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The generalized strain scheme in bending metal tubes at bending machines with the use of a mandrel 

presented in Śloderbach (1999; 2002; 20131,2; 2014) satisfies initial and boundary kinematic conditions of 
bending, conditions of continuity and inseparability of strains. This paper introduces three formal simplifications 
gradually imposed into forms of principal components of the generalized strain model giving suitable 
simplifications of the 1st, 2nd and 3rd types. Such mathematical simplifications cause that the obtained strain 
fields do not satisfy the condition of consistency of displacements and strain continuity. The simplified methods 
determine safer values of the wall thickness than those from the generalized continuous strain scheme. The 
condition of plastic incompressibility was used for the derivation of an expression for distribution of wall 
thickness of the bent elbow in the layers subjected to tension and compression for three examples of 
discontinuous kinematic strain fields.  

 
 Key words: bending tubes, three simplifications, strains, wall thickness, discontinuous strain fields. 

 
1. Introduction  
 
 This paper continues the author’s previous work (Śloderbach, 1999; 2000; 2002; 20131,2; 2014). As it 
was mentioned in the previous papers, tube bending at bending machines with a rotational template and 
using a mandrel always causes reduction of the wall thickness in the elongated layers, as well as wall 
thickening in the compressed layers, it also causes ovalization and corrugations which deform the tube cross-
section. Those unfavourable deformations dependent on the bending technology applied should be included 
into the tolerance limits determined by the valid standards or requirements defined by technical inspection. 
Thus, at the stage of elaboration of a given technology of tube bending it is necessary to predict the future 
deformations. It will make it possible to chose a suitable initial material and obtain a product (an elbow of  
a pipeline) of the required quality and operation life.  
 Tube bending simulation was considered in the papers (Śloderbach, 1999; 2000; 2002; 2013; 2014), 
presenting a model of geometry of deformations used for the calculation of component deformations formed 
during bending thin- and thick-walled tubes for the bending angle b <00; 1800>. The basic equation 
applied for the calculation of the actual thickness of the bent tube in the bending zone becomes an algebraic 
equation of the 3rd degree when i = 1. Solving such an equation seems to be difficult (Śloderbach, 1999; 
2002; 2014). Thus, it seems to be necessary to obtain approximate expressions for calculations of suitable 
deformations in the bent tube which could be applied under industrial conditions, repair works or 
modernizations, using an electronic calculator. 
 After a suitable analysis of the calculation results obtained from the relationships derived in 
Śloderbach (1999; 2002; 20131; 2014), this paper proposes three formal simplifications imposed on measures 
of suitable logarithmic constituent strains. In general, these simplifications are not only a formal 
mathematical operation making calculation easier, but they have a physical sense as well. If a suitable 
mandrel is applied (especially a segment one with an adjustable diameter) (Franz, 1961; Korzemski, 1971), 
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we can neglect oblateness of the elbow cross section because longitudinal strains 2  0, and according to the 
European standard (EN 13445-4, 2009) a permissible ovalization of the cross section is up to 6 %. If a 
bending radius R is relatively big, and the bending angle b is small, we can assume that reduction of the 
actual external radius of the bent tube ri is relatively small as compared with the external radius rext 
(Śloderbach, 1999; 2002; 2013; 2014). However, those simplified analytical schemes of strain fields do not 
satisfy the conditions of continuity of displacements and deformations, see (Olszak et al,1985; Szczepiński, 
1969; Życzkowski, 1981). In particular cases, when (i = 1), for the assumed simplifications of the 1st and 
2nd order we obtained suitable algebraic equations of the 2nd degree for a searched actual thickness of the 
tube wall in the bending zone instead of previously mentioned equation of the 3rd degree. For the assumed 
simplification of the 3rd order we obtained an algebraic equation of the 1st degree. Simplification of the 1st 
order is very precise, and differences in the calculated wall thickness in the elongated layers are about ~ 1%, 
and for simplifications of the 2nd and 3rd orders the differences reach even some % as compared with the 
results obtained from the equation of the 3rd degree derived and presented in Śloderbach (1999; 2002; 2013; 
2014) for a general strain scheme. The calculation results obtained in this paper for the elongated layers (1 = 
1) and compressed layers (2 = 1 and 2 = 0.5) are shown in graphs and table. From the point of view of 
resistance, exploitation durability, work safety, an analysis of the vertex points of the elongated layers seems 
to be the most reasonable because in these points we can usually observe the first cracks and other 
degradation processes caused by the greatest reduction of the wall thickness and negative influence of big 
strains on the material structure.  

