J. of Applied Mechanics and Engineering, 2015, vol.20, No.3, pp.487-502 
DOI: 10.1515/ijame-2015-0033 

 
 

RESPONSE DUE TO IMPULSIVE FORCE IN GENERALIZED THERMO-
MICROSTRETCH ELASTIC SOLID 

 
V. KUMAR*  

Department of Mathematics 
Lovely Professional University, Punjab, INDIA 

E-mail: varun.kumar@hotmail.co.in 
 

R. SINGH 
Department of Mathematics 

S.G.A.D. Govt. College, Punjab, INDIA 
E-mail: kalsi_ranjit@yahoo.com 

 
 

A two dimensional Cartesian model of a generalized thermo-microstretch elastic solid subjected to 
impulsive force has been studied. The eigen value approach is employed after applying the Laplace and Fourier 
transforms on the field equations for L-S and G-L model of the plain strain problem. The integral transforms 
have been inverted into physical domain numerically and components of normal displacement, normal force 
stress, couple stress and microstress have been illustrated graphically. 
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1. Introduction 

 
 Inadequacy of the classical theory of elasticity to model the modern engineering components which 
possess internal structure such as polycrystalline materials and materials with fibrous or coarse grain 
structure led scientists to develop a new theory which can successfully explain the behavior of such 
materials. Eringen (1966) coined a term micropolar to explain deformation of elastic media with such 
oriented and interconnected particles made up of dipole atoms or dumb-bell molecules which are also 
capable of translational as well as rotational motion when subjected to surface and body couples.  
 The conventional coupled thermoelasticity theory based on a parabolic heat equation, which predicts 
an infinite speed for the propagation of heat leading to the conclusion that that if an isotropic, homogeneous, 
elastic material is subjected to thermal or mechanical disturbances; the effects in the temperature and 
displacement field are felt immediately at an infinite distance from the source of disturbance. To overcome 
these deficiencies generalized thermoelasticity theories were developed consisting of a hyperbolic heat 
equation, which admit a finite speed for thermal signals. The first generalization was due to Lord and 
Shulman (1967), who obtained a wave-type heat equation by postulating a new law of heat conduction to 
replace the classical Fourier law. The second generalization is known as the theory of thermoelasticity with 
two relaxation times or the theory of temperature–rate-dependent thermoelasticity. Green and Lindsay (1972) 
obtained an explicit version of the constitutive equations later.  
 Nowacki (1966) and Eringen (1970) extended the linear theory of micropolar continua to include the 
thermal effect and formulated the micropolar thermoelasticity theory. One of the generalizations of the 
classical theory is the linear theory of elastic materials with stretch. A micropolar elastic solid with stretch 
which included the effect of axial stretch during the rotation of molecules was developed by Eringen (1971). 
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Microstretch solids are capable of stretching and contracting independent of their translation and rotation. In 
these solids, the motion is characterized by seven degrees of freedom, namely three for translation, three for 
rotation and one for stretch. Examples of such elastic solids are porous media whose pores are filled with gas 
inviscid liquid, asphalt and composite fibrous materials. Eringen (1990) also developed a continuum theory 
of thermo-microstretch elastic solids. Green and Naghdi (1993) proposed the theory of thermoelasticity 
without energy dissipation and presented the derivation of a complete set of governing equations of the 
linearized version of the theory for homogeneous and isotropic materials in terms of displacement and 
temperature fields and proved the uniqueness of the solution of the corresponding initial mixed boundary 
value problem. Kumar and Deswal (2001) studied the disturbances caused by mechanical and thermal 
sources in a homogenous, isotropic generalized thermo-microstretch elastic medium by using the Laplace 
and Hankel transforms. Kumar et al. (2003) contributed to this field by studying a plane strain problem in a 
microstretch elastic solid. A problem of bending of microstretch elastic plates was investigated by Ciarletta 
(1999). Kumar and Partap (2009) investigated the propagation of axisymmetric free vibrations in a 
microstretch thermoelastic homogeneous isotropic solid which was subjected to stress free thermally 
insulated and isothermal conditions. Othman and Lotfy (2010) used a general model of the equations of 
generalized thermo-microstretch theories of Lord-Shulman (L-S), Green-Lindsay and classical dynamical 
coupled theory (C-D) for a homogenous isotropic elastic half space and compared results in the presence and 
absence of microstretch effect. Lotfy and Othman (2012) studied the effect of rotation of generalized thermo-
microstretch elastic half space whose surface was subjected to Mode-I crack problem and compared the 
results for L-S and CD theories. Abbas and Othman (2012) used the finite element method to study the 
propagation of plane waves in a thermo-microstretch elastic solid half-space for the L-S and C-D model of 
field equations. Othman et al. (2013) studied the effect of the magnetic field on generalized thermo-
microstretch isotropic elastic half space solid under rotation which is subjected to a mode-I crack problem in 
the context of G-N theory with the help of normal mode analysis. 
 