 
2. Geometric and analytic description of  

 

 

Fig.1. Geometric and dimensional quantities occurring during tube bending. 
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2.1. Aproximate methods of strain calculations  
 
a) Simplification of the 1st type  
 
 The simplification of the 1st type concerns the „big actual radius” 2
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 in the bending zone, see Śloderbach (1999; 2002; 

20131; 2014), where the diameter di is formally replaced by the diameter dext, or the radius (ri = rint + gi) is 
formally replaced by the radius (rext = rint + g0). The suitable quantities for component strains and the 
expressions obtained under simplification of the 1st type were noted by the symbol (  ). Thus 
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where id   = dint + 2 '
ig  = dext  2(g0 – '

ig ). 

 

 The strain intensity and the condition of plastic incompressibility are 
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 Substituting expressions (2.2) to the condition of incompressibility (2.3)2 and after transformations 

we obtain the following equation for the actual wall thickness '
ig  in the bending zone 
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 Considering only the vertex points (= = 0

0) in Eq.(2.4), i.e., the points of maximum strains in the 

elongated layers for (1 = 1), after a solution related to ,
1g , we obtain the following expression satisfying the 

actual bending conditions 
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where ,
1g  - local actual thickness of the bent elbow in the bending zone of the elongated layers calculated in 

logarithmic measures of strain.  
 The other root being a solution of Eq.(2.4) takes negative values, so it does not satisfy real conditions 
of bending. It is quite easy to make calculations according to expression (2.5). The expression (2.5) is 
simplified when the bending angle reaches (kb = 1800), i.e., the extreme values are reached at that point 
(formation of the maximum strains and initiation of the „plateau” zone). Then 
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 Equations (2.4), (2.5) or (2.6) are applied for calculations of suitable wall thickness, and the 
calculated value is substituted to the relationship (2.2), and suitable deformation components ’1, ’2 and ’3 
are calculated, Eq.(2.3)1 is applied for the calculation of an equivalent strain ’(i). 
 
b) Simplification of the 2nd type  
 
 In this case, let as denote suitable quantities as (  ). In simplification of the 2nd type it is assumed 
that a value of the circumferential strain is negligibly low in relation to two other strain components. From 
the available experimental data (Franz, 1961; Korzemski, 1971; Śloderbach, 2002) it results that those strains 
can be almost five times less than the other strain components. Physically, it means the application of a 
certain „quasi-plane” strain state. Quantities of the strain components and the expressions obtained under 
simplification of the 2nd type are as follow  
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where     id   = dint + 2 ig   = dext  2(g0 – ig  ). 

 
 Strain intensity and the condition of plastic incompressibility are  
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 Substituting the expressions (2.8) to the condition of incompressibility (2.9)2 and after 

transformations we obtain the following equation for the actual wall thickness ''
ig  in the bending zone  
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 Let us consider only the vertex points  ( =  = 00) in Eq.(2.10), i.e., the points of maximum strains 

in the elongated layers (1 = 1). Solving the problem related to ''
1g , we obtain the following expression 

satisfying the real bending conditions  
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 The other root being a solution of Eq.(2.10) takes negative values, so it does not satisfy real bending 

conditions. Also the expression (2.11) can be easily used for calculations with the use of an electronic 
calculator. The expression (2.11) is subjected to further simplification in the moment when the bending angle 
reaches the value (kb = 1800), i.e., when the extreme values are reached in that point (formation of the 
maximum strains and initiation of the „plateau” zone). Then  
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 As previously, Eqs (2.10), (2.11) or (2.12) are applied for calculations of  proper wall thickness, and 
next the calculated value is substituted to the relationship (2.8). Then, we calculate suitable components of 
the deformation ’’

1 and ’’
3 and Eq.(2.9)1 is applied for the determination of the equivalent strain ’’

(i). 
 