2. Formulation and solution of the problem 
 
 We take a Cartesian coordinate system  , ,1 2 3x x x  and the 3x -axis pointing vertically into the 

medium. Following Eringen (1990), Lord and Shulman (1967) and Green and Lindsay (1972) field equations 
and the constitutive relations without body load, body couples, heat sources and stretch force for a 
homogeneous, isotropic generalized thermo-microstretch elastic solid can be written as 
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 Since we are considering a two-dimensional plane strain problem, so we assume the components of 
the displacement vector u  and microrotation vector   are of the form 
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With these considerations and using Eq.(2.8), the system of Eqs (2.1) to (2.7) reduces to  
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 Using the dimensionless quantities defined in Eqs (2.14), the system of Eqs (2.9)-(2.13) may be 
recast into a dimensionless form after suppressing the primes as 
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 Applying the Laplace and Fourier transforms to Eqs (2.15) - (2.19) defined by 
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 The system of Eqs (2.22) - (2.26) can be written as 
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 To solve Eq.(2.27), we take 
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which leads to the eigen value problem. The characteristic equation corresponding to the matrix A is given 
by 
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 The eigen values of the matrix A are characteristic roots of Eq.(2.31).The eigen vectors  ,X p  

corresponding to the eigen value sq  can be determined by solving the system of homogenous equations 
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 Thus the solution of Eq.(2.27) as given by Singh et al. (2011) is 
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where 'sB s  (s=1, 2, …, 10) are arbitrary constants. Equation (2.34) represents the solution of the 
generalized thermo-microstretch elastic medium for the plane strain case and gives displacement, 
microrotation, temperature distribution and scalar microstretch in the transformed domain. 
 
3. Application  
 
 We consider an infinite generalized thermo-microstretch elastic space in which a concentrated force 

( ) ( )0 1F F x t     where 0F  is the magnitude of the force, acting in the direction of the x3-axis at the origin 
of the Cartesian co-ordinate system as shown in Fig.1.  
 

 
 

 The boundary conditions for the plane x3=0 are given by 
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     + -, , - , , 2 1 2 1x 0 t x 0 t 0   ,    * *+ -, , - , , 1 1x 0 t x 0 t 0   ,  (3.2) 
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non-dimensional form with primes. After suppressing the primes and applying the Laplace and Fourier 
transforms defined by Eqs (2.20) and (2.21) on the resulting equations and using boundary conditions (3.1)-
(3.5), we get the  transformed components of displacement, microrotation, scalar microstretch, temperature 
distribution, tangential force stress, normal force stress, tangential couple stress and microstress for x3>0, 
given by  
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For x3<0: the above expressions get suitably modified, e.g., 
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 Making use of the transformed displacement, microrotation, temperature distribution, scalar 
microstretch and stress components given by Eqs (3.6)-(3.14) in region x3>0 and equations for the region 
x3<0 in the boundary conditions, we obtain ten linear relations between 'sB s (s=1, 2, .., 10) which on 
solving give  
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 Thus functions , , , , ,1 3 2 31 33u u T t t     , *,32m   and 3  have been determined in the transform domain 
and these enable us to find the displacements, microrotation, temperature distribution field, stresses, scalar 
microstretch and microstress. 
 
4. Method for the inversion of transforms  
 
 To obtain the solution of the problem in the physical domain, we must invert the transforms for both 
theories that is L-S and G-L. These expressions are functions of x3, the parameters of the Laplace and Fourier 
transforms p and  , respectively, and hence are of the form ( , , )1 3f x x p . To get the function ( , , )1 3f x x p  in 
the physical domain, first we invert the Fourier transform using 
 

            , , exp  , , cos  sin  1 3 1 3 1 e 1 0

0

1
f x x p i x f x p d x f i x f d

 



        
    . (4.1) 

 
 The last step in the inversion process is to evaluate the integral in Eq.(4.1). This was done using 
Romberg’s integration with an adaptive step size. This method uses the results from successive refinements 
of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size tends 
to zero. The details can be found in Press et al. (1986). 
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5. Numerical results and discussion 
 
 Following Eringen (1984), we take the following values of relevant parameters for magnesium 
crystal as 
 

  . 10 29 4 10 N m   ,    10 24 10 N m   ,    10 2K 1 10 N m  ,    . ,3 31 74 10 kg m     

 

  . 90 779 10 N   ,      .  ,19 2J 0 2 10 m      * . 19 2K 1 1753 10 m  ,  

 

  * . sec/1 20 0787 10 N m   ,      . 13
0 6 131 10 s   ,       . 13

1 8 765 10 s   ,  
 

  .0 073  ,       0T 296K ,       . 10 2
0 0 5 10 N m   ,       . 10 2

1 0 5 10 N m   , 
 

  . 9
0 0 779 10 N   ,       * -.  1 1C 3 525J Kg K  . 