c) Simplification of the 3rd type  
 
 In the case of this simplification, suitable quantities are denoted as ( ’’’ ). This simplification is 
assumed to be a composition of simplifications of the 1st and 2nd types. Thus, we can state that the „big 
actual radius” Ri in the bending zone, see Eqs (2.1) or (2.7), is such that the radius rint is formally replaced by 
the radius rext , and a value of the circumferential strain is negligibly low in relation  to two other strain 
components. Physically, it also means the application of a certain „quasi plane” state of strain. Thus, the 
strain components and expressions obtained in the case of simplification of the 3rd type are  
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 Strain intensity and the condition of plastic incompressibility are the following  
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 Substituting (2.14) to the condition of incompressibility (2.15)2 and after transformations we obtain 

the following equation for the actual wall thickness '''
ig  in the bending zone  
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 Let us consider only the vertex points of the bent elbow ( =  = 00) in Eq.(2.16) (points of the 

maximum strains in the elongated layers (1 = 1). Solving the problem related to 1g  , we obtain the 
following expression satisfying real bending conditions  
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 It is easy to make the calculations according to the expression (2.17) with the use of an electronic 
calculator. This expression is subjected to further simplification when the bending angle reaches a value (kb 
= 1800), i.e., when in that point the extreme values (formation of the maximum strains and initiation of the 
„plateau” zone) are reached. Then 
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 The expression (2.18)2 was previously cited in publications of the Polish Office of Technical 

Inspection (UDT) and applied in industrial practice (UDT CONDITIONS, 2003). 

 The following remark seems to be important here. The expressions (2.14) are similar to a certain 
plane strain state. It is not a „pure” plane strain state because in the expression for strain there should be  

( '''
ir = rint + '''

ig ), and there is ( '''
ir  = rext). Thus, it is a certain „quasi-plane” strain state.  
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 Substituting to Eqs (2.4)1 and (2.14)1, the vertex in the bending zone, when 
(0cos(kand for (1 = 1 and y0 = 0), and also including the condition of reaching the maximum 

strains in the bending zone cos bk 0
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calculations of strain values during the tube bending process ext
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European Standards (EN 13445-4, 2009; Zdankiewicz, 1998). Here Rm – a mean bending radius, Rm  y0max; 
R (Śloderbach, 2014). Eqs (2.4), (2.10) and (2.16) render it possible to obtain results for the reverse 
problem, i.e. we can determine, as in (Śloderbach, 2000; 2002; 20131), allowable (critical) values of the 
bending angle ball , corresponding to the allowable (critical) wall thickness g1all in the vertex point of 
maximum strains ( =  = 00). For the elongated layers (1 = 1), it is the minimum allowable wall thickness 
g1all.  
 

 For simplification of the 1st type  
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 For simplification of the 2nd type  
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 For simplification of the 3rd type 
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 From Eqs (2.19)-(2.21) it appears that when a suitable allowable wall thickness is equal to g0, then 
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 and y0 = 0, and it means no bending. Thus, the angles ’ball = allall bb     = 0, 

 respectively, because k  0. 
 From the above Eqs (2.19)-(2.21) it appears that when a suitable allowable wall thickness is equal to 

g0, then suitable angle cosines cos bk 1
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, and it means no bending. Thus, suitable angles b = 0, 

because k  0.  
 
3. Initial and boundary conditions for simplified methods 
 
 Expressions derived in the point 2 for simplified methods satisfy the following initial and boundary 
conditions during the pipe bending process:  

a) when b 0
2
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 - the beginning of the bending process (or lack of bending),  
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b) when b 0
2
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 - the beginning and the end of the bending zone,  

c) when (  i = 900  0) - the layers of zero displacements on the R0 radius in the bending zone, where (i = 
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d) when (k b = 1800) - beginning of the state of maximum deformations (start of the plateau zone) and 

  0
i 0    - the apex point of the bending zone in the elongated and compressed layers, then 

appropriate thicknesses  , ,i i ig g g    reach their extreme values (minimal and maximum) for  

(i = 1, 2), 
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4. Summary and conclusions  
 
1.  The paper presents the derived approximate (simplified) formulas for calculations of suitable strain 

components and strain intensity, and expressions for calculations of changes of wall thickness during 
technological processes of metal tube bending at bending machines. The derived simplifications have a 
certain physical sense and they are formal and mathematical operations making calculations easier. 
Three types of formal simplifications were proposed, namely simplifications of the 1st, 2nd and 3rd 
type, respectively.. In the case of simplification of the first type, the basic equation for calculations of 
the actual wall thickness of the bend elbow is an algebraic equation of the 2nd degree, and for 
simplifications of the 2nd and 3rd types – an equation of the 1st degree. These simplifications allow 
making calculations with the use of a calculator. The derived simplified relationships define low – i.e., 
safer - values for determination of  the allowable bending angle ball, or the allowable equivalent strain 

 alli .  

2.  The introduced simplifications of the 1st, 2nd and 3rd types are not only formal mathematical 
operations making expressions and calculations simpler. They have a physical sense, too. In the case of 
simplification of the 1st type, as the wall thickness becomes thinner, the neutral layer of plastic bending 
proportonally displaces downward (in the direction to the centre of rotation). In the considered case this 
displacement is not big, and we can write that (rext /R  const) and R0 = R0(b)  const. From the tests 
and analytic calculations it also appears that  the radius determining the position of the neutral layer is 
[R0  R - (g0 - gi)]. In the case of simplification of the 2nd type we can state that circumferential strains 
are sometimes smaller than longitudinal strains (along the axes and thickness). Thus, they can be 
neglected (2  0). Simplification of the 3rd type is a composition of simplifications of the 1st and 2nd 
type.  

3.  The derived simplifications of the 1st, 2nd and 3rd types for components of the kinematically permissible 
(continuous) field of strains (Śloderbach, 1999; 2002; 2013; 2014) cause that the obtained simplified 
schemes (fields) of strains do not satisfy the conditions of mutual agreement and continuity of strains 
between the main components of displacements and strains (there is a non-continuous change of their 
magnitude). 

 
Nomenclature  
  

 di – local „actual diameter” of the bent elbow, di=2ri (subscipt i=1 for elongated layers, and i=2 for 
compressed layers) 

 dext and dint – external and internal diameters of the bent tube, respectively 
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 extd  – it also means the initial (for calculations) external diameter of the considered layer of the wall of  

the bent tube, such that ext intd d  and also ext extd 2r  and ext int 0r r g   

 g0 – initial thickness of the bent tube 
 gi – local actual thickness of the bent elbow in the bending and bent zone where  (i = 1 or i = 2) 
 gir – local actual thickness of the bent elbow in the bending and bent zone calculated according to real 

(logarithmic) measures of strain 
 g1min  – minimum wall thickness in the elongated layer 
 g2max – maximum wall thickness in the compressed layer 
 R – bending radius (initial position of the neutral layer) 
 Ri – local big active actual radius of the bent elbow connected with the longitudinal strain 
 R0 – radius of the actual and local position of the neutral layer in the tube bending process 
 r  – relative bending radius, extr R d  

 ri and r*  – local small actual and locally small “active” actual radius in the bending zone 
 rext and rint – external and internal radius of the bent tube 
 y0 – local and instantaneous displacement of the neutral axis, see Fig.1 
    – actual angle of the bending zone determined in the main bending plane and in the parallel planes, 

,o b0
2


 . When b 0   (no bending), then 0    

 b  – bending angle measured in the bending zone, ,0 0
b 0 180   

 allb  and crb   – allowable and critical values of the bending angle respectively 

 0   – bend angle (angle of rotation of the template at the bending machine), in practice ,0 0
0 0 180   

 In the bending zone the bend and bending angles are equal, so  0 b   . When the plateau zone arised, then 

0 b pl     , where  pl – the plateau zone angle (Śloderbach, 2002; 2014). 

    – actual angle defined in the plane perpendicular to the bending plane, o o,0 90  

 i – angle of circulation of elongated and compressed layers  0
i 090    where (i = 1, 2) 

 1   – logarithmic longitudinal strain (along the axis) in the bending plane 

 2   – logarithmic circumferential strain in the plane perpendicular to the main bending plane 

 3   – logarithmic radial strain (along thickness) 

                         i   intensity of the logarithmic strain (logarithmic equivalent strain), where   ii    

 i  – correction coefficients of strain distribution (especially important in the description and analysis 
of the compressed layers) of the bending zone, dependent on technological parameters of bending, 

i = 1 for t elongated layers, i = 2 for compressed layers, and ( ), , , ,p p p p
1 2 3 i1 2 3 i             

where the superscript p means plastic strains 
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DERIVATION OF RELATIONS AND ANALYSIS OF TUBE BENDING 
PROCESSES USING DISCONTINUOUS FIELDS OF PLASTIC STRAINS 

Part II. Discussion and analysis of the obtained results 
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This paper presents the calculation results obtained on the basis of three formal simplifications (derived in 
Part I) gradually led into the main components of the generalized model of strain where suitable simplifications 
of the 1st, 2nd and 3rd type have been obtained. The paper also presents the results of considerations on the wall 
thickness distribution in the vertex point of the elongated layers of the bent elbow, and values of main 
components of the strain state and intensity of the strain (equivalent strain) depending on the bending angle for 
the generalized strain scheme and three simplified methods. The results are shown in the form of graphs and 
table.   