 

 The variations of the non-dimensional normal displacement  3 3 0U 2u F , non-dimensional normal 

stress  33 33 0T 2t F , non-dimensional tangential couple stress  32 32 0M 2m F , non-dimensional 

microstress  *
3 3 02 F    and non-dimensional temperature distribution  *

0T 2T F  with non-

dimensional distance ‘x1’ at the plane x3=1, h=10-10 m and coupling coefficient .0 073   have been shown 
in Figs 2 – 6 for (a) generalized thermo-microstretch elastic (GTMSE) solid (b) generalized thermo 
micropolar elastic (GTME) solid; (c) generalized thermoelastic (GTE) solid for time t=0.1, 0.125 and 0.5.  

 

 
 

Fig.2. Variation of normal displacement U3. 
 
 The behaviour of displacement for both theories (L-S and G-L) in all three media (GTMSE, GTME, 
GTE) is similar, whereas due to the stretch effect, the value of normal displacement in the GTMSE medium 
is slightly different as compared to those in the GTME medium for L-S and G-L theories as shown in Fig.2.  
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The variations of normal displacement U3 for L-S and G-L theories are less in the GTMSE medium as 
compared to the GTME medium in the range 0<x1<2.5 and vice-versa in the range and for G-L theory values 
ar greater in the GTME medium as compared to the GTME medium in the range 0< x1<1.3, 4.3< x1<5.9 and 
less in the range 1.3< x1<4.3. The rotational effect on the values of normal displacement for all the three 
theories has been depicted in Fig.2. 
 

 
 

Fig.3. Variation of normal stress T33. 
 
 The values of normal force stress T33 for L-S theory are greater in the range 0< x1<1.3, 3< x1<6 but 
less in the range 1.3< x1<3.3 for G-L theory values are less in the range 0< x1<1.25, 3< x1<6 and greater in 
range 1.25< x1<3.3 in the TE medium as compared to the MTE medium. Figure 3 depicts these variations 
after dividing the original values of G-L theory in the GTE medium by 10 to depict the comparison. 
 

 
 

Fig.4. Variations of tangential couple stree M32. 
 
 Figure 4 shows these variations of normal force stress T33 for three different theories in both the 
media after multiplying the original values of G-L theory in the GMTE medium by 10². 
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Fig.5. Variations of microstress 3
 . 

 

 The variations of tangential couple stress 3
  for G-L theory are different and take place in a greater 

range as compared to L-S and G-L theories. Also the values for G-L theory are greater as compared to L-S 
theory in the range 0< x1<0.8 and 5.3< x1<6 and are less in the range 0.8< x1<5.3 as depicted in Fig.5. 
 

 
 

Fig.6. Variation of temperature field T*. 
 
 The temperature field T for three different theories in the MTE medium has variations similar to the 
variations in the TE medium, where the range of variations for L-S theory is greater as compared to G-L 
theory as depicted in Fig.6. For L-S theory, values of temperature distribution are less in the range 0< x1<1.7 
and 3.5< x1<4.7 and greater in the range 1.7< x1<3.5 and 4.7< x1<6; for G-L theory the values of 
temperature distribution are less in the range 0< x1<1.5 and 3.6< x1<4.5 and greater in the range 1.5< x1<3.6 
and 4.5< x1<6 in the GTE medium as compared to the GMTE medium.  
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Conclusion 
 
 For both L-S and G-L theories, impact of microstretch effect on stress components is more as 
compared to micropolarity. Additionally it is observed that effect of microstretch on displacement, normal 
stress, tangential couple stress, microstress and temperature distribution depends upon the distance. 
Furthermore variation in all these components shows oscillatory behavior as we move away from point of 
application of impulsive force. Using these results, it is possible to investigate the disturbance caused by 
more general source for practical applications 
 
Nomenclature 
 
 *C  – specific heat at constant strain 
 j – micro-inertia 

 *K  – coefficient of thermal conductivity 
 mij – couple stress tensor 
 T – temperature change 
 tij – force stress tensor 
 u  – displacement vector 
 ,  , ,K – micropolar material constants 
 ,

1 2t t   – coefficient of linear expansion 
   – gradient operator 
 ij  – Kronecker delta 

 ijr – alternating tensor 
 ,  – Lame’s constants 
 3  – microstress component 

 ,  1   – mechanical and thermal constant  
   – density 
 0  – thermal relaxation time 
 1  – thermal relaxation time 
   – microrotation vector 

 *  – scalar microstretch 
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