 
 Key words: three simplifications, strains, wall thickness, allovable strains and ovalization.  

 
1. Introduction 

 
 This part of the paper presents the results of numerical calculations of the wall thickness distribution 
in the vertex point of the elongated layers of the elbow subjected to bending, and values of main strain 
components of the strain state and intensity of strain (equivalent strain) depending on the bending angle for 
the generalized scheme of strain (Śloderbach, 1999; 2002; 2013; 2014) and for three simplified methods. 
Variations of the wall thickness in the main bending plane and the perpendicular plane passing through the 
vertex of the elbow previously bent to the angle kb = 1800 were presented, too. The obtained results were 
shown as tables and graphs which can be useful as nomograms.   
 From the calculation results obtained it appears that simplification of the 1st order is very precise and 
the differences in calculations of the wall thickness in the elongated layers are of the order of ~ 1%. In the 
case of simplifications of the 2nd and 3rd orders the differences reach some % as compared to the results 
obtained from the equation of the 3rd order derived and presented in Śloderbach (1999; 2002; 2013; 2014) 
for the generalized scheme of strains. The calculation results obtained in this paper for the elongated layers 
(1 = 1) and the compressed layers (2 = 1 and 2 = 0.5) are shown in graphs and tables. From the point of 
view of resistance, exploitation durability or work safety, an analysis of the vertex points of the elongated 
layers seems to be the most desirable because the maximum plastic strains and the first cracks and other 
degradation processes usually occur in such points (Dobosiewicz, 1988; Dzidowski, 1998; 2001; EL-Sebaie 
and Mellor, 1972; Gabryszewski, 1991; 2001; Marcinak, 1971; Moore and Wallace, 1964/65; Seyna and 
Ginalski, 1987; 1989; Śloderbach, 1999; 2000; 2002; 20131,2; 2014). They are caused by the maximum 
reduction of the wall thickness and negative influence of big strains on the material structure.  

 
2. Discussion and analysis of the results 
 
 According to the experimental data (Franz, 1961), in the calculations it was assumed that y0  0, so 
0  0. Values indicated without upper commas (g1, 1 and (i)) are taken from (Śloderbach, 1999, 2002, 
20131, 2, 2014), where i)  i, (see Part I). 
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Fig.1. Variation of the wall thickness value at the apex of the elbow versus the bending angle according to 

four computing methods: the author’s own results. 
 

 Figure 1 shows the calculation results of variation of the wall thickness (g1, 
, ,, ,,,, , )1 1 1g g g  depending 

on the bending angle kb. The thickness is calculated in the vertex point of the elbow ( =  = 00) of the 
elongated layers for (1 = 1), for the tube 44.54.5 mm bent at the bending angle R = 80 mm such that (R  
1.73dext), made of the steel St 35.8 according to the standard DIN 17175 [6]. The graph for thickness g1 was 

obtained from the papers (Śloderbach, 1999, 2002), and for thickness  , ,, ,,,, ,1 1 1g g g from Eqs (2.5), (2.11) and 

(2.17) from Part I, respectively.  
 Figure 2 shows the results of calculations of components of logarithmic measures of strains and 
strain intensity (equivalent strains) (i, i’, i’’’) depending on the bending angle (kb) calculated from the 
expressions for the generalized model (Śloderbach, 1999, 2002, 20131, 2, 2014) and the derived simplified 
expressions of the 1st and 3rd order presented in Part I. Calculations were made for the vertex point of the 
elbow in the bending zone and the central point of the elbow at the same time ( =  = 00) in the elongated 
layers (1 = 1). Only two extreme simplifications (the 1st and 3rd order) are considered because including 
additional graphs for simplification of the 2nd order could make the graphs not very clear and readable. 
When the experimental permissible values of the equivalent strain are placed on the Y-axis, it is possible to 
determine an approximate value of the permissible (critical) bending angle bcr (after the previous 
determination of the coefficient k). When values of the angle bcr  are exceeded, values of the permissible 
strains A5 or Aall in a test of uniaxial tension for tube steels (Franz, 1961; Korzemski, 1971) are exceeded, too. 
Here, Aall means an allowable (permissible) value of uniform strains. 
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Fig.2.  Strain components and strain intensity versus the bending angle according to three computing 

methods, where (g  b). 
 

 Figure 2 shows the value of  i  equal to 0.173 defined for steel St 35.8 (Franz, 1961) in a test of 
simple tension according to the standard DIN 17175. On the X-axis, the values of the bending angle g for 
suitable values of (i, i’, and i’’’) determined for three methods of calculations respectively (the precise 
method and two simplified methods of the 2nd and 3rd type) oscillate around the following angle values (bcr 
 1400 for k = 1), (bcr  570 for k = 2.5) and (bcr   470 for k = 3).
 From the graphs in Figs 1 and 2 it also follows that application of simplified measures of the 1st, 2nd 
and 3rd order, respectively causes determination of a greater reduction of a material thickness in the bending 
zone and greater values of the strain components and the equivalent strain as compared to the results 
obtained from the solution of the general model. It means that these methods give lower (safer) values, i.e., 
safer limitations imposed into the permissible bending angle ball or bcr. When the values of the angles ball 
or bcr are exceeded, effects connected with localization of plastic deformations or any other form of stability 
loss or cracking points can occur (Dobosiewicz, 1988; Dzidowski, 1998; 2001; EL-Sebaie and Mellor, 1972; 
Gabryszewski, 1991; 2001; Marcinak, 1971; Moore and Wallace, 1964/65; Seyna and Ginalski, 1987; 1989; 
Śloderbach, 1999; 2000; 2002; 20131,2; 2014; Tang, 2000; Życzkowski, 1981;1997). 
 Thus, the simplified measures formally introduced in Part I can also be applied in the cases, when a 
given bending process causes greater reductions in the wall thickness in the elongated layers, suitably greater 
components of strains and the equivalent strain. Because of simplified forms of the expressions, the 
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calculations  can be made with the use of a calculator, for example under operating conditions, during repair 
in situ or at the object.  
 In future, the determined simplified forms for the principal strain components should make it 
possible to find whether  a given tube can be subjected to bending according to the method of determination 
and analysis of approximate curves of boundary strains (Dzidowski and Cisek, 2001;Gabryszewski and 
Gronostajski, 1991; Gabryszewski, 2001; Marciniak, 1971; Moore and Wallace, 1964/65), as in the case of 
drawability of sheets. As compared to the expressions for the generalized strain scheme, the methods are 
based on simple calculations and they seem to be safer estimations.  
 Figure 3 shows variations of the wall thickness (g1, g1’, g1’’ and g1’’’) of the elongated layers (1 = 
1) of the elbow in the main bending plane ( = 00) and in the perpendicular plane ( = 00), for the bent and 
bending angles (0 = kb = 1800). Let us note that the graphs in those planes suitably coincide, and it directly 
results from Eq.(2.1), and Eqs. (2.5), (2.11) and (2.17) of Part I. In the case of other bending angles kb  
1800), there is no such coincidence and the graphs have different courses.  
 

 
 
Fig.3. Variation of the wall thickness on the principal plane of bending and the plane perpendicular to it as 

given by four computing methods. 
 

 From the calculations it appears that approximate and simplified methods determine lower values of 
wall thickness than those obtained from the general model. Thus, the following inequalities take place (g1 > 
g1’ > g1’’ g1’’’) for the same of bending parameters. It means that the simplified methods determine a more 
unfavourable distribution of thickness, higher values of strain intensity, so they give lower values for 
determination of the permissible bending angle. Thus, in a given bending process such estimations are safer 
from the point of view of strength of a material, operating life or safe service.   
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 On the basis of the graphs from Figs 1-3, we can formulate the following inequalities for the 
elongated layers  
 

  ( ) ( ) ( ) ( )

 1 1

when ,

then ,

and > .

1 1 1 1

i i i i

1 1g g g g

         
         
    

 (2.1) 

 
 In the compressed layers of the tube subjected to bending the above inequalities (also their gradual 
arrangement) are not valid.  
 From the formal analysis of the expressions presented in Śloderbach (1999; 2002; 20131; 2014) and 
Part I we can draw another conclusion, useful in our further considerations. Values of strain components, the 
equivalent strains and wall thickness for the general strain scheme and three aproximate methods calculated 
depending on the external diameter and internal diameter (dint = dext  2g0) of a tube are the same. It applies 
both to the elongated and compressed layers. Thus 
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 (2.2) 

 
 However, this statement is not valid for calculations of the initial wall thickness of tubes which have 
to be subjected to bending (Śloderbach, 2002). The actual thickness in Eqs (2.2) are calculated according to 
logarithmic measures of strain (see Part I).  
 Also the derived simplified equations and relationships satisfy the initial and boundary conditions of 
tube bending specified in item 3, Part. I. Let us note that the derived approximate expressions determine 
lower values, i.e., lower wall thickness, so they are safer from the point of view of critical strains, the 
permissible bending angle or the bending radius. Thus, the estimations seem to be more safe from the point 
of view of technology and design, strength of material, working safety, operation life and so on. It means that 
for a given bending angle (kb) the obtained reductions in thickness of the elbow wall in the bending zone 
and suitable longitudinal components of deformation, as well as the strain intensity will be greater than the 
relative quantities obtained from the general solution. It means that for a given permissible wall thickness in 
the bending zone, the permissible values of the bending angle, components of longitudinal strains and the 
equivalent strain will be relatively lower than those from the general model. The safest and the easiest values 
from the point of view of calculating are obtained on the basis of a model resulting from simplification of the 
3rd order. The above conclusions can be easily verified on the basis of the graphs and calculations. The 
considered simplifications have no physical sense (except for a certain sense resulting from simplification of 
the 2nd order), and they are only a formal mathematical operation making calculations easier. The derived 
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simplified schemes of strain do not satisfy conditions of conformity od displacement and continuity of 
strains.  
 Figure 4 gives a comparison of results obtained from the equations derived in Śloderbach (1999; 
2002) with those obtained from the tests presented in (Franz, 1961). The bending angle was 0 = 1800 as 
measured on the principal plane of bending, i.e., for = 00. As it can be seen from the plot, the 1, 2, 3 
values for the apex point of the bending zone (= = 00) and within the elongated fibre area are in very 
good agreement with the experimental data. They do not coincide so well for the whole angle range  - but 
the discrepancy can be easily explained: ideal conditions of bending assumed in the model differ from the 
actual ones which involve friction, a projecting mandrel and the limited value of k = 1. It can be noted that 
for k = 3 the calculated and experimental values agree fairly well, especially for the left-hand half of the plots 
in Fig.4, both for the bending zone and the plateau zone. For the right-hand side of Fig.4, the bending zone 
may be adequately represented by the measure presented in (Śloderbach, 1999). The above statements were 
confirmed by the author when his calculated data were compared with experimental ones quoted in Franz, 
(1961), Korzemski (1971). The other data in Franz (1961) obtained in tests using either a not-projecting 
mandrel or no mandrel at all conform well with the author’s theory if one assumes k = 2.5. 
 

 
 

Fig.4. Plots of strains at the bending plan. 
 
 The bending zone - plateau zone ratio deserves a short comment. If k = 1, then the whole zone 
defined by the range [00; 1800] is the bending zone without the plateau portion. When k tends to infinity, then 
the bending zone extent tends to zero and the whole bend area is occupied by the plateau zone. The running 
wall thickness gi is then constant and at the bend ends a sharp change in thickness occurs, so that gi  g0 (g1 
g0 for elongated fibres and g2  g0 for compressed ones). The strains  (i),  and thickness gi depend solely 
upon angle  rather than on angles  and b. The obvious conclusion is that for each value of k belonging to 
the set k  [00;  ) we have 0   b . 
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 It follows from the bending operation model presented herein that the maximum angular range of 
bending portion is equal to 1800 while the bend angle range is, at least in theory, unlimited. The difference 
(b)- between the bend angle and bending angle gives the plateau zone range. It must be emphasized 
that for compressed fibres the model for (2 = 1) fails to predict true values of strains. The error may exceed 
100%, so this model can be well applicable for (2 = 0.5).  
 It can be generally stated that the coefficient k becomes larger, firstly, with a decreasing bending 
radius R, secondly, if a more projecting and stiffer mandrel is used and, thirdly, if thick-walled tubes 
fabricated of less ductile material are involved. A real value of k is also to some degree affected by a 
particular measurement method used and its accuracy.  
 A comparison of the author’s own experimental data with the obtained calculation results is 
presented in Tab.1.1. Values of g1 and g2 are taken from Śloderbach (1999; 2002). 
 
Table 1.1. Data coming from the tests carried out by the author and the calculation results for 1=1 and 2=0.5. 
 

Pipe 
(dextg0)[mm] 

R [mm] 
( r~ dext)[mm] 

g1exp 

[mm] 
g2exp 
[mm] 

Oexp 
[%] 

g1 
[mm]

g2 
[mm] 

,
1g

 
[mm]

,
2g  

[mm] 

,,
1g  

[mm] 

,,
2g  

[mm] 

,,,
1g  

[mm] 

,,,
2g  

[mm] 

Om 

[%] 

31.83.6 
steel K18 

50 mm 
1.57dext 

2.85 4.30 5.20 2.89 4.23 2.86 4.20 2.77 4.41 2.73 4.36 2.64 

31.84.5 
steel K18 

50 mm 
1.57dext 

3.55 5.45 5.05 3.65 5.26 3.62 5.22 3.47 5.53 3.41 5.45 5.70 

44.53.2 
steel K18 

80 mm 
1.8dext 

2.55 3.75 5.85 2.59 3.70 2.58 3.69 2.52 3.79 2.50 3.77 2.88 

44.54.5 
steel K18 

80 mm 
1.8dext 

3.60 5.30 5.00 3.68 5.17 3.66 5.15 3.55 5.34 3.52 5.30 4.10 

574.5 
steel K10 

142.5 mm 
2.5dext 

3.85 5.05 5.15 3.85 4.96 3.84 4.95 3.77 5.04 3.75 5.03 2.29 

576.3 
steel K10 

142.5 mm 
2.5dext 

5.45 7.05 4.80 5.44 6.91 5.42 6.90 5.28 7.07 5.25 7.04 3.24 

76.16.3 
steel K18 

190 mm 
2.5dext 

5.35 7.10 5.00 5.40 6.94 5.38 6.93 5.27 7.06 5.25 7.05 2.40 

76.17.1 
steel K18 

190 mm 
2.5dext 

6.10 7.85 4.90 6.10 7.82 6.88 7.80 5.95 7.96 5.92 7.94 2.72 

139.74.5 
steel R35 

280 mm 
2.0dext 

3.65 5.65 5.55 3.66 5.15 3.65 5.15 3.61 5.20 3.60 5.20 1.14 

139.78 
steel R35 

280 mm 
2.0dext 

3.80 5.35 4.85 6.56 9.11 6.54 9.09 6.43 9.26 6.40 9.23 2.05 

1594.5 
steel R35 

400 mm 
2.5dext 

3.80 5.35 5.25 3.79 5.01 3.79 5.00 3.76 5.03 3.75 5.03 0.91 

15910 
steel R35 

400 mm 
2.5dext 

8.50 1.05 4.60 8.53 11.05 8.50 11.03 8.37 11.19 8.34 11.17 1.81 

 

where Om- mean coefficient of ovalization of the cross section inside the elbow caused by variation in wall thickness, 
Oall - allowable coefficient of section ovalization (Oall = 6% according to EN 13445-4; 2009), the index (exp) –stands 
for experimental data.  
 
3. Final statements and conclusions  
 
1.  Simplifications of the 1st, 2nd and 3rd type determine greater strains, decrease and increase of the wall 

thickness as well as greater initial wall thickness than those resulting from a generalized model of strain. 
2. From the experimental data presented in Tab.1.1 and calculation results it appears that: 
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 The smaller value of the relative bending radius r~ , ( r~ = R/dext) (Śloderbach, 2002), the „sharper” 
bending, the greater variation of the elbow wall thickness and ovalization of the cross section of the 
elbow are,  

 The ovalization coefficient for the elbow cross section determined from the tests and defined by the 
method of arithmetic averaging from calculations Oall, does not exceed the allowable value (Oall = 6%) 
assumed in, see e.g. European Standard EN 13445-4; 2009; UDT Conditions, 2003; Zdankiewicz, 1998, 

 The experimental data were obtained from tests for bending an elbow to the right angle (0 = 900) and 
the straight angle (0 = 1800), 

 The calculations were made for the moment when the maximum strains were reached in the bending 
zone, i.e. initiation of the „plateau” zone in the central points of the elbow,  

 The calculation results were obtained for technological-material correction coefficients of strain 
distribution in the bending zone i; for elongated layers (1 = 1) and compressed layers (2 = 0.5), 

 Relatively big differences between ovalization coefficients coming from the tests Oexp and calculations, 
mathematically averaged Om result from the fact that the experimental data include the effects resulting 
from the cross section flattening and non-uniform variation of the elbow wall thickness, and the 
calculation results for ovalization include only the effects of non-uniform variation of wall thickness. 
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